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0. Introduction

In the present paper, we shall discuss some problems concerning the
bias in estimating a variable Y from a variable X, both of which are
subject to errors or fluctuations in measurement and are expressed as
random variables, in the case where biased information originates in dis-
regarding the response errors or response fluctuations. Let X, and Y;
be the measurements on the ith object, 1=1,2, ---,n, n being the size
of sample or universe. X’s and Y’s may be quantitative or qualitative.
We shall give, below, a method of evaluating the estimation bias of ¥’s
by fixed X’s which are known realized values of the random variable
X and a method of correcting the distortion in the statistical analysis
of cross-tabulated data.

These situations arise when we treat the relation between two vari-
ables, for example, the change between time ¢, and time ¢, from a cross
tabulation (correlated pattern) of them, or the before-after analysis in
a usual follow-up study. These ideas will be useful for us in appraising
the validity of quantitative representation of our data.

. QUALITATIVE CASE

Here we treat the case where the variables are qualitative, i.e. re-
presented by item-category-response and the response error or fluctuation
is represented by a probabilistic model.

1. The simplest case

First we treat the simplest case where variable Y is qualitative and
subject to error, and we require an unbiased estimate without any re-
ference to X. This is an introduction to the correlated case. An idea
similar to that in this section is found in [1], [18], although I have al-
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ready introduced my idea in [4], [7] and developed it along this line in

[81, 9], [10].
The response categories are assumed to be dichotomous (4, —). The
response probabilities are shown in Table 1.

Table 1. Response-probability

response
+ —
true

+ 4 1-p
- 1—-¢q q

1—p and 1—¢q represent the
response error probabilities.

Let n, be the number of true + responses, n_ be the number of
true — responses, where m,+n_=n, the total number of responses.
Here we assume that true responses + and — exist. We may call it
a structure. Let m, be the observed number of response +, and m_
be the observed number of response —, where n=m,+m_. We must
infer the true response pattern (n,,n_) from (m,, m_), because our aim
is not to know the apparent response pattern (m.,, m_), which does not
give us any valid information concerning the true response pattern as
it is [12]. p and q are assumed to be known. In this case, the esti-
mates 7, and #_ of n, and n_ are given by

n_ B 1—q ¢ m_
where ()’ means transposed matrix, under the condition of the exist-

ence of inverse matrix. #, and #_ are unbiased estimates of =, and
n_. The variances of #, and #_ are easily calculated. For, example,

oi,=L{n,p(l—p)+n_g(1—q)},
where
-1
p+g—1"'
and of course o}, =dj_.
In the case where the number of response categories is k (k=3),
we can also give a similar solution.

Let P be the response-probability matrix, an element of which is
Py, 1=1,2, -+, R, j=1,2,---, R, R being the number of categories in

R
an item, and > p;,;=1 for any 4. R is a column vector of the numbers
J=1
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of true responses to the categories in an item, an element of which is
n;, where én‘:n, n being the total number of responses. I is a
column vector of the observed numbers of responses to the categories
in an item, an element of which is m; where f} m;=n. Let R be an
estimate of N. According to the same reducti(;:ll, we have an unbiased
estimate St of M as follows,

fi=pP-t1qn ,

when the inverse matrix exists. »

The variance-covariance matrix o(R) is calculated from the variance-
covariance matrix ¢(It). Here an element of a(‘ﬁ) is a,,(&fé), 1=1,2, .-+,
R, 7=1,2,.--,R and o“(‘jé) is the variance of the ith element of Jt and
an element of (M) is o, (M), k=1,2, ---, R, I=1,2, ---, R and these are
calculated from the equations %}m,,:m, for j=1,2, ..., R, where m,;
is the random variable of the number of those who belong to the ith
category in “true response” but respond to the jth category in actual
response, which occurs with probability p,,. Hence, (m, my, « -+, Mz)

is subject to a multinomial distribution with parameters (py, - - -, Diz),
and m,; and m,, are independent for any ¢,7, 7/,;’ except 1=1. Thus

R
g ()= —; n,;pupsu for l+#k, and au(&m)=§ n;p;(1—p;). Thus we have,

o(R)=P'-a(I) (P-Y) .

2. Estimation of response probability

If p and ¢ are unknown, we can obtain the response probabilities
by a test-retest method. This is similar to the estimation of the pa-
rameters in latent structure analysis (for example, [2]). In this case,
we use the following model.

The number of those belonging to true response + is 7., the num-

Table 2.
response
\ + + — | Total
true
+ br+  D+x  D4- 1
+ b+ DPrx P 1
p-+  p-x P-4+ 1
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ber of true + responses is m,, and the number of true — responses is
n_, where n,+n.+n_=n. The numbers of response pairs + -+, + =+,

- etc. obtained by test-retest are m,; 1=+, +, —, j=+, =, —. The
equations which hold in the mean (expectation) are:

e\ m, .,

/| O Mys
P00 Pl |pied | I 0 m,—.
0 My
0|P|O y W RY YN Ay T § Ny [=| Mzx ....(4)
0 My
0|0 |P o I|p_.I|p__1 0 m_,
0 m_.
n) \m._)
where
Diy Dizx Dy- 100 0 00
P= P+t Pisr Dz- |}, I= 0 1 O ’ 0= 0 O 0 ’
D-+ D-x D-- 0 01 0 0 O

and ( )’ means a transposed matrix.
If the m,,’s are known by a test-retest, where >3 33 m,,;=n and the
i J

relations m,;=m, for i#j are required to hold, we can solve the equa-
tions and estimate n,, m., »_, p,’s, under the conditions n,+n.+n_

R

=n, 3 p,;=1, 1=+, +, —, and some assumptions with respect to the
J

py’s. This solution is given by the following steps:

0 py="pi(1+dp;)  for all 4,5
1 .

..(B)
n,='n,(1+4n,) for all »

where ‘p,,’s and ‘n,’s are the tth approximate values, 4p;,’s and 4n,’s
are correction terms and 4, £, --- are neglected. We estimate the ‘p;,’s
and ‘n,’s.

(ii) We rewrite (A) by using (B), and obtain simultaneous linear
equations w.r.t. dp,’s and 4n,’s, ‘p,;’s and ‘n,’s being known.

(ili) We solve the simultaneous linear equations mentioned above
and have 4p;,’s and 4n,’s.

'p(1+4'pyy)= Hlpu

tn,(1+4'n,)="*n, .

(iv)

We take ‘*'p,,’s and ‘*'n,’s instead of ‘p,;’s and ‘n,’s. Then we repeat
the process mentioned above.
(v) Thus, we can solve (A) by the method of successive approxi-
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mation. However, the idea is deterministic, because we deal with an
equation which holds only in expectation.

We can obtain estimates p;;’s and #,’s of p;;’s and n,’s in a similar
way, and also the mean square errors or the mean cross-product errors
by the idea of (B), where 4 means error (deviation) from p,; or n,.

Erxample of assumption with respect to p,,’s. We take p,,=p, p, .

= , _=a2 , = l—b _"l"_'_’ :b’ _= l—b _,n_-.__, =
ap, P D, Py =( )n++n_ Pee=b, p._=( )n++n_ p

q, p-.=pq, p-.=p5q, where a<1, b>0 and 8<1. The relations p>ap>

o’p and ¢>Bg>fq hold. From p+ap+a®p=1 and g+ g+ S’q=1, we have

1 1 .
= , 4= . These mean that + or — is nearer to =+
P Trare U iipee
than to — or +, and response error probability in true + or — is

larger in + than in — or + (the nearer the response categories are,
the larger the response error probability is). The assumptions with re-
spect to p.yx mean that response probabilities for + and — in the neu-
tral response group are proportional to the numbers n,, n_ of true +
and — responses, i.e. they follow the general trend of response except
for the neutral response, and p.. corresponds to the proportion of in-
trinsic neutral response.

If we take 4p, 4q, 4b instead of 4p,,’s, following the procedure
mentioned above, we have the following simultaneous linear equations
(C) with respect to da, 48, 4b, 4n, and 4n_, and we can solve (C) with
respect to them.

Here we take a="a(144a), B="8(1+4B), b="b(1+4b), n_="n_(1+4n_)
and n_="n_(14+4n_), where the symbol o means either the true value or
the lower order approximation in the successive steps of numerical cal-
culation. Thus we have n,, n_, a, 8, b by a successive approximation
method.

Ui U, Us Uy U dn, v Vi

Uy Un Us Uy Uy dn_ Ve
Uy Up Uy Us Uy da = Vi [, v (C)
U Us Us Uy Uy || 48 Vi
Usw Ue Us Uy Us/\ 4 Vs

or U4=V for short, where the determinant of U is not zero generally
and the elements of U and V are as follows:

Uu=(A*—-CiH)n++2C1T1'n+
Up=—-2C1T1'n++(°B*B12— C13)'n _
Uis=—2A151"+
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Unu=2°pB1Bs 'n—
Us=—2C1%w1'n+
Ua=(aA12—%C1)n++%T1%n+
Uss=—%%T1'n++ (*8B12—5Cy)'n—
Uss=A1(As—%S1)n
Us="Bi(°fBs+ Bs)'n -

Uss =(C1—0%w1)'n +

Usi=("a?A12—Ci1Ca)'n+ +(C: T1—C1 Ts)n+
Up=(CiT:—C2 T1)n+ +(°82B12— C1Ca)'n—
Uss=A1(As—a3S1)n 4
Uss=Bi(B3—963Ss)'n -

Uss="(T1+ Ta)'n+

Un=(a?A2—%%)n 4

Ui =(81B12—%2)n _
Uis=2'aA1A3%n4
Uu=28B1B;y'n—

Uis=2%20n_

Usi=(at A2 — Ce¥)n —2CTan s
Uss=2C Ty 4+ +(Bi2— Ca?)'n—
Uss=22A1A3n+
Usi=—2B1S;n_
Uss=—2%Cs0w3 " +

Vi=mi+— (A2 +Ci20n: +984B13 )
Vi=my+—(CaAr2n +9C1 %+ +988By 1 0n_)
Vi=mi - —(adArt 4+ CiCa %%+ +982B12 0n)
Vi=mss—(ad A ons +0530n. +02B120n_)
Vi=m———(atAr* 'n4+Cs2 1+ Bi3tn_)

where
1
A= 149+ a2 Az=0(A1—S1) As=%%2A1—S1)
1
B= 1+08+08 By="4(B1—Ss) By=%82%(2B1— S3)
S1=A(a+20%7%) Ss=B(°8+2°6%)
Ci= (1 - °b)°w1 C= (1 —_ 0b)0w2
T1=C1'w; Tey=Cs'w;
7 on_
o S o T

And then we have p,,, 1,5=+, +, —, and n,, ny, n_. Furthermore
the matrix of mean square errors and mean cross-product errors of both
p's and n’s are calculated from the matrix of mean square errors and
mean cross-product errors of m,, n_, a, B, b. The matrix of mean
square errors and mean cross-product errors L of n,, n_, a, 8, b is ap-
proximately calculated from (C). We take 49t as a column vector of
deviations of a column vector M, an element of which is m,; (¢,j=+,
+, —, i.e. myy, Mmys, my_, myy, m__), and then we have,
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L=E{| da |(4dn,, dn_, da, 48, 4b)

dm,
dm, .
=U"'E{| dm,_ |(dm, ., dm ., dm _, dm ., dm__) U™V
am .
dm__

where 4m,, (for some 1, j=+, +, — as mentioned above) means a sampl-

ing fluctuation of m,, from the mean value E(m,;), which is expressed
by o symbols on n,, n_, @, 8, b and equal to the second term of the
corresponding constant term V in (C).

4m .

am, .

E{| dm._ |(dm,,, dm ., dm,_, dm.., dm__)
am .
dm__

is theoretically calculated in the same way as was o(I) in Section 1 and

expressed in terms of p’s and »’s, i.e. %, °8, % and n,, n_. Thus we

have L, and then

[ dn, \
dn,
dn_
dp,.

f
.

(An+’ Anty A’n—, Ap++r ) Ap——)

\ 4p__/

3. Correlated case

We give the following examples.

Suppose that in a measurement the item has three categories +,
+, —, and the response probabilities are as shown in Table 3, where
p+2¢q=1, and the true numbers of those belonging to 4, +, — are
Ny, M, M- respectively, with n,4+n.4+n_=n.

Then we assume that p and ¢ are known and n,, »., n. are un-
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known. An example of cross tabulation in test-retest is shown below in
expectation, where n,=100, n.=1000, n_=100, p=0.8, ¢=0.1.

Table 3. Table 4.
response retest
probability + + _ + + - total
true test
ny + b q q + I % % %0
+ 89 642 89 820
ny x q — 26 89 75 190
n- q total 190 820 1% 1200

We have the same marginal distribution for test and retest; how-
ever, it may not reveal the true distribution which is obtained by the
method of Section 1. If we have only the cross-tabulation without know-
ing the existence of response error, we might conclude that the subjects
who responded + in the test tend to give + or — responses in the
retest, and those who responded — in the test incline toward + or +.

We meet a similar situation in the case of numerical variables as
mentioned later on. We must necessarily construct error models. We
have also a similar feature in the cross-tabulation of two items, I, II.
See Tables 5 and 6, and suppose that p,’s and gq.’s were known (or
estimated), with

;pij=17 zl:qkl=1; i=+, +, —, k:+’ +, —;
E Enij:nr 2 Zmu_—'n.
i Jj k l

Table 5.
item I item II
response response
probability + " _ probability + + _
true true
+ b+ D+x b+— + q++ q++ q+-
+ D+ bix b+- =+ g+ + g+x q+-
b-+ b-+ b—- q-+ q-z q--

From m,’s, the n,’s are to be estimated by the following equations
which are quite similar to (A) mentioned previously.

Valid discussions of the cross-tabulation must be based on estimates
of m;’s instead of the observed m,’s found in the table.
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Table 6.
true observation
II II
+ + - + + -
I I
+ Nyt nit Ny + Myt My My
+ ni+ Nt ni— + mxt+ Mir  Mi—
n-+ n-+ n—— m_4 m_+ m—_

/';7'++ \ My \

(" Mmys
Ty My _
Py My
s |=S7Y Myy
Py My
f_y m_,
f_, Mm_y
\i_)  \m_/

Q0|0 Pyl |Died |1
0/Q|0 Pepd | Dol | DT =S
0/0/Q J| p-+I|p-I|p-_I

where
di+ Qi+x Q4o 1 00 0 00
,Q: i+ Q++ Jz- |, I={0 1 0], 0={0 0 O
-+ Q- q__ 0 01 0 00

and ( ) means transposed matrix, under the condition of the existence
of S°'. #,,’s are unbiased estimates of n;,’s and the variance-covariance
matrix of them is easily calculated by the same method in Section 1
in the case where S is known. In the case of p’s and ¢’s being estimated,
the mean square errors and mean cross-product errors of #’s are ap-
proximately calculated.

4. Numerical example

We use two questions.
(i) If you have no children, do you think it necessary to adopt a child
in order to continue the family line, even if there is no blood relation-
ship? Or do you think this is not important?
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(answer] would adopt; would not adopt; depends on circumstances, and

others.

(ii) Which political party do you support ?

(answer] liberal democratic; socialist and communist; no party and
don’t know.

Using the data of the panel-surveys in 1963 and 1965 [12], we show the

cross-tabulations for these two questions.

(i)

63 would would not depends on Total

65 adopt adopt circumstances
would 301 147 55 503
adopt
would not
adopt 158 201 53 412
depends
on cir. 53 52 46 151

Total 602 400 154 1156

(i)

63
: no party .

- liberal and D.K. social Total
liberal 330 83 60 473
no party
and D.K. 136 186 76 398
social 58 57 170 285

Total 524 326 306 1156

The marginal distributions are not so different, especially in (i).

Marginal distributions in percent

(i)

(i)

would would not depends liberal no party social
63 52 35 13 45 28 27
65 51 36 13 41 34 25

Thus, we take the probabilistic response model and estimate the re-
sponse probabilities p’s and frequency distribution %»’s in true response.
As my;=m,, (4,j=+, £, —) are to hold, we use the adjusted cross
tabulations as below, in which (m;;+m)/2 is used for both m,; and m,,.
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(i)

63 would would not depends on Total

65 adopt adopt circumstances
would
adopt 391 152.5 54 597.5
would not
adopt 152.5 201 52.5 406
depends
on Gir. 54 52.5 46 152.5

Total 597.5 406.0 152.5 1156.0

(i)

63
: no party :

- liberal and D.K. social Total
liberal 330 109.5 59 498.5
no party
and D.K. 109.5 186 66.5 362
social 59 66.5 170 295.5

Total 498.5 362.0 295.5 1156.0

We calculate according to the formulae given above and obtain the
response-probability matrix and frequency distribution in true response

as below :

and

0.75
0.18
0.25

/0.73
0.02
0.10

0.20
0.76
0.32

0.21
0.96
0.25

0.05
0.06 |,
0.43

0.06
0.02 |,

0.65

657
264
235

620
138
398

for (i)

for (ii).

Suppose that we have got the p’s and n’s. Next, we use the cross-
tabulation data of (i) X (ii), and estimate the true cross-tabulation of (i)X
(ii). As the data of (i)x(ii), we use the matrix whose elements are
arithmetic means of the corresponding elements of the observed (i)Xx(ii)
in the two years,

(1)

275

(i)

184.5 138

160.5 1225 123
34.5

63 35
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From this matrix, we estimate the true cross-tabulation matrix by the
method mentioned in Section 8. Thus we have

(i) Total
/“_)\————‘
406.8 70.8 179.8 657.4
(i) 101.7 10.9 149.9 262.5

121.2 55.3 59.6 236.1
Total 629.7 137.0 389.3

This shows a more reasonable feature than does the cross-tabulation of
raw data, and reveals a clearer structure. Those who support the con-
servative (liberal-democratic) party are quite in favour of “ would adopt ”,
and respond both to “would not adopt” and “depends on circumstances ”
in about the same proportion. Those of the “don’t know ” group vote
predominantly for “ would adopt ” and “ depends on circumstances”. This
is quite different from the cross-tabulation of raw data. We are aware
of the fact that the marginal frequency distribution in true response is
quite different from that of the data in both cases, and we know that
the frequency distributions in the data lead us to an invalid interpreta-
tion without taking response error into consideration.

The reproduced cross tables obtained by using these calculated pa-
rameters are as shown below.

390.9 252.6 53.9 / 597.4
152.6 201.5 52.4 |, 406.5 for (i),
53.9 52.4 45.8 152.1

and
332.1 107.7 525 492.3
107.7 180.2 175.1 ], 363.0) for (ii).
62.5 75.1 173.1 300.7

It is seen that they fit the data fairly well, especially in the case of (i).

II. QUANTITATIVE CASE

1. Fundamental theory
We assume that
x=xo+€

y=yﬂ+7] ’
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where z, and y, are true values, and ¢ and 7 are error terms, represented
by random variables; E(c)=0, E(y)=0, E(¢)=d!, E(7")=0g;, and E(en)=0.
x, and y, are of course random variables too, and E(z))=M,, E(y)=M,,
E(x})— E(x,)'=a3, E(y5)—E(y)'=0,, and we also assume E[{x,—FE(x,)}¢]
=0, E[{z,—E(®)}7]=0, E[{y;—E¥)}e]=0, and E[{y— E(%)}7]=0.

Now, we take x,=y,, o’=0c’ for simplicity. We imagine that « and
y stand for measurements at time ¢ and time t+1, respectively, and
%,=14, for the same object holds essentially ; however, z#y may be ob-
served. To be exact, the ith object has (x;,y;), where x,=x,+e¢, and
Yi=Yu+1n.=%u+7;. The conditions of mutual independence mentioned
above hold for every element.

If x, and y, are random variables which follow a density function
other than the uniform—for example, a Gaussian distribution—and the
errors ¢ and 7 are random variables which follow a Gaussian distribution,
the linear regression of y on z is clearly not L but L, in Fig. 1. That

Y

E(yo)

45°

E(x,)

Fig. 1. Response errors

is, the expectation of y corresponding to z, smaller than El(z,), is larger
than z, while that corresponding to z, larger than E(z,) is smaller than
z, and E(x,)=E(y,). Without taking this into account, we would have
incorrect conclusions.

We often meet this situation in data analysis when a treatment
(including no treatment) is given between time ¢ and ¢+1, and the ef-
fect of treatment is discussed. When the treatment has no effect, i.e.
x,=4, for every person, we might conclude, by some statistical test
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w.r.t. &, and y,, that the treatment brings about an increase of z if
< E(x,) and a decrease of z if x> E(x,) if we were to neglect the error
terms ¢ and 7. A well-known theory exists for discussing the relation
between & and y in the case when x and y are both subject to errors.
However this theory only reveals the structure, and is not of use for
prediction. Prediction of y is to be made on the basis of information
on x even though x may include errors. For this purpose, the idea of
regression of y on « becomes indispensable.

We shall show an illustrative example as below. Suppose that z,=
Y, for the same object, and they are random variables which follow the

Gaussian distribution, zl e~ 0% and ¢, 5 are random variables both
To

1
V2rs
stant. Then the probability density function of the observed value z=

of which follow the Gaussian distribution,

—u2/9s2 .
e/ s being a con-

Zo+e is 21_ e~“2"1' 2 being fixed.

T3
Then we have, by easy calculation in probability theory,
Plyzw+d |x=w}= 1 Sw eIt
V2r Jatsa

E(d)=—A/B
E(d—E@d)=1/B

where

A=(w—M)s/V (8 +%) (8 +20")

B=(1+_:;)s/~/(32+a2)(32+202) .

Thus, we see that

CsL it wem
2
1.
=1 it w=m.
2

Also, since E(d) is clearly equal to —(w—M)/(146%/s?), we see that

>0 if w<M
Ed)] <0 if w>M
=0 if w=m.
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For example, let ¢*=200 and s*=50. Then,

E(d)=—(w—M)/(1+4)
=—(w—-M)/5

and the effect of the error term is rather large, if s® is not negligible
compared to o’

It is noted that we always have P{y=w|x=w)}=1/2, if the x, and
9, mentioned above follow a uniform distribution.

We shall show some cases as below.
(i) Suppose that y,=a-+ B, for the same object where a and 8 are con-
stants. x, follows the Gaussian distribution, the mean and variance of
which are M and ¢ respectively. %, follows the Gaussian distribution, the
mean being a-+ M and the variance, f'¢*. The assumptions concerning
¢ and 7 are the same as those in the case mentioned above.

The regression line of y on z is

y=(a+pw)—pw—M)[(1+7/s) ,

where x is observed as w.
(ii) Suppose that y,=a+ Bx,, as mentioned above. ¢ follows the Gaussian
distribution, the mean being 0 and the variance, s}, whereas 7 follows
the Gaussian distribution with mean 0 and variance s} (#sl).
In this case, let d be the deviation from the regression line of y on z.
E(d)=—B(w— M)/(1+4*/s}) which is independent of s;. The variance
of d is 1/B®, where B"=(1+4%/s!)(s,/8:)8:/¥ (s} + %) {si+ (14 Fsi/s3)} which
is influenced by s,. If s2=0, the mean deviation from the regression
line of ¥ on z is, of course, 0.
(iii) In a more general case, z,=¥, for the same subject, and these fol-
low the same distribution @(x,) (¥(y,)) which is not Gaussian. For sim-
plicity, we assume that ¢ follows the Gaussian distribution with mean 0
and a variance which is a function of x,, s’=g(x,), and that » follows
the same Gaussian distribution. In this case we can calculate the distri-
bution of d by numerical computation using the following formula :

Plyzw+d | x=w}
={"_otw, 2)0(wdz, |

o

1
wid /2 8()

_ (z—x0)’
exp{ o) }dz C(w) ,

where Clw)= S‘; o(w, 2)O@)do,

-1 _ (w—x,)’
o ) = e st exp 25(ao) f-
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Thus we can obtain the mean and variance of d.

It seems natural to assume that the distributions of errors follow
a Gaussian distribution. If we can assume the s(z,), it is easy in prac-
tice to carry out the calculation, estimating &(z,), for example, by esti-
mating the parameters assuming the functional form of &(z,) or generally
estimating approximately from the data, because the observed frequency
distribution in the data is realized by the compound distribution of @(x,)
with the error distribution. This is shown in [10] with examples in
medical research.

2. Application

We meet the same situation in the follow-up study and this often
leads us to invalid conclusions. Suppose that the functional relation be-
tween an outside variable y and factors z;,x, ---,Zz is determined in
an experiment as y=f(x;, &, - -+, £z)+e¢, ¢ being the error term which
is represented by a random variable independent of x,, %, - -, £z, with
E(e)=0 and E(&)=d?. We use this stochastic functional relation (whose
precision is represented by ¢) to estimate y from factors x,, 2, - - -, Zz.

In the follow-up experiment, we have %’s and z,’s, 2,’s, - - -, Z¢’s and
we assume that y’s have measurement errors. We get the estimated
value y from x,,,, ---, %z by the functional relation f(, ,---, ) ob-
tained in past experiment. %’ is a random variable including an error
in estimation. Suppose that the functional relation is to be verified by
the follow-up study. Put y here as the y in the foregoing discussion,
and 3 here as the z in the foregoing discussion. The regression line of
y on ¥ may not be L, i.e. the 45°-line but a straight line the slope of
which is less than 45°. This contradicts our naive expectation, but it
is generally true that the regression line is not the 45° line, even though
the functional relation holds in the two experiments. The actual slope
depends on the spacing of the chosen experimental conditions.

If this is ignored, we can not draw any valid conclusion in the fol-
low-up study.

lll. THEORY OF QUANTIFICATION AND RESPONSE ERRORS

Response errors are treated as follows in the theory of quantifica-
tion, details of which are discussed in [5], [6] and their references. We
take the response patterns [{d.(J, k); j=1,2,---, R, k=1,2, .-, K;} i=
1,2, ---, N] where §,(sk)=1 if the ¢th subject makes the kth category
response in the jth item and 6,(jk)=0, otherwise, R being the number
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of items, K, being the number of categories in the jth item and N the
size of sample. If response errors exist, we assume that responses are
represented by a probabilistic model, i.e. d,(jk) is represented by §,(jk)

K;
='p; if 1€s (¢ belongs to the sth class) where 3)°p,,=1 and s=1,2,
k=1

-+, 8, and d,jk) and &.(j'k') are independent for every 4, i’ including
=1 if j#35' (5,5'=1,2, ---, R), R being the number of items. If j and
J' are not independent, make a new combined item (jxj’) and take
03X 3" XKk )="p;x; vxiw Where kXK' is the number of categories in the
new item (5xj’). If *p,’s have been determined previously, they are
used. However, *p,’s must be estimated from the data in some cases.
Bayes’ theorem will be sometimes useful in the estimation of response
probabilities from the data at hand. We have given a method of esti-
mation of those probabilities in [9].

In the case where no outside variable exists, we are seriously mis-
led if any response error is disregarded. We have also shown such ex-
amples in [9].
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