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The aim of this paper is to give a necessary and sufficient condition
for a Gaussian process to be the log-likelihood ratio process of Gaussian
processes. We assume for simplicity that all the measures encountered
hereafter are mutually absolutely continuous.

Let X be multivariate normally distributed with unknown mean 6
and known dispersion matrix 3. We assume that ¥ is non-singular with-
out loss of generality. Let p)(x) denote the density of X with respect
to the Lebesgue measure on R". Hereafter E[Y|¢] denotes the expec-
tation of ¥ when ¢ is the true parameter. Define

(1) L(X, 6, p)=log p(X)—log p(X) .

Since
(2) PX) = (@)™ X | exp |~ L(X—0YZ-(X~0)]

where | 2| denotes the determinant of ¥ and X’ denotes the transpose
of the vector X, it is easily seen that

(3) L(X, 6, ¢)=——;-[(2X—o—¢)'z-'(¢—e>1 :
Now
(4) BIL(X, 0,¢)| ¢]=—— [2—0—¢) T (p—0)]

=2 (=9 EHg—9)

— 2 (G—0ySHg—0),
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and
( 5 ) COV [L(}(’ 01’ 901)’ L(X 029 902) | (/’]
=7}-‘- Cov [(2X—6,— ) I~ Hp1—6)), @2X—by— o2 I 00— 03) | 4]

= %- Cov [2XZ (g, —8,), 2XZ (0. —0,) | ¢]

=(p1—0)' 2 (. — ) .
Let

(6) (0, ¢) =7 (p—0YZ o).

After some algebraic manipulation, it can be shown that

(7) d(01, ¢2)+d(0z, @1) —d(By, O)—d(p1, @) = (01— 61) 2~ (2 — ) .

The following result is obtained from (4), (5) and (7). For a multi-
variate normal distribution with unknown mean ¢ and known dispersion
matrix ¥, the log-likelihood-ratio process {L(X, 6, ¢)} is Gaussian with

(8) E[L(X, 0, )| $]=d(p, $)—d(6, $) ,

(9) Cov [L(X, 64, ¢1), L(X;, 65, ¢5) | ¢]
=d(6,, 902)+d(02, 901)_d(01, 02)—d(§01, 9’2)

where
de, ¢)=~;—(¢——a)'z-l(so—o) .

We note that d'? is an Euclidean metric on RB® when X is n-variate
normally distributed.

Let us now consider a collection of Gaussian processes {X;} with
E[X,|¢]=¢, and Cov[X,, X,|¢]=0, where ¢t and ucT=[0,1]. Let B
be the class of all finite subsets F of T. B is a directed set by the in-
clusion relation (Fy > F; if F\2F,). Let L(F, 6, ¢) denote the log-likelihood-
ratio of the densities of (X,, X, ---, X, ) when 6 and ¢ are the mean
functions and F={¢,¢t, ---,t}. It is well known that L(F,¥4,¢) is
Gaussian and it follows from (8) and (9) that

(10) E[L(F, 0, 9) | p]=dx(p, ) —dx(0, ¢)
and
(11) COV [L(Fr 01! ¢l)1 L(E 021 ?2) I ¢]

=d (61, ¢2)+d#(0z, 1) — (01, 02) —d(p1, 02)
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where d¥ is an Euclidean metric on R* and k denotes the number of
elements in F. Let v, be the Gaussian measure induced by the process
{X,} when ¢ is the true parameter through the usual Kolmogorov ex-
tension. Since the processes {X,} have the same covariance structure,
v, and v, are mutually absolutely continuous for any ¢ and ¢. Further-
more if L(6, ¢)=log dv,/dv,, then it follows from theorems on Martingale
convergence (See Doob [1]) or from the results of Feldman [2], that L(F,
8, ¢) converges in quadratic mean to L(4, ¢). In fact L(f, ¢) is a Gauss-
ian random variable such that

(12) E[L(F, 0, ¢) | 41> E[L(6, ) | 4],
and
(13) COV [L(E 017 §01)1 L(F’ 02: 502) I Sb] _>COV [L(oly 9’1)1 L(az, 992) I (/’] .
Therefore, we have from (10) and (11) that
(14) E[L(6, ¢) | $]=1im [d(p, ¢)— (6, $)]
and
(15) Cov [L(6:, ¢1), L(6s, ¢3) | 4]
=1i;n [d#(61, S02)+dr(02, o) —d (61, 0y)—d (¢, ¢2)] -
Substituting §=¢ in (14), we note that li;n dz(p, ¢) exists for any ¢ and
¢. Let us denote this limit by d(¢, ¢). It is easy to see that d'(p, ¢)
is an Euclidean metric on R?. From (14) and (15) we have
(16) E[L(6, ¢) | g]=d(p, $)—d(8, ¢)

and

(A7) Cov [L(6y, ¢1), L(8;, ¢2) | $1=d(8:, ¢.)+d(6, ©)—d(6y, 0:) —d(py, @2) -

We shall now prove the following theorem.

THEOREM. A necessary and sufficient condition for a Gaussian pro-
cess {L(6, ¢), 0 € RT, ¢ € R"} to be the log-likelihood-ratio process of Gaussian
processes {X,} with the same covariance structure is that there exists an
Euclidean metric d on RT such that

(i) EL[L®, ¢)| $1=d%p, $)—d*(0, $)
and

(ii) Cov [L(6, ¢v), L(:, ¢») | Sb]:dz(ﬁn S02)+d2(02, 901)—d2(01, 02)—d2(§01, ©3)

ProoF. The necessity of the conditions has been proved in (16)
and (17).
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Sufficiency. Let g, denote the Gaussian measures corresponding
to the processes {L(4, ¢)} when ¢ is the true mean function. We shall
first prove that L(¢,7) is sufficient for the measures p, and g, when
the conditions (i) and (ii) of the theorem are satisfied. Since the pro-
cess {L(0, ¢)} is Gaussian, it is enough to prove that the conditional dis-
tribution of L(f, ) for any # and ¢ given L(¢, 5) is the same under both
¢ and 7.

Define

Y6, 3 6, 7)=L(6, ) — C°V‘E.§§9’[I?()¢Lv‘)’§ DN g, 7).

From elementary results, it is known that Y(6, ¢; ¢, 7) is Gaussian under
both ¢ and 5. Further,

(18)  E[Y(, ¢; ¢, )¢l

_ _Cov [L(g, 8), L(¢, 7) | $]
=E[L(, ¢)| ¢] Var [T, 7) | 9] E[L(¢, 9) | ¢]

=_;_[d(¢, @) —d(6, $)—d(9, 7)+d(e, 7)]

=FKE[Y(6, ¢; &, 7]) I 71,

and

(19) Var [Y(8, ¢; ¢, 9) | 4]

_ Cov? [L(6, ¢), L(¢, 7) | #]
=Var [L(6, —

L D= L ) 1 9]
=Var [Y(6, ¢; ¢, 1) | 9] .

(18) and (19), together with the remark made earlier, prove that Y{(4,
¢; ¢, 1) has the same Gaussian distribution. In other words, L(¢, 5) is
sufficient for the Gaussian measures g, and p,. Hence the process {L(9,
¢)} is the log-likelihood-ratio process of the class of Gaussian measures
{#,} which are generated by Gaussian processes {X,} with the same co-
variance structure.

UNIVERSITY OF CALIFORNIA, BERKELEY
MICHIGAN STATE UNIVERSITY

REFERENCES

[1] J. L. Doob, Stochastic Processes, John Wiley, New York, 1953.
[2] J. Feldman, Unpublished lecture notes, University of California, Berkeley, 1966.






