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1. Introduction and summary

Many of the important problems in statistical analysis of time series
are related with some kind of use of low pass filters. The purpose of
this paper is to develop a practical and unified approach for the design
and evaluation of these low pass filters.

We introduce an index which is concerned with the fidelity of a low
pass filter and is closely related with the notion of bandwidth of a filter.
The index will be denoted by HWIDTH and is defined in Section 2.
Another index CUTOFF which is also closely related with the notion of
bandwidth of a low pass filter and is concerned with the concentration
of pass band around frequency zero is introduced in Section 2, too.

Interpretations of HWIDTH are discussed in Section 3 and values
of HWIDTH and CUTOFF are given in Section 4 for some low pass
filters.

By using the two indexes HWIDTH and CUTOFF and another quan-
tity P, to be defined at the end of Section 4, we introduce a two di-
mensional (CTP, PTH)-space representation of filters, where CTP=CUT-
OFF/P and PTH=P/HWIDTH. By using this representation we introduce
the notion of extremal family to filters. Restricting our attention to
the set of extremal families we develop a design principle of low pass
filters in Section 5. Numerical computations were done for filters with
impulse response function of trigonometric polynomials and the results
are given in Section 6. The results show that low pass filters with neg-
ative values at both ends of impulse response functions could be good
low pass filters, and the validity of this conclusion is exemplified by a
numerical example of their application in Figure 18. Also a specification
of two simple filters to be denoted by LN1 and LN2 is obtained in this
section.

It is almost obvious that the application of spectrum windows in the
estimation of spectra is the low pass filtering of Fourier transform of
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sample covariance function in the frequency domain. Thus a review of
hitherto proposed spectrum windows is given in Section 7 using the
(CTP, PTH)-space representation of low pass filters. It turns out that
some of the windows proposed by the present author are situated near
the optimum design by the present approach. The implication of the
method of fast Fourier transform for the application of low pass filters
obtained in this paper for the estimation of spectra is also briefly dis-
cussed in this section.

In Section 8 the possibility of extending the present design procedure
for the design of data windows is suggested.

2. Definition of HWIDTH and CUTOFF

We consider a linear time invariant filter of which impulse response
function D(t) is symmetric around the time t=0, i.e., D(—t)=D(?).
The frequency response function of this filter is given as FD(f)=

Sw exp (—i2xft)D(t)dt. We generally assume D(t) to be in L(— oo, o)

and L,(—oo, o), but the following definitions are valid if only D(t) is in
Ly(—o0, 0) and §D(f) is its Fourier transform in L,sense. Also we
shall be able to admit as our D(t) the Dirac’s d-function with corre-
sponding FD(f)=1. We assume that D(t) is so normalized as to give

D(0) = S: D@tdt=1.

As an index of low frequency characteristic of our filter we adopt
HWIDTH which is by definition:

For an ideal rectangular low pass filter with FD(f)=1 for | f|<f. and
=0 for | f|>f., we have HWIDTH=f,. Thus we can see that HWIDTH
implies half width of the pass band.

We shall also consider another quantity CUTOFF, which is by defi-
nition :

2

HWIDTH= .
1—%D(f) lzdf
f

CUTOFF=

3\”_risDU s \"
l1sp(rar |

The name CUTOFF does not suggest any direct relation with the notion
of cutoff frequency commonly used in the field of engineering, but for
the above stated ideal rectangular low pass filter we have CUTOFF =f,.
This definition of CUTOFF or some analogue of it has been fairly com-
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monly adopted as an index of the bandwidth of a filter [1, 6], but as
will be seen in the following discussion, CUTOFF itself is not necessarily
very much suited for the evaluation of bandwidth of some type of low
pass filters.

3. Physical meaning of HWIDTH

As an input to the filter we consider a stationary white noise n(t)
with constant spectral density p.(f)=1. To evaluate the fidelity of our
low pass filter we take the difference of n(t) and its filtered version,

formerly represented by D= n(t)=Sw n(t—s)D(s)ds, and measure the

power after passing it through an integrator. The resulting quantity
would be Sw [1—FD() /| 2= f ’df and is equal to (2r)*-2/HWIDTH.
Thus we can see that HWIDTH is closely related with the fidelity of

the filtered data to the original data as an input to the integrator.
We can also get the following relation:

.

%l}(f) |2d f= S‘; [U(t)—gt_w D(s)ds ]zdt ,

where
t<0,

0
-]
1 t>0.

For the present case of symmetric D(¢) this quantity is equal to
) 2

2S [—;-—StD(s)ds] dt. Here it should be noticed that we have normalized
0 0

D(t) so that r D(t)dt=1 holds. We can see that the present quantity

is directly related with the spread of D(f) in the time domain. The
above stated relation can sometimes conveniently be used for the evalua-
tion of HWIDTH.

It should be noticed that in the definition of CUTOFF attention is
not paid to the phase characteristics of the filter, while in the definition
of HWIDTH it is explicitly taken into account. Also it should be noticed
that we get one and the same value of HWIDTH for both of the filters
with frequency response functions FD(f) and 2—FD(f). This shows that
our present definition of HWIDTH is not sufficient to specify a low pass
filter. Rather it is only concerned with the behavior of FD(f) in some
neighborhood of f=0 and its smallness does not necessarily mean that
the corresponding filter is a low pass filter. Thus for the evaluation of
low pass filters there is a necessity of introducing another quantity such
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as CUTOFF which is directly concerned with the behavior of FD(f) at
higher frequencies. By using these two kinds of quantities we can say
that if two filters are equivalent with respect to the qualification of low
pass characteristic, such as CUTOFF, the one with the larger value of
HWIDTH would be considered to be the better one as a low pass filter.
This consideration leads us to a design principle which is to be discussed
in Section 5.

4. Numerical examples of HWIDTH and CUTOFF

Here we summarize some of the values of HWIDTH and CUTOFF
for various types of filters.

D(f) D(f) HWIDTH | CUTOFF
=1 for |fISfe :
=2 (M) f fe
=0 otherwise 2nfct
1= or 1115 sin zfet \1 1 5
%o =f°( 7 fot ) o /e \/'l—ofo
=0 otherwise
1-(£) for 1112 5
=1-(= or |fISfe __Afe [sin2zfit 3 3
g . =\ zeie T | ER
=0 otherwise
1
__sin2zfL =20 for [t|<L 6 1 -
= 2rnfL . a? 2L
=0 otherwise
. 1 1
_(sm sz)s =T l—f) for [¢|=L 10 1 3 1
"\ zfL . n? 2L x 2L
=0 otherwise
—————1 2 4 2 2
= . _2 _ 4 2 — 2
1+( 27;f> 5 exp(—2]¢])  (2>0) e V35,

As can be seen from the example of the boxcar filter which has
boxcar-like rectangular impulse response function, CUTOFF takes the
value oo for a D(t) which has some discontinuities. As the boxcar filter
is usually considered to give a simple low pass filter, this result shows
that CUTOFF is not necessarily a good index of the bandwidth of a low
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pass filter. Rather it is more sensitive to the higher frequency char-
acteristics of the filter. Thus it can be fairly safe to say that when
CUTOFF and HWIDTH show nearly the same values the filter is a low
pass filter without significant minor lobes in the higher frequency do-
main, and if we are going to apply the filter to an input which does
not contain extremely significant higher frequency component HWIDTH
would be more useful as an index of bandwidth for some wider range
of low pass filters than CUTOFF. CUTOFF is concerned with the con-
centration of the (power) pass band around the frequency zero and
HWIDTH is concerned with the fidelity at low frequency. Thus it would
be more natural to simultaneously use these two indexes for the speci-
fication of a low pass filter.

We have also another natural measure for the specification of a filter.
This is the power P of the output of the filter when it is excited by a
white noise with unit spectral density and is by definition :

P={" 13D()rdf .

Obviously this quantity is the area covered by |FD(f)|* and thus also
related with the notion of bandwidth. When a low pass filter is used
with complex demodulation technique [8] to provide an estimate of a
power spectral density, this quantity P is generally directly concerned
with the sampling variability of the estimate. In the next section we
shall use these three quantities P, CUTOFF and HWIDTH to develop a
design principle of low pass filters.

5. A design principle of low pass filters

For the purpose of normalization we shall consider a family of filters
of which impulse response functions D,(t) are specified by a positive scale
parameter L and satisfy the relation

pa-Lo(3).

We are assuming that Sm D((t)dt=1 holds.

Here if we denote by P(D.), CUTOFF (D.) and HWIDTH (D,) the
values of P, CUTOFF and HWIDTH of a filter with impulse response
function D,(t), respectively, then from the definition we get the relation:

P(DL)=%P(DI) ,
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CUTOFF (DL)=%CUTOFF (D),

HWIDTH (DQ:%HWIDTH (D).

Now if we ask that P(D.)=P, (>0), then we have %= PS")I)

_  CUTOFF (D)) __ p HWIDTH (D))

CUTOFF (D,)=P, POy and HWIDTH (D,)=F, Zi) .
CUTOFF (D) and HWIDTH (D,)
P(D;) P(D,)
the scale factor L and can be considered to give a specification of the
family to which D,(t) belongs. For the sake of simplicity of typography
and analytical treatment we define CTP(D) and PTH(D) for a filter with
impulse response function D(t) or for the family to which it belongs,
which will hereafter simply be denoted by D, by

and thus

are independent of

The quantities

CTP(D)=___—CUTI(3(FDF) (D) |
___ PWD
PTH(D)= HWIDTH (D) *

By using these two quantities, we can make each family of filters cor-
respond to a point (CTP(D), PTH(D)) in a two-dimensional space, which
we shall call (CTP, PTH)-space.

Now for the purpose of evaluation, we are going to introduce a
partial order < into the space of families of filters, which is by definition :

CTP(D®)<CTP(D®)
D® < DP&{ and
PTH(D®)<PTH(D®)

where at least one equality holds

and we shall call D® to be sharper than D®. Let us consider the sim-
ple case where two families of filters D® and D® satisfy the relations
PTH(D®)=PTH(D®) and CTP(D®)<CTP(D®). In this case it is easy
to see that if two filters, one from D® and another from D®, are asked
to have one and the same value of HWIDTH, then the one from D®
will have a smaller value of CUTOFF. In this case, from the definition
of CUTOFF, it will be reasonable to expect that the one from D® will
show a better concentration around the frequency zero and, in this sense,
will be the better one. The same kind of argument can be extended to
the general case of D®<D® and we adopt the standpoint that the
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sharper filter is the better one as a low pass filter.

Now that we have got a method of representation of a family of
filters as a point in (CTP, PTH)-space and got an ordering or evaluation
of families by it, we are in a position to further the investigation of
low pass filters systematically.

Within a set of families of filters we call a D to be extremal if
there is not any other family which is sharper than D. If the set of
families of filters is forming a convex set in (CTP, PTH)-space, an ex-
tremal D will be characterized as the one which gives the minimum of

R(U) =U(CTP(D))*+(1 — U)(PTH(D)y*

for some U satisfying 0<U<1. It seems quite natural to first focus
our attention to the set of all extremal families to find good low pass
filters. To further concentrate our attention, let us consider the situa-
tion when an extremal D is given for practical application. The most
probable procedure will be first to select a value of L so as to make
HWIDTH (D,)=H,, where H, is determined from the requirement of
the width of pass band. In this case it holds that CUTOFF (D.)=H, X
CTH(D), where

CUTOFF (D)
HWIDTH (D)

=CTP(D)x PTH(D) .

CTH(D)=

Following the same reasoning as we have done in evaluating a sharper
family as a family of better low pass filters, we can expect that within
the set of extremal families the ones with smaller values of CTH(D)
will give better low pass filters.

Summarizing this, we get a rather simple design principle of low
pass filters: to restrict our attention to the families which are nearly
extremal and with small values of CTH(D).

It would be needless to say that various further considerations would
be necessary to make this principle a practical one, but, as will be seen
in the following sections, this simple approach gives a fairly good in-
sight into the nature of good low pass filters.

6. Design of trigonometric filters

In this section we consider a set of families of filters for which
D,(t) is given as follows:

1 k n
— (142> a, cos 2n—t>> for |t|<L,
1 2L

D L(t) ={ 2L
0 otherwise.
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Throughout the following discussion we shall assume D (+L)=
k

7
=—1
2L +
237 (=)™ > 0 to avoid the case where CUTOFF (D, )=+cc. We have

P(DL)—i(Hz 5 a,,)

K 12
6 > nlal
CUTOFF (DL)_E(E)

HWIDTH (DQ:%{% L?;liqui— $ _1_}" .

n=1

From these relations we get

CTP(D.)= <6 ,él nga:>1/2<1+2 % a?‘> iy

Thus, assuming the convexity of the set of all families, the search for
extremal families is reduced to the minimization problem of

R(U) =U(CTP(D,))’+(1 — U)(PTH(D,.))*

in a K-dimensional space of (ay, a,,
[0, 1].

, ax) for the values of U lying in
We shall also give our attention to a subset of the present set

of families, members of which are assumed to satisfy the condition

SLL £D,(H)dt=0
or equivalently,

[+t Sl 0.

n=1

In the following we shall symbolically designate a quantity related with
this subset by putting N=2 and that of the former set by N=1

Also
we shall designate by N=0 the case of the boxcar

1

for |t|<L,
DL(t)'__ 2L

0 otherwise ,
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From the definition, the members of the subset N=2 are considered
to be distortion free to a locally quadratic variation in time of the in-
put. In the following analysis we can see the effect of this restriction
in the design of low pass filters.

We shall also give attention to the change of the result due to the
change of the value of K, the degree of trigonometric polynomial. The
practical use of a result which is heavily dependent on the higher values
of K would be quite dubious. Thus the family of our good filter should
be located in a region which is not very much sensitive to the increase
of K beyond a certain limit.

Numerical results. First of all it should be mentioned that the
numerical results to be used in this section were obtained mainly by us-
ing various methods of successive approximations. The results are gener-
ally expected to be reliable up to three digits, but there may still re-
main some quite significant errors. Even if there may be some defects
in the following reasoning due to these possible errors, the concrete
shapes of the filters are, if once obtained, free from this consideration
of numerical errors.

Also it should be mentioned that in observing the figures illustrating
FD(f) one should take care of the possible changes of scale in various
parts of the figures.

Necessary information for the understanding of the subsequent fig-
ures is summarized in Table 1. Here is included a quantity RA=1/(2L-
HWIDTH) for the purpose of evaluation of the spread of D(t) over the
time axis. (CTP(D), PTH(D)) which corresponds to a minimum of R(U)
is plotted in Figure 1, where U is successively changed from 0 to 0.99.
We shall denote the filters obtained in this way by min R(U). The re-
sult suggests that min R(U) gives an extremal family and that the curves
in the figure represent the graphs of the sets of extremal families. The
figure also suggests that the results corresponding to smaller values of
U are sensitive to the change of K and thus will not give practi-
cally useful filters. To get a feeling of the effect of changing the value
of U, D(t) and FD(f) of min R(U) with U=0 and 0.99 are illustrated
in Figures 2, 3, 4 and 5 for the cases of N=1 and N=2. The shapes
of filters corresponding to the minima of CTH for (N=1, K=4), (N=1,
K=10) and (N=2, K=4) are obtained by successive approximation us-
ing some of min R(U) as initial values and are illustrated in Figures 6,
7 and 8, respectively. This type of filter may hereafter be denoted as
min CTH. By comparing Figures 6 and 7 we can see that the increase
of K is mainly contributing to the improvement of phase characteristic
of the filter at higher frequencies. The shapes of these filters are mutu-

L
t*D.(t)dt is very small even for
L

ally quite similar and thus the value S
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those with N=1. It is remarkable that this min CTH introduced a D(f)
with negative values at both ends of D(t) even without the restriction of

L
S 5 D, (t)dt=0 or the distortion free requirement for the locally quad-

ratic variation in time of the input.
In practical applications the cost of computation should also be taken

into account. In the present case, P(D,,)=%P(Dl) holds and we can use

P(D1)=%<1+2é a?,,) as an index of the efficiency of computation. The

smaller the value of P(D,) we can expect that D.(¢) is better spread all
over [—L,L]. We have tried to take into account this factor and com-
puted the values of (a,, a,, - -+, ax) which give the minimum of R(U)+
W x P(D,) for a decreasing sequence of W for some selected values of U.
Starting at W=12.8 we have successively reduced the value of W by a
factor 1/2 and the computation was done by using a modified optimum
gradient method [4] with initial values equal to the final values of the
preceding step. The result is shown in Figure 9. It is quite interest-
ing to note that in all of the cases the locus of solutions behaves as if
it is strongly attracted toward the one corresponding to U=1 when W
departs from zero. In this figure the sequences corresponding to the
minimum of R(1) + W x P(D,) are converging to the points corresponding
to (a,=0.5, K=1, N=1) and (a,=0.92995, a,=0.42995, K =2, N=2) for
N=1 and N=2, respectively, as W tends to zero. Though this result
is obtained only numerically, it seems that this is giving a specification
of the two filters given by these two sets of coefficients. These two are
also characterized as the lowest degree cases of trigonometric filters
satisfying the conditions N=1 and N=2, respectively. We shall here-
after denote these two filters by LN1 and LN2. It also should be notic-
ed that in the present procedure we could not approach a solution which
is lying near the min CTH solution for the case of N=1. This suggests
that so long as we try to keep P(D,) small it is difficult to imagine a
filter nearly equal to min CTH (N=1) as a good low pass filter. And
the fact that LN2 is situated quite near to this min CTH suggests that
the requirement of the distortion free characteristic to the locally quad-
@'atic input could play a fundamental role in introducing a change in our
notion of a good low pass filter.

In Figures 10 to 17 are given the shapes of various filters. For the
purpose of comparison the boxear, a filter with impulse response func-
tion of the shape of a boxcar, is illustrated in Figure 10. Figures 11
and 15 illustrate the filters which give the minimum values of CUTOFF
(D). Figure 13 illustrates the case corresponding to the minimum of
R(U) with U=0.89 and is almost equal to min CTH of Figure 6. Fig-




LOW PASS FILTER DESIGN 281

ure 14 shows that by slightly modifying the value of U from 0.89 to
U=0.84 we can keep the maximum of |FD(f)| less than 1.01 without
introducing significant changes of |§FD(f)| at the higher frequencies.
Figures 12 and 16 give the shapes of LN1 and LN2. Figure 17 gives
the shape of the filter giving the minimum of R(U) for U=0.86. This
is almost identical to min CTH of Figure 8. By comparing Figures 16
and 17 we can see that LN2 will be welcome in most ordinary appli-
cations.

The figures are all normalized by HWIDTH in frequency, and they
strongly suggest that this normalization is quite useful. For almost all
the good low pass filters in these figures | FD(f)| remains less than 0.01
in the range | £ |>2 HWIDTH and greater than 0.30 in the range | f|<
HWIDTH. Thus if only the length of the sampling interval 4t satisfies
-23—t>2 HWIDTH (or preferably, 3 HWIDTH), {D.(ndt); n
=0, +1, -+, + M} with 2L=2M+1)4t will be used as a good digital
low pass filter for ordinary applications when D.(t) is a good low pass
filter in the present sense. This shows that the minimizing CTH prin-
ciple has a practical basis of reasoning, as it is based on the notion of
HWIDTH which is proved to have a practical meaning.

The fact that minimum CTH design principle has introduced a D(t)
with negative values might yet make us feel somewhat dubious about
the effectiveness of the principle. Although the foregoing discussions
and figures have already provided definite answers to possible questions,
the result illustrated in Figure 18 might be of some use to help our un-

the relation

derstanding. The original signal sin (%n) was contaminated with a

Gaussian white noise with standard deviation equal to 0.1 and fed into
the various filters. A portion of the outputs is illustrated in Figure 18.
With one exception of the case of boxcar with 2L=25 all the values of
2L are chosen so as to make HWIDTH (D.) approximately equal to one
and the same constant. The result shows clearly that there is enough
possibility of this kind of situation occurring in practical applications. The
only practical limitation of LN2 and others nearly equal to min CTH is
the requirement of the length of the span of D,(t). Thus we can say
that in case D,(t) is used as a filter of an infinitely long series these
filters will work quite efficiently.

If we take into account the fact that the Fourier transform of a
sampled sequence of finite length is a periodic function in frequency do-
main, our present observation strongly suggests that the applications of
these filters which are nearly equal to min CTH for the smoothing of a
periodogram will be quite successful for the estimation of spectra if it
is combined with the use of the method of fast Fourier transform.
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7. Review of spectrum windows

In the estimation of spectra it has been a common practice to mul-
tiply a sample (auto or cross) covariance function C(tf) with a function
G(t), which is called a lag window [1],[5] and to compute the Fourier
transform of G(t)C(f) to get an estimate of the spectrum. Though the
situation may be changing due to the introduction of the method of fast
Fourier transform [8] it would be of some interest to review the per-
formance characteristics of various lag windows hitherto proposed for
practical use from our present point of view of the design of low pass
filters. Obviously the lag window G(t) plays the role of FD(f) in our
present discussion and the spectrum window FG(f) (the Fourier trans-
form of G(t)) plays the role of D(t) with the corresponding change of
roles between ¢ and f. *

In Figure 19 some of the well-known windows, including the three
windows proposed by the present author, are represented as points in
(CTP, PTH)-space. Definitions of these windows are given in Table 2.
It is interesting to note that the primitive lag window is situated dis-
tantly from the set of min R(U) filters. This means that the ideal rec-
tangular low pass filter is not highly evaluated from our present point
of view. Also Bartlett’s window is distant from min R(U) filters and
we can see a fairly significant improvement of performance in other
windows especially designed for the estimation of spectra.

Among the windows W,, W, and W,, which are proposed by the
present author [1],[2], W, and W,, which were designed so as to be bias
free for locally quadratic variation of the spectrum, are fairly closely
located to the points which correspond to min CTH filters. These windows
were once criticized by E. Parzen [7] of having negative side lobes; but
so long as the present procedure of multiplication by lag window can
be considered as a low pass filtering in frequency domain, our present
result suggests that these widows still have their reason of existence,
especially when we recall the fact that in this case to widen the range
of spread of the low pass filter or the spectrum window does not mean
any practical limitation of the window, rather it is profitably realized
by simply decreasing the maximum number of lags in the computation
of sample covariance functions. This observation is in good agreement
with the experience of applying these windows to practical problems,
and their efficient use for the estimation of power spectral densities is
discussed in a paper by the present author [3]. The content of the
paper also suggests a new direction of the application of results of the
present paper for the detection of bias introduced by the application of
low pass filters. '




LOW PASS FILTER DESIGN 283

It should be mentioned here that by the introduction of the method
of fast Fourier transform it has become practicable to compute numerical
Fourier transform of an observed time series [8], and we can formulate
the problem of spectrum estimation directly as a low pass filtering prob-
lem in the frequency domain. Thus the filters designed in this paper are
readily applicable as spectrum windows for this purpose. The negative
side lobes of some of the filters may cause some trouble, but this will
be restricted to the frequency range where the spectrum shows very
low values. To avoid the situation some kind of prewhitening or taking
the logarithm of unsmoothed spectrum will be useful. In this situation
it may also be useful to apply a properly selected data window (c.f. [8]
and the next section of this paper). By taking logarithms, we shall
generally have to expect larger sampling variations of our estimate, but
will be able to reduce the amount of bias in the low power frequency
range. Also the negative side lobes of spectrum windows does not cause
a direct annoyance in this case. In this approach we could use the box-

car or Daniell window. It has PTH=—7§; (=1.645) and CTP=o0, and

is not highly evaluated from our present point of view.
During the proofreading of the present paper, Professor Parzen sug-
gested the introduction of a new lag window G(t) which is by definition:

G()=(1+6t)Gx(?) ,

where G(t) is the original PARZEN window given in Table 2. The pre-
sent window is the lowest degree modification of the original window
into the one which has vanishing second order derivative at t=0 and
thus will be bias free for locally quadratic variations of spectra.

It turned out that this window, which we shall denote by PARZEN
2, is situated very close to min CTH (N=1) in (CTP, PTH)-space of Fig-
ure 19. This gives another evidence of the fact that the requirement
of distortion free characteristic for a locally quadratic input is playing
a definite role in shifting our attention from those windows around
HANNING and HAMMING to those around min CTH in Figure 19. It
is quite possible that PARZEN 2 will find interesting applications in the
estimation of spectra, especially in the line of approach described in [3],
and thus will give another proof of the usefulness of our (CTP, PTH)-
space representation of filters.

8. Application to data window design

It has been suggested by J. W. Tukey [8] that to avoid an annoy-
ing effect due to the sudden truncation of observation of a time series
it is desirable to attenuate both ends of a set of data before taking its
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Fourier transform. This is necessary when there exists a significantly
periodic component in the series. The procedure is realized by multiply-
ing the time series X(t) by a function G(¢), which is called a data window,
and taking its Fourier transform.

The present author proposed ([8], p. 42) the use of G(t) which can be
decomposed into the form,

G(t)= S:’ V(t—s)Uls)ds

1
2
=0 for ]t|>-Ié'- and Sw V(t)dt=1. It is assumed that M and L are posi-

—co

where U(t)=1 for |t|[<M+-—L and =0 otherwise, and V(—t)=V(t), V(t)

tive and M=2L. It turns out that for a data window of this type to
be a good one the Fourier transform FV(f) of V(t) should be fairly
equal to 1 for some given range of f around f=0 and then rapidly go
to zero outside the range. This is quite similar to the requirement that
V(t) should be the impulse response function of a good low pass filter
in our sense. In the present case it is further required that L should
be kept as small as possible, and consequently, V() should be spread
over [—L, L] as well as possible. This means that in the desigh of this
V(t), the computational efficiency in the sense of the former section should
be taken into account. Thus it seems quite possible that the filters LN1
and LN2 obtained in that section may provide good candidates for this
use.

We shall here content ourselves by only suggesting the possibility
of this kind of use of our present design procedure and leave the detailed
discussion for a future occasion.
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Table 1. Key to the figures

1 K n
D(#) —E(l +2 2 an cos (Zn—it)) for [¢|<L
=0 for |¢|>L
N:
N=1+«- D(L)=0
L
N=2 - D()=0 and S  BD(E=0

N=0+«- D(L)#0
%D(f)=S°_° exp (—i2nf)D(t)dt

eisn

HWIDTH= n
ar

p={" 15D(r)par

\/ 3("_1reUyar
CUTOFF = -= P

CTP=CUTOFF/P
PTH=P/HWIDTH
CTH=CUTOFF/HWIDTH
RA=(1/2L)(1/HWIDTH)
R(U)=U(CTP)+(1 — U)(PTH)?
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Table 2. Specifications of lag windows
PRIMITIVE G()=1 for |t]<1
=0 otherwise
BARTLETT G(t)=1-¢| for <1
=0 otherwise
PARZEN G(t)=1—-62+6]¢3 for |t|=<1/2
=2(1—[¢])3 for 1/25|t|<1
=0 otherwise
GAUSS G(t)=exp (—#7)
k
TRIGONOMETRIC G(t)=ay+2 3] an cos (nxt) for |¢|<1
n=1
=0 otherwise
HANNING ay=0.5, a1=0.25, K=1
HAMMING ay=0.54, a1=0.23, K=1
Wy ay=0.5132, a1=0.2434, K=1
Wy ay=0.6398, a1=0.2401,
ay=—0.0600 K=2
Ws ay=0.7029, a1=0.2228,
a3=—0.0891, a3=0.0149, K=3
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Fig. 1
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Fig. 3
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