A PROPERTY OF THE LOG-LIKELIHOOD-RATIO PROCESS* FOR GAUSSIAN PROCESSES

B. L. S. PRAKASA RAO AND HERMAN RUBIN

(Received Apr. 18, 1967)

The aim of this paper is to give a necessary and sufficient condition for a Gaussian process to be the log-likelihood ratio process of Gaussian processes. We assume for simplicity that all the measures encountered hereafter are mutually absolutely continuous.

Let X be multivariate normally distributed with unknown mean θ and known dispersion matrix Σ . We assume that Σ is non-singular without loss of generality. Let $p_{\theta}(x)$ denote the density of X with respect to the Lebesgue measure on R^n . Hereafter $E[Y|\phi]$ denotes the expectation of Y when ϕ is the true parameter. Define

(1)
$$L(X, \theta, \varphi) = \log p_{\theta}(X) - \log p_{\varphi}(X).$$

Since

(2)
$$p_{\theta}(X) = (2\pi)^{-n/2} |\Sigma|^{-1} \exp\left\{-\frac{1}{2}(X-\theta)'\Sigma^{-1}(X-\theta)\right\}$$

where $|\Sigma|$ denotes the determinant of Σ and X' denotes the transpose of the vector X, it is easily seen that

(3)
$$L(X, \theta, \varphi) = -\frac{1}{2} [(2X - \theta - \varphi)' \Sigma^{-1}(\varphi - \theta)].$$

Now

$$\begin{split} E[L(X,\theta,\varphi)\,|\,\psi] &= -\frac{1}{2} \left[(2\psi - \theta - \varphi)' \Sigma^{-1}(\varphi - \theta) \right] \\ &= \frac{1}{2} (\psi - \varphi)' \Sigma^{-1}(\psi - \varphi) \\ &- \frac{1}{2} (\psi - \theta)' \Sigma^{-1}(\psi - \theta) \;, \end{split}$$

^{*} Prepared under Contract No. NONR-2587(02) while B.L.S. P. Rao was at Michigan State University. Reproduction in whole or in part is permitted for any purpose of the U.S. Government.

and

(5) Cov
$$[L(X, \theta_1, \varphi_1), L(X, \theta_2, \varphi_2) | \psi]$$

$$= \frac{1}{4} \text{Cov} [(2X - \theta_1 - \varphi_1)' \Sigma^{-1} (\varphi_1 - \theta_1), (2X - \theta_2 - \varphi_2)' \Sigma^{-1} (\varphi_2 - \theta_2) | \psi]$$

$$= \frac{1}{4} \text{Cov} [2X \Sigma^{-1} (\varphi_1 - \theta_1), 2X \Sigma^{-1} (\varphi_2 - \theta_2) | \psi]$$

$$= (\varphi_1 - \theta_1)' \Sigma^{-1} (\varphi_2 - \theta_2).$$

Let

(6)
$$d(\theta,\varphi) = \frac{1}{2} (\varphi - \theta)' \Sigma^{-1} (\varphi - \theta).$$

After some algebraic manipulation, it can be shown that

(7)
$$d(\theta_1, \varphi_2) + d(\theta_2, \varphi_1) - d(\theta_1, \theta_2) - d(\varphi_1, \varphi_2) = (\varphi_1 - \theta_1)' \Sigma^{-1}(\varphi_2 - \theta_2).$$

The following result is obtained from (4), (5) and (7). For a multivariate normal distribution with unknown mean ϕ and known dispersion matrix Σ , the log-likelihood-ratio process $\{L(X, \theta, \varphi)\}$ is Gaussian with

(8)
$$E[L(X, \theta, \varphi) | \psi] = d(\varphi, \psi) - d(\theta, \psi),$$

(9)
$$\operatorname{Cov} \left[L(X, \theta_1, \varphi_1), L(X_2, \theta_2, \varphi_2) \mid \phi \right] \\ = d(\theta_1, \varphi_2) + d(\theta_2, \varphi_1) - d(\theta_1, \theta_2) - d(\varphi_1, \varphi_2)$$

where

$$d(\theta,\varphi) = \frac{1}{2} (\varphi - \theta)' \Sigma^{-1} (\varphi - \theta) .$$

We note that $d^{1/2}$ is an Euclidean metric on \mathbb{R}^n when X is n-variate normally distributed.

Let us now consider a collection of Gaussian processes $\{X_t\}$ with $E[X_t|\phi]=\phi_t$ and $Cov[X_t,X_u|\phi]=\sigma_{tu}$ where t and $u\in T=[0,1]$. Let B be the class of all finite subsets F of T. B is a directed set by the inclusion relation $(F_1 \succ F_2 \text{ if } F_1 \supseteq F_2)$. Let $L(F,\theta,\varphi)$ denote the log-likelihoodratio of the densities of $(X_{t_1},X_{t_2},\cdots,X_{t_k})$ when θ and φ are the mean functions and $F=\{t_1,t_2,\cdots,t_k\}$. It is well known that $L(F,\theta,\varphi)$ is Gaussian and it follows from (8) and (9) that

(10)
$$E[L(F,\theta,\varphi)|\psi] = d_F(\varphi,\psi) - d_F(\theta,\psi)$$

and

(11)
$$\operatorname{Cov}\left[L(F, \theta_{1}, \varphi_{1}), L(F, \theta_{2}, \varphi_{2}) \mid \varphi\right] = d_{F}(\theta_{1}, \varphi_{2}) + d_{F}(\theta_{2}, \varphi_{1}) - d_{F}(\theta_{1}, \theta_{2}) - d_{F}(\varphi_{1}, \varphi_{2})$$

where $d_F^{\nu_2}$ is an Euclidean metric on R^* and k denotes the number of elements in F. Let ν_{θ} be the Gaussian measure induced by the process $\{X_t\}$ when θ is the true parameter through the usual Kolmogorov extension. Since the processes $\{X_t\}$ have the same covariance structure, ν_{θ} and ν_{φ} are mutually absolutely continuous for any θ and φ . Furthermore if $L(\theta, \varphi) = \log d\nu_{\theta}/d\nu_{\varphi}$, then it follows from theorems on Martingale convergence (See Doob [1]) or from the results of Feldman [2], that $L(F, \theta, \varphi)$ converges in quadratic mean to $L(\theta, \varphi)$. In fact $L(\theta, \varphi)$ is a Gaussian random variable such that

(12)
$$E[L(F, \theta, \varphi) | \psi] \rightarrow E[L(\theta, \varphi) | \psi],$$

and

(13) Cov
$$[L(F, \theta_1, \varphi_1), L(F, \theta_2, \varphi_2) | \psi] \rightarrow \text{Cov } [L(\theta_1, \varphi_1), L(\theta_2, \varphi_2) | \psi]$$
.

Therefore, we have from (10) and (11) that

(14)
$$E[L(\theta,\varphi) \mid \psi] = \lim_{F} \left[d_F(\varphi,\psi) - d_F(\theta,\psi) \right]$$

and

(15)
$$\operatorname{Cov} \left[L(\theta_{1}, \varphi_{1}), L(\theta_{2}, \varphi_{2}) \mid \varphi \right] \\ = \lim_{F} \left[d_{F}(\theta_{1}, \varphi_{2}) + d_{F}(\theta_{2}, \varphi_{1}) - d_{F}(\theta_{1}, \theta_{2}) - d_{F}(\varphi_{1}, \varphi_{2}) \right].$$

Substituting $\theta = \psi$ in (14), we note that $\lim_{F} d_F(\varphi, \psi)$ exists for any φ and ψ . Let us denote this limit by $d(\varphi, \psi)$. It is easy to see that $d^{1/2}(\varphi, \psi)$ is an Euclidean metric on R^T . From (14) and (15) we have

(16)
$$E[L(\theta,\varphi) | \psi] = d(\varphi,\psi) - d(\theta,\psi)$$

and

(17) Cov
$$[L(\theta_1, \varphi_1), L(\theta_2, \varphi_2) | \psi] = d(\theta_1, \varphi_2) + d(\theta_2, \varphi_1) - d(\theta_1, \theta_2) - d(\varphi_1, \varphi_2)$$
.

We shall now prove the following theorem.

THEOREM. A necessary and sufficient condition for a Gaussian process $\{L(\theta,\varphi), \theta \in R^T, \varphi \in R^T\}$ to be the log-likelihood-ratio process of Gaussian processes $\{X_t\}$ with the same covariance structure is that there exists an Euclidean metric d on R^T such that

(i)
$$E[L(\theta,\varphi)|\psi]=d^2(\varphi,\psi)-d^2(\theta,\psi)$$

and

(ii) Cov
$$[L(\theta_1, \varphi_1), L(\theta_2, \varphi_2) | \psi] = d^2(\theta_1, \varphi_2) + d^2(\theta_2, \varphi_1) - d^2(\theta_1, \theta_2) - d^2(\varphi_1, \varphi_2)$$

PROOF. The necessity of the conditions has been proved in (16) and (17).

Sufficiency. Let μ_{φ} denote the Gaussian measures corresponding to the processes $\{L(\theta,\varphi)\}$ when ψ is the true mean function. We shall first prove that $L(\psi,\eta)$ is sufficient for the measures μ_{φ} and μ_{η} when the conditions (i) and (ii) of the theorem are satisfied. Since the process $\{L(\theta,\varphi)\}$ is Gaussian, it is enough to prove that the conditional distribution of $L(\theta,\varphi)$ for any θ and φ given $L(\psi,\eta)$ is the same under both ψ and η .

Define

$$Y(\theta, \varphi; \psi, \eta) = L(\theta, \varphi) - \frac{\text{Cov} [L(\varphi, \theta), L(\psi, \eta)]}{\text{Var} [L(\psi, \eta)]} L(\psi, \eta) .$$

From elementary results, it is known that $Y(\theta, \varphi; \phi, \eta)$ is Gaussian under both ϕ and η . Further,

(18)
$$E[Y(\theta, \varphi; \psi, \eta) | \psi]$$

$$= E[L(\theta, \varphi) | \psi] - \frac{\text{Cov} [L(\varphi, \theta), L(\psi, \eta) | \psi]}{\text{Var} [L(\psi, \eta) | \psi]} E[L(\psi, \eta) | \psi]$$

$$= \frac{1}{2} [d(\varphi, \psi) - d(\theta, \psi) - d(\theta, \eta) + d(\varphi, \eta)]$$

$$= E[Y(\theta, \varphi; \psi, \eta) | \eta],$$

and

(19)
$$\operatorname{Var}\left[Y(\theta,\varphi;\psi,\eta)\,|\,\psi\right] \\ = \operatorname{Var}\left[L(\theta,\varphi)\,|\,\psi\right] - \frac{\operatorname{Cov}^{2}\left[L(\theta,\varphi),L(\psi,\eta)\,|\,\psi\right]}{\operatorname{Var}\left[L(\psi,\eta)\,|\,\psi\right]} \\ = 2d(\theta,\varphi) - \frac{\left\{d(\theta,\eta) + d(\varphi,\psi) - d(\theta,\psi) - d(\varphi,\eta)\right\}^{2}}{2d(\psi,\eta)} \\ = \operatorname{Var}\left[Y(\theta,\varphi;\psi,\eta)\,|\,\eta\right].$$

(18) and (19), together with the remark made earlier, prove that $Y(\theta, \varphi; \psi, \eta)$ has the same Gaussian distribution. In other words, $L(\psi, \eta)$ is sufficient for the Gaussian measures μ_{ϕ} and μ_{η} . Hence the process $\{L(\theta, \varphi)\}$ is the log-likelihood-ratio process of the class of Gaussian measures $\{\mu_{\phi}\}$ which are generated by Gaussian processes $\{X_t\}$ with the same covariance structure.

University of California, Berkeley Michigan State University

REFERENCES

- [1] J. L. Doob, Stochastic Processes, John Wiley, New York, 1953.
- [2] J. Feldman, Unpublished lecture notes, University of California, Berkeley, 1966.