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1. Introduction and summary

Let X and Y denote two independent random variables having con-
tinuous F' and G for their cumulative distribution functions, respectively.
There are some practical situations (see, for instance, Birnbaum [1])
where one is interested in estimating p=P(X <Y) on the basis of ran-
dom samples X, X;, -+, X, and Y;,Y;, ---,Y, from F(x) and G(y) re-
spectively. It is well known that the minimum-variance unbiased esti-

mate of p is the Mann-Whitney statistic given by fj=sm F(x)dG,(x)

where F,, and G, denote the empirical distribution functions based on
the random samples of sizes m and n of X and Y respectively. Then,
the problem is, for given y(0<y<1), to determine ¢ free of F and G such
that either (i) P(p=p+e)=P(p=p—e)=7, or (ii) P(|p—p|=e)=y. Birn-
baum and McCarty [3] have obtained the inequality :

(1.1) ﬁ—pésgp (F(w)—Fm(x))+sgp (Gu(x)—G(2))=Dr+D;

where D} (D7) is the Smirnov statistic based on a random sample of
size L. Using the asymptotic distributions of Dj+D;, they obtained
asymptotic values of N'% for certain specified values of y and m/N
where N=m+n. Owen et al. [12] have extended Birnbaum and
MecCarty’s [3] table of values of N*% and observed that the same con-
fidence bounds could conservatively be used when F and G are discon-
tinuous. Also, for the problem of two-sided confidence bounds, one can
easily obtain the inequality :

(1.2) If)—plésgpIFm—FHsgplGn—GI=Dm+Dn

where D, is the Kolmogorov statistic based on a random sample of size
L. However, using the (exact or asymptotic) distribution of D,+D,
(See [7]), the present author finds the resultant bounds to be very crude.
Hence, it is of interest to derive sharper confidence bounds for p.

* This research was supported by the National Science Foundation Grant NSF-GP 5664.
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In this paper, the asymptotic normality of p, when suitably stand-
ardized, is established when m and n tend to infinity. No restriction
on the order of m and n is imposed, thus overcoming the criticism of
Birnbaum [1] on the sufficient conditions of Lehmann [10] for the asymp-
totic normality of . A distribution-free upper bound for the asymptotic
variance of p is derived which is equal to the bound of Van Dantzig [5].
One-sided and two-sided distribution-free confidence bounds for p—p based
on the asymptotic normality and the distribution-free upper bound for
the asymptotic variance are explicitly derived and they are approximately
one half of the corresponding bounds due to Birnbaum and MecCarty [3].
These distribution-free confidence bounds are found to be 802, as effi-
cient as those based on normal samples of X and Y and obtained by Owen
et al. [12] for the one-sided case and by Govindarajulu [8] for the two
sided situation. An unbiased, consistent and distribution-free estimate
of the asymptotic variance of p is derived which could be used instead
of the upper bound, and thus shorten the confidence bounds.

2. Main results

The main results of this paper hinge upon the following theorem
asserting the asymptotic normality of the Mann-Whitney statistic when
either m or » tends to infinity. Asymptotic normality of », when suit-
ably standardized, has been established by Mann and Whitney [11] for
F=G. Lehmann [10] has shown that for all continuous ¥ and G, p has
an asymptotic normal distribution provided (i) 0<p<1, and (i) n=cm,
m—oo. However, there will be some situations when m and »n are not
of the same order. Also, the asymptotic normality of p follows from the
Chernoff-Savage theorem (see [4] or [9]) provided m/N is bounded away
from zero and unity. Hence, the following theorem, although is a spe-
cial case of the main theorem of [6], will be presented with a simple
and independent proof.

THEOREM 2.1. With the notation of section 1, for all continuous F
and G, we have

2.1) lil_r'lw P (Dp—p)]e <2} =D(2)

where

2.2) a=2">2 S S F(x)[1—F(y)dG(x)dG(y)
m

<y

+22 g g G(x)[1—G()dF(@)dF(y)

<y
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2.3) O(2)=(2r)~ Sw et
and v=min (m, n) provided o*+0.
Proor. Write
2.4) W(p—p) = S (F— F)dG -+ S Fd(G,—G)
o S (Fn—F)d(G,—G) .

Now, integrating by parts once in the second term, we obtain v'*(p—p)
=Bp,.+Cn.. where, after suppressing the subscripts,

2.5) B:»lﬂ[ S (F,— F)dG— S (G,,—G)dF]
and
2.6) C=wt2 S (F.—F)d(G,—G),

all the integrals being interpreted as ranging from —oo to oo. From
the central limit theorem we prove that B has an asymptotic normal
distribution with mean zero and variance o*. Also, one can easily see
that the mean of C is zero. Further one can rewrite C as

2.7) c=2"1 % (Fu(¥)-F¥)}- | (Fa—F)iG]
n Li=1
and obtain

BC*| Xy, X, -+, X)=2 | (Fa=FyaG—2 || [Foa) - F@)]

- [Fn(y) — F(y)]dG(2)dG(y) -
Thus

2.8) VarC=ECt=_" SF(I—F)dG
mn

e ) PO PG ENGW)
=v/dmn+v/[dmn=v/2mn . .

Hence, C converges to zero in probability for all F and G as m and n»
tend to infinity. This completes the proof of the theorem.

Remark 2.1. Owing to its simplicity, proof of Theorem 2.1 is pre-
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sented above, although Theorem 2.1 is contained in the theorem of God-
win and Zaremba [6]. Also, Theorem 2.1 follows from the proof of
Hoeffding’s theorem on U-statistics in the generalized version (for instance,
see Lehmann [12] p. 964) with a change in the normalizing constant.

Remark 2.2. Suppose F and G are discontinuous having denumer-
able number of jump points (the jump points of F' need not be different
from those of G). If F(G) has a jump of size « at a point ¢, remove
the point ¢ from the real line and insert in its place a closed interval of
length a and distribute the probability mass a uniformly over this in-
terval. The new distribution functions F* and G* so obtained are con-
tinuous. For samples obtained from F* and G* the relative order re-
lations between X’s and Y'’s have the same probability distribution as
if the samples were drawn from F and G. Since 9 is well defined even
if F and G have the same points of discontinuity, Theorem 2.1 is valid
for all arbitrary F and G.

Remark 2.3. If m and n are random and there exists a positive
integer N* such that m/N* and m/N* converge to i, and 2, in prob-
ability, then y/N* converges to A=min (i, 4,) and L{(AN*)"*(p—p)/e*
<2} —>?(z) as N*—oco where

(2.9 o =2 || F@)[L1- FMG @6 )

<y

+21_1 SS G(%)[1—G()|dF(x)dF(y) .

z<y

Remark 2.4. Also, integrating by parts once in the first term on
the right side of (2.4), we obtain, for the first order random term in

W2(p—p), B=u"2[g Fd(G,—G) — SGd(F,,,—F)] Consequently, the vari-
ance of B equals

(2.10) ,,e%“ deG—{S FdG}2]+—:ﬁU GﬂdF—{S GdF}z]

- lmf{ruo-») ool oar-cni].

Now, let v=m. Then,
@.11) n&:m[s FZdG-i-S szF—pz—(1—p)2]+(n—m)[S szF—(l—p)2]

m[S (G—F)zdF—I-—g-—p”—(l—p)z]+(n—m)[g szF——(l—p)z] .

Il
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However, from Birnbaum and Klose [2] (see Lemma 3.1) we have the
sharp inequality given by

(2.12) S (G—F)zng_;_—p(l—p) :
Also, SszF—(1—p)2§S GdF—(1—py=p(1—p). Hence, it follows that

2.13) az%tmp(l—p)+(n—m)p(1—p)1=p(1—p) :

When v=n, one can analogously show that

(2.14) d<p(l-p).
Thus, combining (2.13) and (2.14) we obtain
(2.15) ’=p(1—p)

which is Van Dantzig’s [4] bound for the variance of »'. Notice that
the expression for the exact variance of v'*p is different from ¢ given
by (2.10). Towards the distribution-free bound for ¢* we obtain

1
2.16 <,
(2.16) ’=7
Using Theorem 2.1 and the bound in (2.16) we readily obtain the fol-
lowing solutions for the distribution-free confidence bounds for p. For
all F and G and non-random and large m or =, the solution e of the
equations

@.17) P=p+e=Pzp—e)zr, 0<r<l1
is given by

(2.18) e2(40)™07!(y)

and the solution of the equation

(2.19) P(|p—plsezr, 0<r<1

is given by

(2.20) sg_(4u)-l/2¢-1(_1‘2*_7) .

Remark 2.5. If m and n are random and there exists a positive
integer N* such that m/N* and n/N* converge respectively to 4, and 4,,
then the factor (4v)~' occuring in (2.18) and (2.20) should be replaced
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by (4N*2)~2 where A=min (4, 1;).

Remark 2.6. From eq. (2.5), it is clear that ¢*+#0 provided 0<p
<1. The case where either p=0 or p=1 is not of much practical in-
terest.

Now, let us compare the one-sided confidence bounds given by (2.18)
with those of Birnbaum and McCarty [3]. In Table 2.1, are presented
values of 6=N"% for some specified values of y when m=mn. The
values in parentheses are those of Birnbaum and McCarty [3].

Table 2.1 Showing values of §=N1/2¢ for
specified y when m=n=N/2

7 J

.9 0.90 (2.65)
.95 1.17 (2.93)
.99 1.65 (3.49)
.995 1.82 (3.70)
.999 2.19 (4.14)

From Table 2.1, it is clear that the confidence bounds of Birnbaum and
McCarty are at least twice as large as those given by eq. (2.18).

Also, it is of interest to compare the bounds given by (2.18) and (2.20)
with those obtained by Owen et al. [12] and Govindarajulu [8] for the
normal samples. These bounds for large m=mn are given by

2.21) 220 (qu-l(r)) —1
and
sofreen(247)) -4

for the one-sided and two-sided situations respectively (see [12] and [8]).
Also, when m=m, the bounds (2.18) and (2.20) respectively simplify to

(2.23) e=0-1(y)/2n" e=q)-l<_1_;i) / 2nt

For some specified values of n, and y the bounds ¢ given in (2.23)
are tabulated and are compared with those based on normal samples.
The bounds based on normal equal-sized samples are given in parentheses.
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Table 2.2 Showing values of ¢ for specified »=m and ¢

n=m
\\ 25 64 100
r

One- .95 .1645 (.1312)  .1028 (.0820)  .0833 (.0654)
sided .99 2330 (.1846)  .1456 (.1162)  .1167 (.0932)

Two- .95 1960 (.1524)  .1225 (.0968)  .0980 (.0777)
sided .99 .2580 (.1950)  .1612 (.1265)  .1490 (.1016)

From Table 2.2, it is clear that the distribution-free bounds given
by equations (2.18) and (2.20) are about 80% as efficient as those based
on normal samples.

3. Distribution-free, unbiased, and consistent estimates of o?

One can obtain an unbiased, consistent and distribution-free estimate
of ¢ which can be used in the place of the upper bound*. Recall that
mn f:m[gdeG—p2]+n[gGZdF—(1—p)2], where p=SFdG. Compu-

v

tations yield that

(i) (m—l)"E[m S F,?,dG,.—S Fde,.] =S FdG,
(i) (n—l)"E[n S GidF,— S G,,dFm] =S GdF,
(iif) E{—@%[S Fden]z—(Tf_.ﬁ S (1—G,,)2dFm+m

Ny | Pe ey e =

(iv) E{An expression obtained’ by interchanging the roles of F & G,
and, m & n in (iii)} =1 —p)%.

The following computations will be helpful in verifying the above.
(a) MmF,(x)=x(x)+x(2)+ - - - +xn() Where
1 when =X (that is, with probability Fl(x))

x:() =
‘ 0  when #<X (that is, with probability 1—F(x)),

* Sen [15] has considered distribution-free confidence limits for p by obtaining a similar
distribution-free and consistent estimate of the variance of p. The confidence bounds in
section 3 are somewhat different from those of Sen [15].
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with analogous statement when F & G, and m & n are interchanged.

(b) E(SF;,dG,,):%ZEF:,(Y,): ’”‘7;1 SF’dG+%SFdG
(c) E[S Fde,,]’=mm_‘nl SFZdG+2_(:%1) S F(1—G)G
L (n=1)(m—1) {SFdGF
mn
(d) 2SF(I—G)dG:—SFd(l—GY:—S(l—G)zdF
(e) E[S (l—Gn)zdFm] =S (1—GydF+n- S GdF—n-! S G'dF .

Thus, an unbiased and distribution-free estimate of {S F’dG—pz} is
given by

@3.1) (m__’;';_?m[g F2dG,— {S Fmdan}2]+ (ml—l) [g (1—G.)dF,
—S F,,,dG,.] +m[§ G.dF,— S Gz,dFm] .

Then, a consistent and distribution-free estimate of {S F*dG— p’} is given
by [SF,idG,,—{SFde,,}Z]. By interchanging the roles of F & G, and
m & m one can obtain, distribution-free, unbiased and consistent (or dis-
tribution-free and consistent) estimate of { S GdF—(1— p)’}. Thus a con-
sistent estimate of ¢* is given by 42 where

@2  o=2||Fa6,~{|F.a6.] |+ 2] | Gar.— [ 6.aF.} ]

m

using o2 in the normal approximation, the confidence bounds for p—7p
are given by

(8.3) e=(a1/v)"* 0 (z)
and

o veg-1{ 1+
(3.4) ez (o (1E1)

for the one-sided and two-sided cases respectively. The bounds (3.3) and
(3.4) would be shorter than (2.18) and (2.20) respectively.
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4, Case when one of the distributions is known

There might be some practical situations where one of the distribu-
tions is exactly known and one is interested in setting up confidence
bounds for p=P(X<Y), on the basis of a random sample from the un-
known population. Without loss of generality, assume that F' is known
and a random sample Y,,Y;, .-+, Y, from G is available, where F and
G are arbitrary cdf’s. Then

4.1) p=| FaG..

One can easily obtain the following inequalities :

4.2) P(p<p+e)=P(p>p—e)ZP(D;<)zl—e 27
and

4.3) P(lp—p|<)2P(D,<e)z1-2 3 (~1y e 2y

However, the solutions of ¢ for specified y obtained from (4.2) and (4.3)
would be cruder than the corresponding values of ¢ obtained from the
following procedure. Applying the classical central limit theorem, we
have

4.4) lim P [n"(p—p)/o* =2]=D(2)
where
(4.5) ¥ =Var F(Y):S F(y)dG(y)— [S FdG]z.

Further, ¢®<p(1—p)<1/4. Using this bound, one obtains (2.18) and
(2.19) with v=nx as confidence bounds respectively for the one-sided and
two-sided cases.

Also, one can easily see that an unbiased estimator of {E F(Y)}® is
given by

(4.6) an—1) | FdG,—|| FdG,.}z]
and a consistent estimator of ¢* is given by
4.7) | FraG,— { g FdG,.}z .

So, one obtains

(4.8) ezoxn 07(y),  eza*n V07H((1+7)/2)
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for the one- and two-sided confidence bounds respectively, where ¢* is
given by (4.7).

5.

Conclusion

Analogous distribution-free confidence bounds can be derived for

P(X<aY) and P(X <k(Y)) where a and & are given constant and func-
tion respectively and where X and Y could be vectors.
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