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1. Introduction and summary

Let X;, i=1,2,3, ---, be a sequence of independent and identically
distributed random variables and write S, 2 X:, n=1, F(x)=P(X,<x).
The object of this paper is to establish the followmg theorem.

THEOREM. Let EX,=0, EX?=1, EX?log *| X;|< o0, and {¢(n), n=1}
be a monotone non-decreasing sequence of positive numbers. Then, the
Sollowing three conditions are equivalent :

(A) P(S.|>¢(n)¥ym i.0.)=0,

B) X n7igm) P(S,|>dmyvm)<oo,

(€) 2:”"&15(")9_”2(””’2 <oo.

(Here, log* x=max (0,logxz). The “i.0.” in (A) stands for “infinitely
often”.)

The equivalence of (A) and (C) under rather weaker conditions than
the above was obtained by Feller [4]. In fact, the conditions EX,;=0,
EX?=1, and EX}log*log*|X,|<oo suffice. Various authors have sub-
sequently worked on the subject of the equivalence of (B) and (C). Baum
and Katz [1] showed that (B) and (C) are equivalent under the addi-
tional assumption that EX?(log* | X;|)!*’< oo for some §>0. Their work
was later improved upon by Davis [2] who obtained the equivalence when
EX?log*| X;|log*log*| X;|<oo. In this present paper we sharpen the
methods used in [1] and [2] and are able to further improve on the mo-
ment condition required.

2. Preliminary lemmas

We require two lemmas before proceeding to the proof of the the-
orem. Both of these deal with the convergence
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F,(x)=P(S,< xdW)_)@(x)Z«/lTn S:o edu,

as n—oo,

LEMMA 1. Suppose EX,=0, EX!=1, EX}log*log*|X;|<co and let
B:= S o'dF(x). Then,
2| <VT

(1) i‘; n~'log log n sup | F(x)— @®(xB;') | < co .

Proor. Making use of Theorem 1 of Davis [2], we have, under the
above mentioned conditions,

% n~'loglog nsup | P(S,<xy 7 )—O(xB;') | <o,

where
g= S xzdF(x)—< S xdF(x))z.

lzl<v7 lZi<vm

Consequently, the result (1) holds provided that
(2) 1t log log m sup | @(xB;Y) — B(wpil) | < oo .
n=3 T

Now,
Bi= .8';‘.+< S xdF(w))z ,

lzl<va

and it is easily seen by expansion in Taylor series that there is a posi-
tive constant C such that
2
sup| 0(@B;")—0(w8:)|=C( | adFm) .

lzI<vyT
Furthermore, since EX;=0 and EX?log* log*| X, |<oo,
‘ S xdF(x)l:‘ S xdF(x)lg S | 2 |dF(z)

|| <v@ [EIP-va 1z|lzv7
=0 (/7 loglogn)™!,

so that

i n~!log log n( S xdF(m)>2< oo ,
n 12 v
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and therefore (2) holds. This completes the proof of the lemma.

LEMMA 2. Suppose EX,=0 and EX!=1. Let {B,} be a sequence
of positive constants with B,—1 as n— o and write

Am)=sup | Fy()—0(B;Y)| .
Then, for any number a=1 such that F,(x) is continuous at r=+a,
(1449 | Fi@)~0@B) |S1-Bi+2B: | doq)+5aan).
lylzeB, !

This result is an extension of Theorem 1 ([3] p. 70) which deals with
the case B,=1.

Proor. We have,
S_ SdF, ()= S_ S d(F,(x)—O(xB:Y) + S 2dd(x B
=a (F.(a)—9(aB;")—a'(F.(—a)—9?(—aB;")
—2 S_ o(F(x)— O(xB:Y)de +S 2 d0(xB:Y)

> _dgtA(n) +S #do@B:) ,
and consequently,

(3) S :vzdF,,(a;)=1—Si xzan(x)g—S'i SdO(xB:)+4a2d(n) .

|z|za
Furthermore,
Y(1—F.(y) for y=a
(4) | x%ﬂ.(m)_z_{
2Tza v'F.(v) for y<—a,
and
y¥(1—-90(yB;Y)) for y=a
(5) S mqu)(xB;‘)g{
lolza y'o(yB;") for y<—a,

so that from (3), (4) and (5), we have for |y|=a,

I FW-0wB)|s | wdF @+ S #dO@B;)

lz|za |ziza

§1—S“ OB + S Sd0(wB:Y)+ 4atd(n)

lz]2a
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=1-B:+B:{1— S 2d0(z)

lzlseB; !

+ S decp(x)} +4atd(n)

-1
l:cIZaBn

—1—B:42B! S &'d0(x)+ 4a2d(n) .

-1
|J:lzaBn

Then, since a=1, we have for all y,

(1+3) | Fu(y)—O(yB;") | <1—B:+2B: g 2d0(x) +5atd(n) ,

-1
lzizaB,

which is the required result.

3. Proof of the theorem
The equivalence of (A) and (C) under the stated conditions has been
obtained by Feller [4]; we shall obtain the equivalence of (B) and (C).
Let B:= S x*dF(x). Then, using Lemma 2, we have

lzl<vm

n7'gi(n) | P(| S, |>¢(n)yn ) —2{1—0(4(n)B;")} |
=n~'sup (1+a) | P(1S, | >y ) —2{1—0(@B;")} |

§2n"‘{1—B,f+2 S x2d¢(x3;1)+5a24(n)} ,
lz|2a
where +a are continuity points of P(S,<xy/7) and 4(n)=sup|P(S,<

x4/ n)—P(xB;')|. Now e can be chosen arbitrarily small and positive
such that +a,=++v(2+¢)loglogn are continuity points for each », and
then

(6) g n7'¢ (n) | P(1S,|>g(n)v/ 1 ) —2{1—&(¢(n)B;")} | < 0
provided that
(i) Zr'1-B)<oo,

(i) Snt S 2 dD@B;Y) < oo ,

lx|za,

(iii) > »n'loglog nd(n)< oo .
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We have shown in Lemma 1 that (iii) is satisfied while for (ii) we have

B S w'd(x) < B S Sd0(x) ~ S 2d0(z)

|z|za, B! lzlza, lz12a,

as m— oo, and integrating by parts,

2dd(x)= |2 Sw we~" tdy = \/z {a,,,e"‘f»’z+goo
T Jap

T %n

~ |2 gen
T

vt | wdo@= o(__ﬂf(*i};i){?jf)

e /zda;}

lzlza,

Consequently,

Izlza.
as n—oo and (ii) holds. Finally, for (i) we have, again using integra-
tion by parts,

S n-(1—By)= 3 n* S dF(z)

n=1
lzlz V7

=S PUXI>ym)+2 R0 |7 aP(X[>a)dz

L hiad hiod vr+i
=S P(X|>vm)+2Sn 5 | T aP( X | > a0
S P(X[>Vm)+Z " SPIX|>VT)

CgllogrP(IXl>«/T)<oo,

C being a positive constant and the convergence of the last series being
implied by the moment condition EX;log*|X,|<oc. It follows, then,
that (6) always holds under the conditions of the theorem and therefore
the condition (B) is equivalent to the condition

() S i) {1-0(g(m)B 1)} <o .
Now as n— oo,
-1 B L —2
1—0(¢(n)B; 1) ~ ¢z s exp {— L #m)B;?]

~ = lpn)] exp{ — 2 FmB: |,
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so that (7) is equivalent to
(8) Sin(n) exp | = L gmB;* | <oo .
Furthermore, since B:<1,

>3 n7'¢(n) exp {—%sb”(n)B;2 } =3 n7'g(n) exp { —%sﬁz(n)} ,

so in order to complete the proof it just remains to show that conver-
gence in (8) implies that in (C). Suppose the contrary, namely that for
some {¢(n)},

> n7'¢(n) exp {——;—sbz(n)B;z} <oo,

52 n7ig(n) exp {— L gm) | =oo

It is easily seen that this is only possible if there is a subsequence of
integers n, with ¢’(n,)(B;’—1)—>oc0 as n,—~oo. That is, writing

A,=1—B:= S SdF(z)

lzl2 vy7
#H(n;)A,,— o0 as n;—oco. With this in mind we define sets
Ni={n: $(n)4,<8}, N,={n: $(n)A,>8},

and clearly for n € N,

n”'g(n) exp { - % #(n) } =0 <n“¢(n) exp { B % PmB;’ } )

so that

(9) S noign)eH I oo
1

Furthermore,

eFmIzS 1 4 % i (n) + % ¢'(n)> %— #'(n) ,

so that for » € N, and sufficiently large,
P(n)e” @12 8(g(n)) P < 8(P(n)) P < A, .

However, we have shown above that 3In'4,<co, and consequently,




ON THE GROWTH OF A RANDOM WALK 321
10) 5 moig(me P oo
Ny

(9) and (10) give the required contradiction and the result of the theo-
rem follows.
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