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Introduction

Asymptotic distribution theory based on the concept of convergence
has been widely discussed in the literature, for which the requirement
of the existence of limiting distribution and that of fixed basic spaces
are restrictive in some cases of applications. In fact, the asymptotic in-
dependence problem of a system of random variables can not be handled
by means of the usual theory of asymptotic distribution when the num-
ber of the variables increases indefinitely under a limiting process being
considered. It would assure us wider applicability of the theory to re-
move the restrictions stated above, and such an attempt has already
been made in the previous paper [1], in which some of the concepts of
asymptotic equivalence between two sequences of probability distribu-
tions were introduced with applications in a fairly general situation.
These notions, however, appear too strong for some practical applications.

In the present paper, we shall confine ourselves to the case where
the basic spaces are Euclidean, and introduce several types of asymptotic
equivalence of real probability distributions, some of which are weaker
than those given in the paper [1].

In the first section, we shall give some preliminaries, and in sec-
tion 2, definitions of stronger notions of asymptotic equivalence are in-
troduced in the general case of basic spaces, together with their mutual
inclusion relations. Section 3 is devoted to discussions on conditions un-
der which different types of the notions are mutually equivalent in the
case of equal basic spaces.

In section 4, we shall discuss some of the fundamental properties of
a certain type of the notions which is practically important, and in sec-
tion 5, discussions will be made on measurable transformations which
transfer a type of asymptotic equivalence to the same or to another.
Such transformations are of use in some practical situations.

* This research was partly supported by the U.S. Army Research Office-Durham, Con-
tract No. DA-ARQ-D-31-124-G814, G670.
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The final section is devoted to discuss the asymptotic equivalence of
marginal probability distributions, when the other marginals are replaced
in a manner by another sequence of probability distributions, or by a
constant to which the other marginals converge in probability.

The present article is based on a series of works [2], [3], [4], [5], and
an application of the present theory will be seen in the papers [6], [7].

1. Preliminaries

In this section, necessary notations and results on real probability
distributions are stated.

For any given positive integer =, let R, be the n-dimensional Eu-
clidean space, and B, the usual Borel field of subsets of R,. Let us
denote the family of all probability distributions, or of all random vari-
ables, defined over the measurable space (B, Bw) by F (B Bw), the
members of which will be designated by random variables, X, Y, ** *,
say, with corresponding probability measures P*m, P¥m, - - -, respectively.

Let v, be any given o-finite measure over (R, Bw,), and P(R,,
B, viy) be the family of all probability distributions over (R, Bw)
which are absolutely continuous with respect to v,,. Throughout the
present paper, p,, designates the usual Lebesgue measure over R,,.

Let C,, be any given non-empty subclass of B.,, and let us define
for any given pair of members of (R, Bu), Xm and Y, the follow-
ing quantities :

(1.1) 04(Xwyy Yyt Co)= sup |P*m(E)—PYm(E)|,
EeCw

and

1.2 an9Yn Cn = S8sup (n)(E)

(1.2) (X Yo : Co) = EEC(n) P(n)(E)

with the convention that 0/0=1.

Note that the first quantity defines a distance over the family
F(Rey, Be) if we identify those random variables which have the same
probability measure over C,,, X, and Y, being said to have the same
probability measure over C, if it holds that P¥m (E)=P¥w (FE) for every
E belonging to the class.

It should also be remarked that, in the case when both X, and
Y., belong to the family P(R.., Bu, vm) for some o-finite measure v,
it holds that

1.3) 204( Xy Yinr : Bw)= Szz If —g|dven ,
[¢)]
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where f and g are the generalized probability density functions with
respect to v, (9pdf(ve), in short) of X, and Y,, respectively.

It is immediate from the definition that, if m<n and C,, contains
all the subsets of the form Ei., X Ru-my, Eem € Cemyy then

(1.4) 00(Xemyr Yemy : Comy) £ 04(Xenry Yot Cemd) »
and
(1'5) 51(X(m)1 If(m): C(m))éar(‘x(n), y.(n): C(n))

where X =(Xmy» Xn-m) a0d Yo=Y my» Ytn-m) are the decompositions
corresponding to the decomposition of the space, Ruy=Rum X Ru-m).
The following inequalities are also easy to prove:

(1'6) ad(X}n)’ Kn): C(n))émin {Jr(AX‘(n): I’(n): C(n)), 5r(Kn)! Xv(n): C(n))} ’

and

0, (Yims Xewr+ Ceny) .
1'7 r\L (») (n) n) S&,X,,,Y,,.C,.
( ) 1+6r(Kn)’ )((n):C(n))— ( @ @ ‘ ))

where the role of X, and Y, can, of course, be exchanged.
Now, we shall consider some of the familiar subclasses of B.,.
Let M., be the class of all subsets of R, which are of the form

1.8) Eaw)={Zm=z * ) %) | —0=2,<a;, t=1, .-+, n},

for all extended real vectors, a.,=(a,, - - -, a,), a; being admitted to take
the values +oo. This is a multiplicative class and contains the empty
set and the whole space as its elements.

The class S, is defined to be the class of all subsets of the form

E(a'(n): b(n)) = {z(n)=(zh Tty zn)lbiézi<aiy 7:=1’ Yy n}

where a,=(a,, -+, a,) and b,,=(b,, ---, b,) are any extended real vectors.

Let A, be the finitely additive class over M,,,, and finally, G, the
class of all open subsets of R, with respect to the usual Euclidean
distance.

For these classes, it is well-known that (a) the class A, consists
of all finite unions (may, or may not disjoint) of the members of S,
and (b) for any subset E belonging to S, there exist a set of members
of M,,, {F,---,Fy} say, and a set of constants, ¢,’s, taking the values
+1, such that N<2" and '

(1.9) vl E)=3] el F)

for any o-finite measure v, over (R Bu)-
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From (1.9) it immediately follows that
(1.10)  0u(Xewss Yeny : M) 0 Xensy Yny: Seny) £2"00(Xeays Yy : M) -

Since, for any given o¢-finite measure v, over (R, B.,) and for any
given subset E belonging to B.,,

Ve (B)=1nf {2‘] v (FY) | ECS l;JFu F,eAw},

it holds that

(1.11) 0d(Xewn Yot Acw) =04 Xy Yen : Bew) -
In the final place, let

(1.12) Xen=KXeaps ***» Xeap)

be a decomposition of a random variable X,,, corresponding to some de-
composition of K, Ruy=Re,X -+ X R,,. For this decomposition, the set
of k& marginals,

(1.13) {X(nl)’ ] X(nk)} ’
is said to be an independent system of random variables if it holds that
PX®(E)=PXap(E)X - - - X PXo(Ey)

for every subset E of the form E=E X-..-xE, with E; ¢ B, i=1,
con k.

It is also well-known that for any given X,,, decomposed in the form
(1.12) there exists a random variable, Y=Fwp -+ Yanp), such that
the k-marginals constitute an independent system and Y., is distributed
identically with X, ¢=1, -, k.

2. Definition of some types of asymptotic equivalence and of as-
ymptotic independence

In this section, we shall introduce two types of stronger notions of
asymptotic equivalence in the general case where the dimensions of the
basic spaces may or may not vary with underlying parameters, and two
types of weaker notions in the case of equal basic spaces.

Corresponding notions of asymptotic independence of system of ran-
dom variables will also be defined.

Let {X,} (s=1,2,-..) and {Yé,) (8=1,2, ---) be two sequences of
random variables, for which X, and Y¢,, are assumed to belong to the
family F (R, Bay) for each s. The sequence of the underlying spaces,
{Rep} (8=1,2,---), will be called the sequence of basic spaces. The case



ASYMPTOTIC EQUIVALENCE 343

where the dimensions of the basic spaces, m,, are identical with some
positive integer n is called the case of equal basic spaces, otherwise the
case of umequal basic spaces. An important case of unequal basic spaces
is that =, tends to infinity with increasing s.

Together with the above sequences of random variables, we shall
consider a sequence of basic classes, {Cunp} (s=1,2, - --), with a non-empty
subclass C, of B, for each s.

Under the situation mentioned above, we give the following.

DEFINITION 2.1. Two sequences of random variables, (X&) (s=1,
2,--+) and {Y¢,} (s=1,2,---) are said to be asymptotically equivalent
in the sense of type (C), or of type (C), as s—oo and are denoted by

2.1) Xop~YGp(Ca (83— ),

or

2.2) Xep~Yi, (C), (s—o0),

if it holds that

(2.3) 54(X(';z,)’ Yo C(ns))_)o (s—0),
or

(2.4) 0(Xon Yot Cap) ™0 (8> 0),
respectively.

This definition gives two notions of uniform asymptotic equivalence
basing upon the absolute difference and the relative difference of two
probability measures. In this sense, we shall use the brief notations,
AEUD(C) and AEUR(C) for type (C), and (C), asymptotic equivalence
defined above respectively.

In the case of equal basic spaces where n,=n, if we fix Y, inde-
pendently of s, i.e., Y¢&,=Y,,, then the above definition gives us notions
of uniform convergence. We shall say that the sequence of random
variables, {X¢y)} (s=1,2, ---) converges in the sense of type (C)y, or of
type (C),, to Y, as s— oo, according as

(2.5) 04(X&y Yyt Ceny) —0 (s—0),
or
(2'6) 67(X(:1)’ .-Y(n) : C(n)) - 0 (S - OO) ’

respectively. We say, in short, X, converges (C); or converges (C), to
Y., as s—oo in the respective cases stated above.
In the case of equal basic spaces, weaker types of asymptotic equiv-
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alence can be defined as in the following.

DEFINITION 2.2. {X&)} (s=1,2,--:) and {Y¢,} (s=1,2, -.:) are said
to be asymptotically equivalent in the sense of type ((C)), or of type
(©)),, (AED((C)) or AER((C)) for short) as s— oo, and are denoted by

(2.7) Xon~Ye ((C)s (s> ),

or

(2.8) Xon~Y5H(0),  (83—),

if it holds respectively that

(2.9) | PXo (B)— PY(E)| -0 (s—o0),

or

(2.10) EE:LE)—Il——»O (s—>00),
PYa)(E)

for every subset E belonging to C.,, where we use the convention 0/0
=1.

As before, when Y¢, is fixed independently of s, the above defini-
tion gives us notions of convergence, i.e., type ((C)), and type ((C)),.
By using the notions of asymptotic equivalence given above, we can
define those of asymptotic independence of system of random variables.

Suppose we are given for each s a decomposition of X, in the
form

(2.11) X(‘,,‘)=(X(‘,,,§), Tt Xc‘mp)

where X, belongs to F(Bwms, Bawb), 1=1, ---,k, and k and mé may be
dependent on s. Let us consider for each s the system of marginal
random variables of Xg,,, i.e.,

(2.12) {X(smi), c X('m;)} .

As was noted in the preceding section, there exists a sequence of random
variables,

Fop=Fny - Yt (6=1,2,--)
such that V¢, and X are identically distributed for all 4, i=1, .-+, ,

and the set of marginals, (Y, --+, Y} is an independent system

of random variables for each s.
Under this situation, we shall give the following.
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DEFINITION 2.3. A system of random variables given by (2.12) is
asymptotically independent in the sense of type (C), (AIUD(C), for short)
as s—oo if it holds that

(2.13) Xop~Yay(Cla, (s> ).

In the same manner, one can define the other types of asymptotic
independence, namely, type (C), in the general case and type ((C)), and
((C)), in the case of equal basic spaces.

Now, we shall proceed to the properties of notions of asymptotic
equivalence. First, it is often useful to give the following.

LEMMA 2.1. In order that two sequences of random variables, { X&)
(s=L1,2, ---) and {Y¢,} (s=1,2,---) are AEUD(C) or AEUR(C), it is
necessary and sufficient respectively, that

(2.14) | X (B, ) — PYeo (g ,)| =0 (s—o0),
or
X“n‘ s
(2.15) Pf—)(Eﬁ__l —0 (s— )
P¥p (E(’,,.))

for any given sequence of subsets, {EGy) =12, --+) with E¢,, belong-
ing to Ce, for each s.

The proof of this lemma is easy and is omitted.

By using the results in the preceding section, it is not so difficult
to establish the inclusion relations for several types of asymptotic equiv-
alence which are obtained by taking the familiar classes given in the
preceding section as the basic classes (Comments by R. M. Meyer,
Matsunawa [8]): In the general case we have

(G)y= (?)a —=(4)i—> (8)s— (1%1).:
(G)r = (B)r (A)r — (S)r I (M)r

(2.16)

and in the case of equal basic spaces,
(G)d“_:(?)d*:(A)d—_)(s)d—‘——-—’(M)d
(&), (B).==(4), (S), —> (M),

(2.17)

for stronger notions, and
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((?’))a
((B))e— ((4))e == ((8))e == (M)
((B)), — ((4)), ==((8)), —> (M),
()"

(2.18)

for weaker notions.
Thus, so far as we are interested in these types of asymptotic equiv-
alence, we may only consider the following notions:

(2.19.1) (B)a) (S)e, (M)y; (B),, (M), ,
in the case of unequal basic spaces,
(2.19.2) (B)as (M)g; (B),, (M), ,

and

(2.19.3) ((B))a, (G))as (M))a; (B)),, (G))s ((S)),, (M),

in the case of equal basic spaces.

In the subsequent section, we shall give conditions under which some
of the notions given above are mutually equivalent in the case of equal
basic spaces.

3. Inclusion relations in the case of equal basic spaces

In the present section, we shall discuss the conditions under which
some of the notions of asymptotic equivalence given in (2.19.2) and
(2.19.3) are mutuaily equivalent.

In the first place, we give two kinds of properties of a sequence of
random variables.

Let {X&} (s=1,2, ---) be a sequence of random variables belonging
to F(Rey, Bw), and let C., be a subclass of B,, for which the follow-
ing definitions are meaningful.

DEFINITION 3.1. We say that {X{,} (s=1,2, ..-) has property B(C)
if for any given ¢>0, there exist a bounded subset, B says, belonging
to C., and a positive integer s, such that

PXw(B)>1—¢  for all s=s,.

Note that B(B), B(G), B(A) and B(S) are mutually equivalent pro-
perties. We therefore use property B(S) for them.
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DEFINITION 3.2. {X{)} (s=1,2, ---) is said to have property C(C)
if, for any given ¢>0, these exist a positive number & and a positive
integer s, such that the conditions, F € C,, and pg.,(E)<d, imply that

P (E)<e

for all s=s,, where p,, is, as before, the usual Lebesgue measure over
R(n)-

It should be remarked that property C(B) is equivalent to the umni-
form pe,-continuity defined by Loéve [9].

We shall list some of the results on the above two properties in the
following lemmas, whose proofs are straightforward and will be omitted.

LEMMA 3.1. (i) Type ((M)); asymptotic equivalence brings over
property B(S), i.e., if X5)~Ys, (M)); and either ome of the sequences
has property B(S), then the other has the same property.

(i) If X&H—Yw (M) as s—oo for some Y., belonging to F (R,
B,,) then the sequence has property B(S).

(i) A mecessary and sufficient condition for {X&,} (s=1,2,--) to
have property B(S) is that for some decomposition, Xéy=(Xitmy ** +» Xitmp)s
k and my, ---, m, being fizxed independently of s, every sequence of mar-
ginals, {Ximy} (8=1,2, ---) has property B(S), i=1, ---, k.

(iv) If {Xo=(X:, -, X))} (=12, ---) has property B(S), then
{Xen=(X2, -+, X2)} (8=1,2,---) has the same property where m is
Sfiwed independently of s, while the choice of {iy, - - -, 1,} may depend on s.

LEMMA 3.2. (i) Property C(C) implies property C(C') if ClyyS Cer.

(ii) Property C(C) s brought over by type ((C)), asymptotic equiv-
alence.

(i) If {X&=(X? -+, X))} (s=1,2, - --) has both properties C(S) and
B(S), then the sequence of any m marginals, {Xé&,=(X¢, -+, X¢)} (5=
1,2, --.), has the same properties when m is fized independently of s,
while the choice of {iy, -+, 1,} out of {1, ..-,m} may depend on s.

(iv) If C&, 18 the class of dll finite unions of the members of C.,
then properties C(C) and C(C*) are mutually equivalent. Thus, C(S) and
C(A) are equivalent to each other.

(v) If Xé—Ywm ((C))s as s— oo for some Y, belonging to the fami-
ly PR By pw), then the sequence {X¢,} (s=1,2,:-:) has property
c(C).

As was shown in the diagram (2.18), there hold the inclusion relations
((B))s— ((@))a— (M),
among the first three types of asymptotic equivalence given in (2.19.3).
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The following theorem gives sufficient conditions under which these
notions are mutually equivalent.

THEOREM 3.1. (i) If Xy~Y¢, (M), (s— o), and the sequences
have properties C(S) and B(S), then it holds that X)~Y¢, ((G))a, (s—

(ii) If both of the sequences have properties C(B) and B(S), then
Xy ~Y e (@))a tmplies Xéy~YE, (B))a as s— oo,

The proof of this theorem is not so difficult and is omitted.

It should be noted that, by the Lemmas 3.1 and 3.2, the conditions
for the sequences to have properties C(S) and B(S), stated in (i) of the
above theorem, can be replaced by the condition that at least one of the
sequences has the properties simultaneously or one for each. The same
is not necessarily true for the assertion (ii) of the above theorem. It is
also remarked that the first three notions in (2.19.3) are mutually equiv-
alent under the conditions stated in (ii) of the above theorem.

The following theorem provides a sufficient condition under which
(M), and ((M)), are mutually equivalent.

THEOREM 3.2. If X ~Y(, (M), (s— o) and the sequences have
properties C(S) and B(S), then it holds that X y~Y(, (M), (s— o).

ProOF. If the assertion were not true, then one could assume with-
out any harm in the proof below that there exist a positive constant
7 and a sequence of members of S, {E,} (s=1,2, ---) say, such that

3.1) | Py (E,) — P¥in (E,) | <27

for all s.
By property B(S) of both the sequences, there exists a member, B,
of S., whose closure being compact such that

(3.2) P (B)>1—7/2 and P¥w(B)>1—y/2

for all s greater than some positive integer s,. Thus, putting A,=BNE,,
we have, by (38.1) and (3.2)

(3.3) | PXm(A4,)—PT®(A,)|>7

for all s>s,. Note that A, belongs to the class S, for each s.

Now, since A, are bounded uniformly for all s, there can be found
a subsequence, A, (s'— o) say, of {A,} (s=1,2,--.) and a subset of
R.,, A say, such that

(3.4) lim A,(=lim A4, =lim 4,)=A4,

8'—c0 8'—o0 8/ —o0
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and for A there exists a member E of S, such that the symmetric di-
flerence E4A is contained in the boundary set of E and hence the
closures of E and A are identical and compact.

Hence, it follows from the assumption and the Lemma 3.2, (iv), that
for any given ¢ positive there exists a positive integer s) such that

(3.5) |PX»(E)—P*m(4)|<e and |P¥™(E)—Prm(A4)|<e
for all 8'>s). It is also easy to see that
(3.6) |Prw(4)—Prm(4,)|<e and |PT®(4)—P*™(A,)|<e

for all s>s)/, where s/ is some positive integer.
From (3.5) and (8.6) it now follows that

3.7) | PXtw(A,)— P¥(A,)| <| PXo (E)— PYo (E) [ +4e ,

for all s'>max (s}, s)). But, since the first member of the right-hand
side tends to zero with increasing s’ and ¢ can be taken arbitrarily small,
the above result contradicts (3.3), which completes the proof of the the-
orem.

It should be noted that the same remark just after the preceding
theorem is true for the condition of the above theorem. Immediately
from the above theorem, one has the following corollary, which is
well-known as Polya’s theorem.

COROLLARY 3.1. If X(,— Y, (M) a8 s— oo for some Y., belong-
ing to P(Reuy By tteny), then the convergence is of type (M),.

Note that type ((M)), convergence in the above case is equivalent
to the convergence in law.

A similar result to that of the above theorem would be obtained in
the case of more abstract basic spaces [11], [12].

It is an open question to find out further conditions under which
the notions of asymptotic equivalence given in (2.19.1) through (2.19.3)
are mutually equivalent.

4. Some properties of type (M)a asymptotic equivalence in the
case of equal basic spaces

In many applications, type (M), asymptotic equivalence seems to
play an important rdle. In this section, we shall discuss some of the
fundamental properties of the concept, mainly in relation to the so-called
in probability convergence.

In the first place, the following lemma is straightforward from the
definition,
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LeMMA 4.1, If Xg~Ye (M) and Yiy—scw (in prob.) as s— oo,
then X$,—cuy (tn prob.) as s— oo, where c., is a point of R,.

It is easy to establish the following theorem, whose proof will be
omitted.

THEOREM 4.1. Suppose that the following conditions are satisfied.

(i) {X&H=(Xs, .-+, XD} (s=1,2, ---) has properties C(S) and B(S).

() {cin=(c, ---,¢c)} (s=1,2,...) is any given sequences of points
of R, which converges to the point 1.,,=(, ---,1).

Then, it holds that

“4.1) Xey~Yay (M)a (8— ),
where Yi,=(ci X!, - -+, ;X)) for each s.

It should be remarked that the condition (i) of the above theorem
can not be removed, which will be seen by simple counter examples.
It is also easy to see the following.

THEOREM 4.2. Let {(X&) Y&} (s=1,2,--:) be a sequence of mem-
bers of (Ran, Ban), satisfying the following conditions:

(i) The first marginals {X$,) (s=1,2, ---) has property C(S).

(ii) The second marginals {Y¢,} (s=1,2, ---) converges in probabil-
ity to a point ¢, of Rey.

Then, it holds that

(4.2) X+ Y~ X+ (M), (8—0).
As an immediate consequence of this theorem, we have the following.

COROLLARY 4.1. Under the same situation as in the above theorem,
suppose that the following conditions are satisfied.

(i) X&—Ze, (in law) as s— oo, where Z,, is any given member
of (Rewyy Beny tten)-

(ii) Y¢,—cwm (in prob.) as s—oo.

Then, it holds that

4.3) X+ Yo —Zm+com (M), (8—>0).
Now, in the final place, we shall show the following.

THEOREM 4.3. Under the same situation as in the theorem 4.2, sup-
pose that the following conditions are satisfied.

(i) {X&)} (3=1,2, ---) has properties C(S) and B(S).

(i) Y¢y,—cew (tn prob.) as s— oo, where cuy=(cy, -+, ¢,) 18 a point
of R, such that ¢,#0, i=1, .-+, n,

Then, it holds that
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4.9) XYy~ Xéolewm (M), (83— ),
and
4.5) X&y Yo~XGy o (M)g (8— )

where we have used the notations, Auy/bu=1(a/b;, - -, @u/b,) and Gey b=
(alblr M) anbn) fo'r a(n)=(a17 ct Y a'n) (md b(n)=(b17 Tty bn) in gene'ral.

PROOF. Since (4.5) follows from (4.4), we shall prove (4.4).

Assume first that ¢,>0 for all 4, and hence, without any loss of
generality, that c,,=1,. Using the notation b.,<d, for b,<d,, i=1,
«e+,m, and b,,<d, for b,<d,, 1=1, ---, n, one easily has

(4.6) | P(X5/Y 6 < Qeny) — P(X &y < Qny) |
< sup | P(X <) — P(X&H<Vim)|
g7 gl gl

+2{1— Pl — 0y =Y <lwm+0m)}

for any given a.,=(a,, ---, a,) and &,,=(,, ---, 8,) with 0<4§;<1, 1=1,
cee, M.

The condition (i) of the theorem assures us that the first member
of the right-hand side of (4.6) is sufficiently small if 5, are small, and
the condition (ii) does the second member is sufficiently small if s is
large. In other words, for any given e positive integer s, such that

sup | P(X$,/Y 6y <) — P(Xoy <) <e ‘
%y

for all s>s,, which proves (4.4) in the case when all the ¢, are positive.
It is not so difficult to see that (4.4) holds true for any given c.,. This
completes the proof of the theorem.

It should be noted that the results obtained above are extensions,
in a sense of Cramér’s convergence theorems [10].

5. Measurable transformations preserving asymptotic equivalence
in the general case
Lemma 1.3.4 of [1] states that every measurable transformation pre-

serves type (B), asymptotic equivalence in the general case of basic
spaces, i.e., if for each s,

(5'1) .f:(z(ns)) = (.fls(z(n,)! ] f;‘s(z(”s)))

is a measurable transformation from R, to R, and if {X{,} (s=1,
2, ---)and {Y¢,} (s=1,2, ---) are AEUD(B), then the sequences, {Ui.}
(s=1,2,---) and {Vi} (s=1,2, ---) defined by
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(5.2) Ubnpy=r(X&,) and Vép=F¥&,) s=1,2,-.-,

are AEUD(B) as s—oo.

The purpose of the present section is to discuss the same kind of
problem for other types of asymptotic equivalence. First, it is easy to
show the following.

THEOREM 5.1. Let, for each s,

(5.3) Fi@ap)=(fi(2), « * -, fa (20))
be a measurable transformation from R, into itself, and put
(5.4) Usp=S(X&y) and Ve ,=f(Y5,) -

Under this situation, suppose that fi(z) is a continuous and mono-
tone mon-decreasing function in z on the real line for each 1 and s, i=
1,---,m,: 8=1,2,-... Then, it holds that (a) X4 ,~Y4, (M), implies
that Uhy~Viy (M)e, and (b) X&,~Ye,, (S)s implies that Ug,~Vé, (S)a,
as s— oo,

Furthermore, if X, and Y¢,, belong to P(Rey, By, tny) for each
s, the assertions (a) and (b) hold true under the conditions that each

2(2) 18 continuous and monotone (non-decreasing or non-increasing).

ProOF. The first part follows from the fact that the inverse im-
ages of M, and S, with respect to the transformation (5.3) are con-
tained respectively in M, and S, for each s.

To prove the second part, let us consider the transformation

hn(z(n‘))=(c:zl: ) c:n.zn,) ’

for each s where ¢i=+1, or =—1, according as f/(z) is monotone non-
decreasing or non-increasing, and let us put M#,=h;'(M,,) and S&,=
h7'(Sxp). Then, under the condition of the theorem it holds that

(5.5) 0ud( X Yot Menp) =0u( X Yinp: M)
and

(5.6) 0u( Xy Yénpt Sinp) =0u4(X&pr Yép: S&)

for each s. It also holds that

(5.7) [T (Map) EME, and  f7(Swp)SSa,)

for each s.

From (5.5) through (5.7) it follows that
0i(Xépr Yot Maap) 204Uy Vinyy: Manp)
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and
0u(Xénps Yt Senp) Z 84Ul s Vi Senyp)

for each s which imply the assertions (a) and (b) in turn. This com-
pletes the proof of the theorem.

In the case of equal basic spaces, it is easy to see the following
theorem, whose proof will be omitted.

THEOREM 5.2. Let

(5.8) S @) =(fiw), =+ *5 @)

be a measurable transformation from R, to R..,, and put
(5.9) Usby=r(Xs&) and Vi,=fTE),

for each s.

Under this situation, suppose that f(z.,) 18 continuous, and at least
one of the sequemces, {X¢,} (s=1,2,.-:) and {Y§) (s=1,2,.-:), has
properties C(S) and B(S) simultaneously or one for each. Then, X~
Y&, (M), implies that Uly~Vin (M))a as s— 0.

As an immediate consequence of this theorem, we have the follow-
ing well-known result.

COROLLARY 5.1. If the transformation (5.8) is continuous, and if
Xé— Y (in law) as s— oo, Yo, being some member of P(Ru, Buy, tim),
then Uby— Vimy (in law) as s— oo, where Vin=f(Yw).

Even if the basic spaces are fixed, when the transformation under
consideration depends on s, the problem is quite complicated. The fol-
lowing theorem gives an answer to the problem in a special case of such
situations.

THEOREM 5.3. Let, for each s,

(5'10) fs(z(n))':(fl‘(zl)’ ct n‘(zn))
be a measurable transformation from R, into itself, and put, as before,
(5.11) Usy=r (X&) and Vi,=f(¥Y&) -

Under this situation, suppose that f3(z) is a continuous and monotone
Sfunction of z on the real line, and at least one of the sequences, {X¢,}
(8=1,2,--:) and {Y&)} (s=1,2, ---) has properties C(S) and B(S) simul-
taneously or one for each. Then, XG)~Y (M), implies that Usy~Vi, (M),

as §—r oo,
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The proof of this theorem is similar to that of Theorem 5.1, and is
omitted.

Note that the last statement in the proof of the Theorem 4.3 fol-
lows from the above theorem.

6. Type (M)4 asymptotic equivalence of marginal random variables

In the present section, we shall consider type (M), asymptotic equiv-
alence of marginal random variables when the rest are replaced in some
way by another random variables which are asymptotically equivalent
in a sense to the original ones.

Suppose that we are given a sequence of random variables, {(X&p»
Zéap)} (s=1,2, --+), with (X&), Zén,) € F(Renimps Bny+my) for each s, The
first problem to be discussed in this section is as follows: Let the cdf.
of X¢,, be Fy(zw,), and the conditional edf. of Z¢,, given X¢, ,=x, be
Py(2¢np |%np). The cdf. of Z¢,, is then given by

(6.1) Hzwp)=| Pyl )AF () -

(ng)

Let {X’(’,,s)} (s=1,2, --.) be a sequence of random variables with cdf.’s

Fy(xwy), s=1,2,---, and {Z,} (s=1,2,---) be a sequence of random
variables whose cdf.’s are given by

6D Hea)=|, Pllra)dlw,), =12

Under this situation, what type of asymptotic equivalence of { X&)
(s=1,2,-..) and {)_(g,,s)} (s=1,2, -..), probably with some additional con-
ditions, implies type (M), asymptotic equivalence of {Z,,} (s=1,2,---)
and {Zg,} (s=1,2,:--)?

The same question is asked in the case where Z;,, has the condi-
tional pdf., p,(zmy|%emp), given X§ =, for each s, in which case Z(‘,,,s)
stands for a random variable whose pdf. is given by

(6.3) Tbs(z(m,)) = SE ps(z(ms) ’ x(n‘))dF's(w(ns))

(ng)

for each s.
First, the following theorem gives an answer to the question stated
above in the case of unequal basic spaces.

THEOREM 6.1. (i) Under the situation stated above, let Z:,, be a
random wvariable with the corresponding cdf. givem by (6.2), for each s.

Then, the co’nd’bt?:o’n X(sns)“'X_(';,‘) (B)d ’l:'mpl'ies that Z(s,,,,s)""Z—(sm‘) (M)d as $s— oo,
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(i) In the case when Zi,, has the conditional pdf. and Z., is a
random variable with the pdf. given by (6.3), the condition X(‘,,s)~”)?(‘,.s)
(B)d ’l:’mpl’ies that Z(sms)~Z—(’ms) (B)d as 8s— oo,

PrROOF. To prove the first part of the theorem, it is sufficient to
show that

(6.4) 0 Zim s Z('ms): Mms,)§25¢(X(‘,,'), )_((“,.‘): B,

for each s.

From (6.1) and (6.2) it follows that, for any given ¢>0 and any
given point zi,, of R, there exists a B ,-partition of R, L={E:
Ef e B, 1=1,2, ---}, such that

(6.5) | H,(2mp)— E(z(m‘)) I<| %‘_l P(zny | xfn,)i) {P np (E5)—P Xy (EHY +e,

where, for each i, xf,) is any fixed point of E?. Note that this in-
equality holds for any B, ,-partition of R, which is finer than I;.
By using the Hahn-Jordan decomposition theorem for the signed

measure PZXy)— PXp, we have by (6.5)

| Hizonp)— Hi(2np) | S2{P 00 (A) — P¥top (A)} +e

for some subset A, belonging to B, from which (6.4) follows. This
proves the assertion (i) of the theorem.
To prove (ii), we shall show that

(6.6) 5¢(Z(“m‘), Z(’m,): B(m‘))éad(x(’ns); X("n,ﬁ B(ng) ’

for each s.
Let, for each s, h(zm,) be the pdf. of Z,, ie.,

6.7) M=, Pecnp| B )AF )
(ng)
Then, it follows from (6.3) and (6.7) that
[ ) —Tuleon) |y = | |0F ) —dF )]
Rimg Rngp

for each s.

Since for any given ¢>0 there can be found a B ,-partition, 4,,
of R, such that the right-hand member of the above inequality is less
than

S | PXty (E)— PXanp (E) |+,
Etl‘
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for each s, we easily have (6.6) by a similar argument to the proof of
(i) of the theorem and by (1.3), which completes the proof of the as-

sertion (ii). Thus the proof of the theorem is completed.

In the case of equal basic spaces, the situation mentioned above can
be restated as follows: Let {(X&), Zi»)} (8=1,2, ---) be a sequence of
random variables belonging to F(Riim) Bwim) such that for each s,
X4, has the cdf. F,(x.,) and Z;, the conditional cdf. P,(2(m|Zw) given
X%y=%q. Further, let {X¢,} (s=1,2, ---) be a sequence of members of
F (R, By) with the corresponding cdf.’s, F,(2), s=1,2,---. Corre-
sponding to (6.1) and (6.2), cdf.’s of Z¢, and Z¢, are given respectively
by

6.8) fL(z<m,)=S Pu2en | %0)dF(Ter) »
(n)

and

(6.9) Hew) = Peaw|ta)dF @),

(n)

for each s. When Z;, has the conditional pdf. »,(2cm,|%w,) for each s,
and hence the pdf. of Z3, is given by

(6.10) M) =\ Do 20)AF @)

)

the same notation Z¢, is used to designate a random variable whose
pdf. is given by

(6.11) }_":(z(m)) = SR Du(Zems | x(n))dﬁ {(Tem) »

n)

for each s.
Under the situation stated above, we can state the following.

THEOREM 6.2. Let Z¢,, be a random variable with the cdf. given by
(6.9), and assume that the following conditions are satisfied :

(i) For some real ci,=(ci, -+, c.) and din=(di, ---,d}), s=1,2, .-,
the sequence of random variables, {Y¢,} (s=1,2, ---), has property B(S)
where

Yo =((Xs—d)et, - -+, (Xi—di)/es)

for each s.
(ii) For the constants given in the above condition (i), put xi,=
(C§x1+di, R} c:zxn'{_d:t) fO’r x(n)=(xlr Tty xn) and Qs(z(m) I x(n))=Pt(z(m)le‘"))
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for each s. Then, for any given ¢>0 and any given bounded subset B
belonging to S, there exist a positive number 5==6(c, B) and a posttive
integer s,=sy(c, B) such that |Te,—Yu|<6 With %), Ym, belonging to B
implies that

SUp | @Qy(Zemy [ i) — Qu(Zimy [Yemw) [ <e
%m) € B(m)

for all s=s,.
Then, the condition X¢,~X& (M), implies that Zg,~Zt., (M), as

§— 00,

PROOF. Let G,(yw) and G(ym,) be the cdf.’s of ¥, and Y, re-
spectively where Y, is defined by

Yo=(X—d)c, - - -, (Xa—d3)/ch)

for each s. Then, the cdf.’s of Z¢, and Z¢, can be rewritten as
Hle) =, @lec| 76, )

and
Blew)=|, Qo] ze)dCilra)

respectively.

It follows from the condition of the theorem that Y¢,~Y¢, (M), as
s§— oo, and therefore, the sequence {Y¢,} (s=1, 2, ---) has property B(S).
Hence, for any given ¢>0, there exist a member of S, B say whose
closure being compact and a positive integer s,=s,(¢) such that

(6.12) | Hi(2em)— Hi(zem)|
= I SB Qi(Zem> | X)) G (T eny) — SB Qu(2Zcmy | x(n))dét(x(n)) +e,

for all 2z, in R, and all s=s,.
Let 4={E,, i=1, --., N} be a S,,-partition of the subset B such

that
sup { SUP Qi(Zmy | Xeny)— Inf Q| 2mw)} < e

2m) ¢ Bim) m) < Fi 2y By

for each 4; 1=1, ---, N, and for all s=s}, s; being some positive integer.
Evaluating the first member of the right-hand side of (6.12), we
then easily obtain

| Hy(2cm>) — I—Z(z(m)) |SNs.(YE, }-’(::) : Sw)+3e,
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from which follows the assertion of the theorem, because N is independ-
ent of s. This completes the proof of the theorem.

In the case when X¢,— X, (M), as s—co, X, being some member
of F(R, B, the first condition of the above theorem is automatically
fulfilled, and we immediately obtain the following

COROLLARY 6.1. Suppose that, for any given ¢>0 and any given
bounded subset B belonging to S, there exist a positive number 6=0d(c, B)
and a positive integer s,=sy(e, B) such that |Te,—¥Yum|<6 With Tu, Yo
belonging to B implies that

SUp | Py(Zem | Temy) — Po@emy | Yem) | <e

Z(m) € E(m)
Jor all s=s,.
Then, the condition X¢&,— X, (M), implies that Zg,~Zt, (M), as
s— oo, where Z¢,, stands for a random variable whose cdf. is given by

R(z(m))= SR Ps(z(m) I x(n))dﬁ(x(n)) ’

n
F(x,,) being the cdf. of Xen.

Sometimes it is known previously that one of the sequences, {Z(,}
(s=1,2,---) and {Zg,} (s=1,2,---) given in the preceding theorem
has properties C(S) and B(S). In such cases, the second condition (ii)
of the Theorem 6.2 can be weakened in the following form:

(ii)y* For any given ¢>0 and any given bounded subset B belonging
to Swy, there exist a positive number §=d(e, B, z..,,) and a positive inte-
ger s,=38y(e, B, 2my) such that the condition |Zc,—¥Yw|<6 with 2w, Y
belonging to B implies that

[Qi(Zem> | Tems) — QuZom> | Yem) | <

for every fixed z,, in R, and for s=s,.
In the next place, we shall consider the case where Z,, has the
conditional pdf. for each s. It should first be noted that in such a

case a random variable Z¢,, with the cdf. defined by (6.9) has the pdf.
given by (6.11).
The following lemma is easy to prove and the proof will be omitted.

LEMMA 6.1. For the condition (ii) of the Theorem 6.2 to hold it is
sufficient that the following two conditions are satisfied :

(i) For any given 2., in R, and for each s, the function q, (2|
Teny) =Ds(Zemy | Tny) 18 totally differentiable with respect to x,, over R,.

(ii) For any given bounded subset B belonging to S.,, there exist a
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positive number p=n(B) and a positive integer s,=s,(B) such that

(6.13) sup SR [ BsilZems | Tew) [ A ptemy <7 1=1,.--,m,
(m)

Tny€ B

Sor all s=s,, where
(6.14) Fuleom | B0) =22 Qe |Tw)  G=1, 0
(1

It follows, then, from the Theorem 6.2 and the above lemma that
the following corollary holds true.

COROLLARY 6.2. Suppose that the conditions, (i) of Theorem 6.2 and
(1) and (ii) of Lemma 6.1, are satisfied. Then, the condition X¢y~ XSy (M),
implies that Zu~Z¢, (M), as s— oo, where Z¢,, stands for a random
variables whose pdf. is given by (6.11) for each s.

It should be remarked that if we replace the .condition (6.13) of (ii)
of Lemma 6.1 by

(6.15) sup

.‘t(") €B

SR ¢si(z(m)|w(n))dﬂ(m) §0 y i=19 e, M,
(m)

then the condition (ii)** thus modified and the condition (iii) of Lemma
6.1 imply the condition (ii)* stated below the Corollary 6.1.

The last half of this section is devoted to the discussion of the
second problem, which is set forth in the case of equal basic spaces as
follows: Let, as before, {(X&,, Z¢w)} (s=1,2, ---) be a sequence of ran-
dom variables belonging to F(Ruimy Bwim) and let Fy(z,) and P,(zm |
Tw) be the cdf. of X, and the conditional cdf. of Z¢, given X&,=uw,,
respectively. When Z¢,, has the conditional pdf., then let it be p,(zcm|
Zw). Suppose, for some real ¢} and di, 1=1,---,7n and s=1,2, .-, the
random variables defined by

(6.16) Yo=((Xi=d)/d, - --, (Xi—di)[e}), s

4,2, ...,

converge in probability to the point 1,,=(1,--:,1) as s—oo. Under
this situation, a question is asked whether {Z;,} (s=1,2, ---) and {Z¢,,}

(s=1,2, ---) are AEUD(M) or not, as s—oo, Z¢,, stands for a random
variable whose cdf. is given by P,(2(m|ch,+di,) for each s, provided
that it is eligible for a cdf. of a member of F(R.., Bim). The same
question is asked also when Z¢,, has the conditional pdf. for each s.

Firstly, we shall prove the following theorem, which is an answer
to the above question.
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THEOREM 6.3. Under the situation stated above, suppose that there
exist sequences of real vectors, {ctn=(ci, -+, ci)} (s=1,2,---) and {d%=
di, ---,d)} (s=1,2,--.) such that the sequence of ranmdom variables,
{Yoo} (=1,2, --.) defined by (6.16) converges in probability to the point
lw=@, -+, 1) and Pz |ch+di) is the cdf. of some member, Zi,
say, of F(Rmy, Bemy) for each s.

Then, in order that Z¢,~Zé, (M), as s— oo, it is sufficient that the
SJollowing condition is satisfied :

(i) For any given £>0, there exist a positive number 6=06(c) and a
positive integer s,=38,(c) such that |Xu,—1um|<d implies that

Sup | Q(Zom |Tcw) — Qs(Zemy | 1ewy) [ <6
Z(m) ¢ E(m)
Sfor all s=s,, where Q,(2cm |%w) s the same as that defined in the condi-
tion (ii) of the Theorem 6.2.

PROOF. Let, as before, H,(zum), Hy(2m) and Gy(x.,) be the cdf.’s of
Ly, Zéyy and Y§,, respectively, for each s. It is then evident that

| Hi(2cmy) — Hy(2m) |
(1, +1,: )10 70 ~Quacm 1) | 46

for each s where V; is the d-neighbourhood of the point 1.
By this inequality and the conditions of the theorem, it easily fol-
lows that

sup | H,@wm)—H(zm)|—0, (s—),

Z(m) € E(m)

which proves the theorem.

Note that if one of the sequences, {Z&,} (s=1,2,.--) and {Z¢,}
(8=1,2,--.) has properties C(S) and B(S) simultaneously or one for
each, then the condition (i) of the above theorem can be weakened in
the following form:

(i)* For any given ¢>0 and any fixed point 2., of R., there ex-
ist a positive number 6=4(e, z..,) and a positive integer s,=sy(¢, 2wm,) such
that the condition |z,—1,|<d implies that

[Q:s(Zem> | T ny) — Ru(Zemy | 1ewr) | <&

for all s=s,.

Now, in the final place, suppose that Z¢,, has the conditional pdf.,
D(Zemy | X)) for each s. In this case, an answer to the problem is given
by the following theorem, whose proof is easy and will be omitted.
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THEOREM 6.4. Suppose that there exist sequences of real wectors,
{czn)=(c:v tt Ty C,‘,)} (821’ 2’ . ') and {dzn)z(diy Tty d:l)} (821’ 2’ ° ') such
that the sequemce of random wariables, {Y¢,} (s=1,2,---) defined by
(6.16) converges in probability to 1.,=(1, ---,1), and p,(Zem|Clmy+din) s
the pdf. of some member, Z¢, say, of P(Rimyy Bomsy tom)-

Then it 18 sufficient for {Z3,} (s=1,2,---) and (Z¢,) (3=1,2,---)
to be AEUD(M) that the following two conditions are satisfied :

(1) For any fixed 2m; in R, the function 9(Zemy | T ) = Do(Zimy | Tny),
T,y being the same as that given in the condition (ii) of Theorem 6.2, is
totally differentiable with respect to x., im same mneighbourhood of the
point 1g,.

(i) There exists a meighbourhood of lu,, Vi={Zn:|Tw—1lw|<6},
i which the above condition holds, a positive number y and a positive
wnteger s, such that

sup S l¢si(z(m) I m(n)) ldﬂ(m)éﬂ ’ 1::1’ v, M,
)¢ Vs Y Bemy

Sfor all s=s,, where ¢,(2um|Tw) are the same as those defined by (6.14).
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