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1. Introduction

If p(x|6) is the frequency function of the random variate x which
is known excepting for the wnkmown parameter @, assuming for con-
venience that x=(x,, - --, x,) takes values in the n-dimensional Euclidian
space X and @=(6,, - -, 6,) takes values in the k-dimensional Euclidian
space 2, we may ask the question: What part of the random variate
x is relevant for inference concerning an arbitrarily specified (parametric)
function ¢ on £, disregarding individual values 6,, ---, 6, excepting to
the extent they determine the value of the function ¢? In other words,
is there such a thing as a sufficient statistic ¢(x), for #(@), different
than a sufficient statistic for @ itself? Clearly this is a generalization
of the situation of nuisance-parameter. The convertional sufficiency is
defined for @ itself as such an alternative definition of sufficiency, for
the nuisance-parameter situation, based on a (or the?) group-structural
relationship between the random-variate x and the parameter 8, has
been put forward by Barnard [1] and Sprott [10]. In the following we
give yet another definition of sufficiency for an arbitrary parametric
function ¢, which seems appropriate for the situations when our prior
knowledge concerning parameter @, can be characterized by a class C
of prior distributions &, on the parametric space 2. This new sufficien-
cy would be called Bayesian sufficiency for the reasons which would be
evident later on. This paper discusses applications of Bayesian suffi-
ciency primarily for the problem of estimation as it arises in survey-
sampling.

2. Preliminaries

With the same notation as above, for any prior distribution & on 2
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we can write the posterior density (assuming it exists), of @ as
2.1) pe(0|x)=p(x|0)/gap(x[0)d6 , for all xe X, 6€Q.

The posterior distribution of the parametric function ¢ on 2 can be ob-
tained by integrating (2.1) on the set of relevant values of 8. We as-
sume this posterior distribution of ¢ admits the density function,

(2.2) P x), for all xe X, 6¢42.

DEFINITION 2.1. A (statistic) function ¢(x) on the (sample) space X,
is said to be Bayes sufficient for the (parametric) function ¢ on 2, with
respect to a class C of prior distributions £ on the (parameter) space 2,
if the posterior density p.(¢|x) in (2.2) depends on x only through #(x)
for all xe X and £€C.

The motivation for a class of prior distributions in the above Defi-
nition 2.1 is as follows: In practice almost never the prior knowledge
completely specifies a prior distribution. On most of the occasions the
prior knowledge just characterizes a few properties (such as bell-shaped-
ness ete.) of a possible prior distribution. These properties define a class,
C say, of prior distributing. This idea was first utilized by the author
in [3] and subsequently in [7], but not via Bayes theorem. The Bayesian
Sufficiency above aims at defining the part of Bayesian inference that is
common for all the prior distributions contained in the class C. A re-
alistic illustration from survey-sampling is discussed in sections 4 and 5.

After the reduction of the data by application of Bayesian suffici-
ency in section 6 we have suggested application of the principle of in-
variance. In spirit it is analogous to the usual practice of reduction of
data through (conventional) sufficiency and invariance.

It is easy to check that if we put

P(x]0)=(VZre") " exp| — 1 33 (5= o’

where

x=(w1, Ty xn) and 0=(‘u' az) '

and suppose ¢(8)=d* then if T= émi/n according to the above Defini-

tion t(x)= ‘:‘_‘,(xi—s?)’ is a Bayes sufficient statistic for ¢(8)=¢?, for any
1

class C of prior distributions &, such that x and ¢* when distributed as
&, are independent, p having uniform (degenerate) distribution over
(—o0, ) and ¢* having any arbitrary distribution over (0, o).
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Similarly if we put p(x|8)=(v/Zre%)-mtm exp{—%[:vj (= )+
1
ny+
121:2 (x; — ﬂg)Z:I / 02} where x=(x;, --+, %, 4,) and 6=(g, m, ¢’) and sup-
ny+

ny+n.

pose ¢(@)=d?, then if z"vl=21a:,/nl and T,= 122 x,/n,, according to the
1 n1+1

n. ny+ny
above definition t(x)= Si‘,(wi-—ﬁl)’+ IE (x;—%.)* is a Bayes sufficient sta-
1 ‘nl+l

tistic for ¢(@)=d*, for any class C of prior distributions &, such that
t, p. and ¢ when distributed as & are independent, g, p having uni-
form (degenerate) distribution over (—oo, o) and ¢ having some arbi-
trary distribution over (0, o).

In the preceeding example, the exponent in p(x|8) can be written as

1

Lo} nytng
— g{ 2 (@;—7)* 4 n§+31 (x;— %)+ [A(+ 1) + BT

+Cl(z,—7.)— (le - #z)]z}

where A'=n,+n,, B=— {n[%,— (. — )]+ 1 Zo(et,— )1} [V 0 +m, and C=
nmy/n,+mn,. Hence for the same class C of the priors as before, by
transferring (g, ) into (p+ g%, 11— p) in the posterior and then inte-
grating out g+ we have the result: A Bayes sufficient statistic for

the parametric function ¢(6)=[(x;—w), /’] is given by t(x)=[(:7:1—iz),
" _y, Mim .
S @8+ 3 @)
1 ny
A some what striking reduction of the data is achieved by the ap-

plication of Bayes sufficiency to an estimation problem arising in survey-
sampling. This is shown in the following sections.

3. Survey-sampling

Let the survey population U, consist of N units, denoted by the in-

tegers 1=1, ..+, N. If the variate value associated with the unit 7 is
z,, 1=1, .-+, N, then,
(3.1) Z=(Zl, ey Ryttt ZN)

is a point in the N-dimensional Euclidian space Ry, and the population
total T(z) is a function on R, given by

3.2) T(2) =% 2.

Now in survey-sampling the word sample is used with some what differ-
ent meaning than in the rest of statistical literature. We formally de-
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fine a sample and a sampling design as follows:

DEFINITION 3.1. Any sub-set s of U (i.e. integers 1, ---, N) scU is
a sample.

DEFINITION 3.2. If S denotes the set of all possible samples s, then
any real function p on S such that p(s)=0 and > p(s)=1 for s€ S is
called a sampling design.

It has been repeatedly shown by the author [3], [4] that all survey-
sampling designs such as simple random sampling, stratification, arbitrary
probability sampling and the like are special cases of the sampling de-
sign p in the Definition 3.2 above.

Here a general problem of estimation is to estimate the population
total given by (3.2) on the basis of a sample s, (Definition 3.1) and the
values z;, 1 €s where s is drawn with a specified sampling-design (Defi-
nition 3.2).

DEFINITION 3.3. Any function f(s,z) on SX R, which depends on
z in (3.1) only through those 2z, for which ¢ € s is called a statistic.

Now to obtain a Bayes sufficient statistic for the population total
in (3.2) we note that in the present case the observation consists of
s, (z;, 1€8). And the probability of s, (2;, 7 € s) is completely determined
by the sampling design p (Definition 3.2) and z in (3.1) as follows:

o(8) if 2/ ¢ Ry(z;, 1€8)
3.3) Pls, (2,1 €98)|2']1=
if Z' ¢ RN(zi, i € 3)

for all se€S and 2z’ € Ry, where Ry(z;, 1 €s) is a sub-set of Ry, Ry(z,
1€8)CRy, such that 2/=(z], ---,2}, -+, 24) € Ry(2;, © €3) if and only if
2i=2z, for all 1€s.

Remark. Thus here our sample-space X consists of all points s,
(2;, 1€8) where s€S and z;,, 1 €s are any real numbers. The paramet-
ric space 2=R,. For a specified sampling design p, (3.3) determines
the probability distribution.

For a given prior ¢ on R,, the posterior distributions for z in (3.1)
and T(z) in (3.2) are derived in the next section. These correspond to
the posterior distributions in (2.1) and (2.2) respectively. Subsequently,
a Bayes sufficient statistic for T'(z) is obtained.

4. Posterior distribution of the population total

Without any loss of (statistical) generality we assume a discrete
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prior distribution ¢ on Ry. Then denoting by P(-) and P.(-|-), the cor-
responding probability and conditional probability respectively when &
obtains and the sampling design by » in (3.3), we have

£LOy \%1y
_YlZ, 2, i€s]p(s)
Pz, i€ s]p(s)

where p(s) is the same as in (8.3), Pz, i€s] is the corresponding
marginal probability obtained from P.(z’) and

P.(2) for 2z’ € Ry(z;, 1 €8)
4.2) Uz, (2, i€ s)]:{

for 2/ ¢ Ry(z,, 1€5).

R, (z;, i €s) being the same set as in (8.3). Now for samples s with
p(s)#0 we have from (4.1) and (4.2),

P(2")|Pdz:, i€s)  for 2’ € Ry(z:, i €8)
(4.3) Pl'[s (2, 1€ s)]={
for 2’ ¢ Ry(z:, i€5).

Now (4.3) clearly defines the posterior distribution of 2’ given the prior
&, the observation s, (z;, 1 €s) and the sampling design* (3.3). Next,
from the posterior distribution of z in (4.3) we can obtain the posterior
distribution T'(z) in (3.2) in the usual manner by summing P[z'|s, (z;,
1 € 8)] over the relevant subset of RBy. An interesting simplification re-

sults by assuming & to be such that z,, ---, 2, -+ -, 2, in (8.1) are mutually
independent i.e.

N
(4.9) P2)=1] Pz .

Substituting (4.3) in (4.4) we have for samples s with p(s)#0,

1T P.(2) for 2’ € Ry(z;,1 €3)
(4.5) PlZ'[s, (z;, 1 €8)]=1 i¢s
0 for 2’ ¢ Ry(z;, 1€8).

Now the posterior probability that T(z) in (3.2) belongs to a set of values
A is the same as 3z belongs to the set of values A(X]z), where the

t1¢s 1€8
set A(Z)z) is obtained from A by substracting from each element of
te8

A, > z,. Thus we have from (4.5)

ies

* Note the posterior distribution of z in (4.3) is independent of the sampling design p.
But we would not discuss the problem of randomization in this paper. For a relevant
commet see the Appendix.
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THEOREM 4.1. For every prior & on Ry, such that z, ---,zy when
distributed as & are mutually independent, the posterior distribution of
the population total T in (3.2) conditional on [s, (z;, i €s)], depends on
(2;, 1 €8) only through iE‘ 2.

Further suppose C is a class of priors & on R,
(4.6) such that when z,, -- -, zy are distributed as ¢ they
are mutually independent, for all £eC.

Then from Theorem 4.1, Definitions 2.1 and 3.3 we have

THEOREM 4.2. With respect to the class C in (4.6) of the prior dis-
tribution on Ry, the statistic (s, iZ 2;) 18 Bayes sufficient (Definition 2.1)

€3

Jfor the population total T in (3.2).

The above theorem raises the following question: If as suggested
by the theorem (s, 3 2,) is the only relevant information in the data con-
ies

cerning the estimation of the population total 7' what is the logical
meaning of the conventional standard errors of estimates of 7? This
question is not answered in this paper. However, the next section con-
tains some related discussion.

5. A general discussion

The prior knowledge, characterized by a class C of the prior dis-
tributions in (4.6) implies that the variates z,, ---,2y are causally in-
dependent. Now, the concept of causally independent variates is at the
root of all physical sciences. The autonomy of a physical experiment is
based on the assumption that the variates not controlled by the experi-
ment are causally independent with the controlled variates. In fact one
could probabilistically define the knowledge of causal independence of the

variates z;, --+,2y by any class C of prior distributions & on R, such
that Pz, -+, 2,12y, - -+, 2;)=Pe2, - -, 2,,,) where z;, --+,2,, and z,,
.-+, 2;, are two non-intersecting subsets of the variates z,, ---,zy. One

may now raise the question as to whether under the hypothesis of caus-
al independence any inference can be made about the unseen values 2,
-++,%;, on the basis of the observations z;, ---, 2;,- That such an in-
ference is possible can be quickly illustrated in case the class C consists
of all the prior distributions ¢ such that z, ---,2y are independently
and identically distributed. On the basis of the observations z;, ---,2,,
one can have some estimate of & which can be used for inferring the
unseen values z;, ---,2,,. Again the class C is a parametric family of
distributions, and, we can estimate some of the parameters from the ob-
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served values. In general, we can say that in spite of the assumption
of the causal independence of the variates z,, ---, 2y, observing some of
these variates may sharpen our prior knowledge from class C of prior
distributions to the class C* where C*CC. And this fact implies the pos-
sibility of inference concerning the unobserved values. The consideration
of invariance discussed in the next section may suggest an alternative
approach. Now in many cases of survey-sampling, the variates x,, - - -, 2y
are causally independent, in the sense described above, some possible
exceptions being the situations where the populations are stratified.

6. Origin and scale invariance

Intuitively it is more appealing to do the reduction of the data
first according to certain natural invariance properties of the model and
then apply the sufficiency criteria for the further reduction. But in
practice, generally, the reverse procedure is more convenient. An ex-
cellent reference in this direction is Hall, et al. [8].

In this section we consider the problem of finding a suitable point
estimator for the population total T in (3.2). With slight change in the
Definition 3.3, we have

DEFINITION 6.1. Any 7real function e(s, z) on SX Ry, which depends
on z only through those z, for which 7 €s, is called an estimator.

DEFINITION 6.2. Any estimator e is called a Bayes sufficient esti-
mator for the population total 7' in (8.2) if e depends on [s, (2;, © € s)]
only through the Bayes sufficient statistic [s, ;} z,] in Theorem 4.2.

We now introduce the concept of the origin and scale invariant esti-
mation for the population total as follows:

DEFINITION 6.3. Any estimator e(s, z) is said to be origin invariant
for the population total T(z) if and only if for any real constant £k,
(—oo<k< ), e, z+kz)=e(s, z)+ Nk.

DEFINITION 6.4. Any estimator e(s, z) is said to be scale invariant
for the population total T'(z) if and only if for any real constant £k,
(—oo<k< o), e(s, kz)=k-e(s, z).

It seems that certain symmetries implied in some possible prior
knowledge about the population may make the above properties of in-
variance intruitively appealing. Any way, it is interesting to note that
Bayes sufficiency together with the concept of invariance introduced by
Definitions 6.3. and 6.4 implys a unique point estimator e(s, z)=Nz, z
being the usual sample mean. This is proved below.

By Definition 6.2 any Bayes sufficient estimator for the population
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total T is given by e(s, {E 2). The origin invariance by Definition 6.3
inplies e(s, iZ (zt+k))=e(s,;]zi)+Nk for all values of 2z, i€s and k.
Putting > 2,=0, we have e(s, n(s)k)=e(s, 0)+ Nk for all k, n(s) being
the number of individuals ¢, (¢=1,.--,N), such that 7¢s. Hence,
origin invariant Bayes sufficient estimator for the population total must
be of the form:

6.1) e(s, z)=const.+ Nz(s)

where z(s)=3z;/n(s). Next it is easy to see that among the class of
ie8

estimators obtained from (6.1) by giving “const.” different values the
only one which is scale imvariant by Definition 6.4, is given by

(6.2) e(s, 2)=Nz(s) .
Hence we have the following,

THEOREM 6.1. The estimator NZz(s) is uniquely the Bayes sufficient,
origin and scale imvariant (Definitions 6.2, 6.3, and 6.4) estimator for
the population total T in (3.2).

On the other hand, if our prior knowledge about the population con-
tains knowledge of some ancillary variate y taking values y,;, 1=1, - --,
N for different individuals ¢ of the population, we may wish to find an
estimator which is Bayes sufficient, origin invariant (Definitions 6.2, 6.3)
and which assumes exactly the value T(y) at z=y=(y,, -- -, Y») i.e. the
estimator should be such that at the point z=y, e(s, z)=T(z). A unique
estimator satisfying this condition is obtained from (6.1) as follows,

(6.3) e(s, y)=const. + Ny(s)

where y(s) is the mean of y;, t€s. And since we have e(s, y)=T(y)
we have from (6.3)

6.4) const.=T(@y)— Ny(s) .

Putting T(y)=NY, Y denoting the population mean of »’s, we have from
(6.1), (6.3) and (6.4)

(6.5) e(s, 2)=N@(s)—¥(s)) + NV .

This is what is conventionally known as the difference estimator for the
population total. Thus we have the following,

THEOREM 6.2. The (difference) estimator, given by (6.5), is the unique
Bayes sufficient, origin invariant (Definitions 6.2, 6.3) estimator which
18 exactly equal to the population total at z=y.
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Now conventionally the estimator

(6.6) e(s, z) =§—('9)—T(y)

y(s)
is called the ratio-estimator of the population total. Following argu-
ments similar to those of Theorem 6.2, we have

THEOREM 6.3. The ratio-estimator given by (6.6) is the unique Bayes
sufficient scale invariant (Definitions 6.2, 6.4) estimator which is exactly
equal to the population total at z=y.

Evidently the Theorems 6.2 and 6.3 above would be relevant for
the situations where we have a reason to believe that the values z;,
t=1, --., N are obtained from some previously observed values y,;, i=
1, ---, N by just changing the origin or scale of measurement and by
adding to these changed values some small random fluctuations inde-
pendently for each ¢, 1=1, ---, N.

We conclude this paper by just raising a question: Are the con-
cepts of origin and scale invariance discussed above logically equivalent
to choosing some special class of prior distributions in (4.6)?

(The relationship of the above Theorems 6.1, 6.2 and 6.3 with the
author’s previous results ([7], Theorem 4.1) is obvious).

7. Stratification

The case of what is conventionally called a stratified sampling is
specially interesting. Clearly the usual estimator

2 Nkzk ’

(2 being the sample mean and N, the number of units, in the kth
stratum k=1,2, -.-) for the population total 7" in (3.2) is not a function
of the statistic (s, >} 2;) referred to the Theorem 4.2.

1€8

To understand the above situation one should note that stratification
invariably is based on some kind of prior knowledge concerning the vari-
ate values z; associated with different units =1, ---, N. On the basis
of this prior knowledge we expect the variate values z;, associated with
some of the units to be larger or smaller than these associated with
some other units in the population. (Thus broadly speaking, a stratum
consists of units ¢ which we expect to have more or less equal variate
values z;). Clearly such a prior knowledge implies some prior distribution
& on Ry so that different coordinates of z=(z;, - - -, 2y) in (3.1), are prob-
abilistically dependent. That is, P.z) would mot satisfy the equation
(4.4). This situation therefore is not covered by the Theorems 4.1 and
4.2,
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On the other hand, the situations described in the section 5 were
different. These are generally characterized either by more or less com-
plete absence of any prior knowledge concerning the variate values as-
sociated with different units or when the prior knowledge provides the
values g, for units i=1, ---, N, of some auxiliary variate. The prior
knowledge of y;, 1=1, ---, N suggests a prior distribution § on R, such
that

(7.1) Pe(ztl’ Tt ziRIzjl’ ce %y Yo “ry Yn)
=P€(zt1’ M) ztRl’yli “ 5 Yw)
where 2, ---, 2, and 2,, - -+, 2;, denote any two non-interesting subsets
of the variates 2, ---,2y in (3.1). And (7.1) implies
N

(7.2) P(z|yy, "':7/N)=;1;11Pe(ztlyn ce e Yn) -
According to (7.2), the prior distribution & on Ry is such that conditioned
on the values (¥, ---,¥x), %, -+, 2y are probabilistically independent.
Hence, we get the validity of Theorems 4.1 and 4.2.

Now the absence of any auxiliary variate values y,, 1=1, .-+, N, as

is generally the case in connection with stratified sampling, may some
times mean that our prior knowledge implies some distribution on the
values ¥, -+, ¥y. With respect to this distribution we may integrate
out ¥, - -+, ¥y in (7.2). Usually the resulting distribution P.(z) would be
such that z,, - -+, 2y are probabilistically dependent. This case as stated
before, is not covered by Theorems 4.1 and 4.2.

Of course the Theorems 4.1 and 4.2 could clearly be applied for each
stratum separately on the assumption that we have no prior knowledge
to distinguish between the values of the components of z belonging to
any given stratum. This condition is usualy fulfilled when stratification
is carried out to the fullest extent.

Acknowledgement

A some what restrictive version of the definition of Bayesian Suf-
ficiency in the section 2 of this paper was previously given by Raiffa
and schlaifer [9]. Some discussions with Professor A. Birnbaum and
L. J. Savage were helpful. Needless to say, however, that none of the
above persons are responsible for the views expressed in this paper.

Appendix

As we have already said (foot-note, p. 367) the problem of randomiza-
tion is not discussed in this paper. But to make this paper self-contained
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the following interpretation (suggested by Joshi (ref. Godambe [6])) and
Beran [2], of random sampling as means of validating the assumption of
independence in (4.6) may suffice. Consider a possibility (and this can
happen in many practical situation) of z,, ---,zy, the realized values of
the random variates satisfying (4.6), being arraged in some order by an
intelligent agency before a ‘sample’ is drawn. Clearly this arrangement
may offset the assumption of probabilistic independence in (4.6) on which
all the subsequent analysis is based. A simple way to restore this in-
dependence is through random permutations of the units (1, ---, N), be-
fore the sample is drawn. But this is logically equivalent to a simple
random sampling.
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