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1. Introduction and summary

Let p and n be given integers (n=2, and 0<p=<n) and a,, ---,a,
be given constants lying between 0 and 1 exclusive*. Then, there exists
a unique positive number « such that

(1.1) ai+---+ar=1.

We denote by T.(ay, -+, a,, —@p.y, -+, —a,) the set of all character-
istic functions (abr. ch. f.) ¢(t) which satisfy the equation,
(1.2) pt)=pla): - - -@(at)p(—ayt): -+« -o(—at).

When p=mn it contains every stable ch.f. with the characteristic
exponent a, namely the one which satisfies the equation ¢(t)=¢(at)e(bt)
for any pair ¢ and b of positive numbers such that a°4b°=1. Every
stable ch. f. is infinitely divisible #nd represented by Levy’s formula,

. 1 © itz
1. 1 — 2 itx
(1.3) og o(t)=1yt — > att+ So <e —-1-— 0 xz)dM(a:)

e q_ Uz
+{ (e A 2 )aN@)
where (i) M(x)=0, N(z)=0, y=0 if a2,
(i) ¢=0, M(x)=—2z"", N(x)=p|x|™", 120, £=0 if a2,

(ili) A=p if a=1,
(iv) 7 is a suitably chosen constant if a#1, a<?2,

or more explicitly by**

* The requirement that a;<1, j=1,-..,% is imposed here to avoid the trivial case

le(®)|=1.
** See [2], pp. 164-171.
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exp{ cltl <1+,B—tan—-a>} a#l,
(1.4) o(t)= [t]

' exp.{{rtjcltl} . (the Cauchy dist.) a=1,
where £

(1)
c=0, |[BI=1.

When p < n, among stable ch.f.’s only symmetric ones (i.e. o(t) =
exp{—cl|t|}) belong to T.(ay, - -, @, —a,., -+ -, —a,.). If ¢(t) is a sym-
metric stable ch.f. and if a,+---+a,—a,,—-—a,=1, then for any
real 7, e"'o(t) also belongs to T.(ay, -+, @y, —pys, =+ +, —@y).

. Does T.(a, -+, 8y, —apy, -+, —a,) contain any other ch.f.’s? The
problems of this sort are. treated by several authors; P. Levy* gave

an example of non-stable ch.f. ¢(t) € T1< 1 ;) s SRR ‘
o(t) =T exp {2-**!(cos 2% —1)} .

This is an infinitely divisible ch.f. and is represented by (1.3) with =0,
*=0, and M(z)=—N(—x)= —27* for 2¢*<x <2, k=0, +1, +2, ---.
This example was generalized to T.(g,b), [9}; if —(loga)/p and — (logb)/g
are relatively prime positive integers for some >0, if A(t)=Me ")~
is a periodic function with the period p, and if M(x) is monotone non-
decreasmg, then ‘ . -

go(t):exp“:° (cos t.x—l)dM(x)} - ,

belongs to T.(a, b). - I :
Marc1nk1ew1cz**, and Linnik [3] treated a more general equation,

(1.5) plat)- -+ - pla)=g(bit)- -+ -(b.t) ,

where (a,, - - -, a,) is not a permutation of (b, - - -, b,). Marcinkiewicz show-
ed under the assumption of existence of moments of all order that (1.5)

implies ¢(t)=exp{irt—~%aét’}. Yu. V. Linnik obtained a necessary and
sufficient condition o1 a4, -+, @,, b;, ---, b, under which ¢(t)=exp {irt—
%aztg} is the unique solution of (1.5). ) "

He. also derived a necessary condition that a symmetric ch.f. ¢(t)
satisfies (1.5) under the assumption max (|a,]|, ---, la,.l)quax (l'bf AN

* See [1] p. 538.
** - See)[5].
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|b.]). Laha and Lukacs [4] considered the equation go(t):ﬁ ¢(a.t) and
1
showed that if :? a: =1, then o(t)=exp {irt—%o’tz}.

The purpose of the present paper is to give a necessary and suffi-
cient condition that a complex valued function ¢(t) belongs to T.(a,, - - -,

@y —Qpy1y **, —a,). The condition will be stated in the theorems of the
next section. In section 4 we first prove that every ¢(t) € T.(ay, - - -, a,,
—Qpyy, *++, —0a,) is infinitely divisible and that the Poisson spectra M(x)

and N(x) are related by (4.4) and (4.5). The problem is then essentially
reduced to solving these equations. Section 3 contains a statement and
a proof of the related theorem 5 which is of much interest. The results
are used in section 4 to prove the theorems. Section 5 is devoted to
examples.

2. Notations and statement of theorems

a(2), o(2) and o(z) are complex varlable entlre functlons deﬁned re:
spectively by

o(@)=1—ai—-+-—ai,
. N 0'1(Z)=1—af‘—""_a;+a;+1‘+"‘7i7a;
and

) 0y(2)ay(2) if p<n
2)= . o .
ai(?) if p=n.
For any p>0, A,(0), A,,(p), B”(p) ‘and CZ(p) are sets of all n—tuples
(b, ---, b)) with 0<b,<1, j=1,---,n and
A 0): for some j and k, log b;/log b, is an lrratlonal number,
A (o): Li=—logby/p, k=1, -+, m are mutually prime positive integers,
Bi(p): a subset of A,(p) such that either at least one of [;, - -, [, is odd
or at least one of 1,4, ---,l, is even, and,
C2(p): a subset of A,(o) such that I, -:.,1, are all even and 1, -,
l, are all odd.
M is the set of all monotone non-decreasing, right-continuous func-
tions Q(x) on (0, oo) such that lim Q(x)=0 and

Z—00

S: #dQ@)<oo .

For any p>0, we denote by P*(p) and by P~(p) the set of all left-
continuous function A(t) such that A(t+p)=A(t) and A(t4p)=—A(t), re-
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spectively.
We are now in the position to state theorems.

THEOREM 1. Suppose (a, :--,a,) € A0), and o¢t)e TAay, ---,a,,
—Qpyqy vy —a,).  If either p=m, or a=1, ¢(t) is the stable ch.f. with
the characteristic exponent a. If p<m, then there exists umique real
number y such that o(t)e " is the symmetric stable ch.f. 7 is taken to
be 0 if a,(1)50.

THEOREM 2. If a<2, p<n and if (a, -+, a,) € BXp), then a neces-

sary and sufficient condition that a complex valued function ¢(t) belongs
to Tay, ** ) Gpy —Qpyyy -+, —@y,) 18 that ¢(t) is represented as,

@2.1) o(t)=exp Iirt+2 S: (cos tx—l)dM(m)} ,

2.2) ra(1)=0,

where M(x) is a monotone mon-decreasing function on (0, ) such that
At)=M(e*)e " is an element of P*(p).

THEOREM 3. If a<2, p<m, and if (a, - -, a,) € Ci(p), then a meces-
sary and sufficient condition that the complex valued function o(t) belongs
to Toay, +++, @y, —Qpyq, *++, —a,) 18 that ¢(t) 18 represented as follows;

(i) case 1<a<2
2.3) log ¢(t)=1pt +S (e —1—1itx)d M(x) + S (e'**—1—1itx)dN(z) ,

2.4 Boi(1)=0.

(ii) case a=1

(2.5) 1og¢(t).—_ac,9t+Sj(ewul—l"t’fc )dM( )

of fra o

(2.6) pr(1)+ B 1@)— 3 ra)=0.
(iii) case 0<a<l
2.7) log (t) = S: (6**—1)d M(x) + S"_w (¢**—1)d N(x)

where
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ro)= c[ S:( 1-{-:?c:z:)2 1 -lafa;") dM(=)+ So—w( 1 +£fca:)2 - 1:-:91:2) dN(:v)]

and in each case M(x) and N(x) are mon-decreasing functions defined
respectively on (0, o) and (—oo, 0) and have the form

(2.8) M(x)= —[A(—log x)+ p(—log x)]/z*, x>0
and
(2.9 N(@)=[A(—log |z|)—p(—log [zD]/|z|*, =<0,

A(t) and p(t) being elements respectively of P*(o) and P~ (p).

THEOREM 4. If a<2, p=mn, and if (ay, -+, a,) € A(p), p>0, then a
necessary and sufficient condition that a complex valued function ¢(t)
belongs to T.(ai, - --,a,) 18 that ¢(t) is put in the form either (2.3) with
B=0 (case 1<a<2), or (2.5) with X r(a,;) (case a=1), or (2.7) (case 0<
a<1), where M(x) and N(x) are monotone mon-decreasing functions de-
fined respectively on (0, ) and (—oo,0) such that

(2.10) M(x)=—A(—log x)/x" x>0
and
(2.11) N(@)=p(—log |z|)/|z|* <0,

At)e Pp),  p(t) e P (o).

3. Related theorem and its proof

We prove in this section the theorem 5 below. The relation to the
main theorems will be clarified in the next section.

THEOREM 5. Let A,=loga,, j=1,---,n. Let f(t) and g(t) be the
monotone mon-increasing left continuous functions defined on (— oo, o0)
such that lim f(t)= lim g(t)=0.

t——oo

t——oo

Then a mecessary and sufficient condition that the relations,
B.1) fO=FfE+A)+-- +fE+A)+g(E+ A0+ +o(t+A),
and
(3.2) gt)y=gt+A)+---+gt+A,)+f(t+A)+ -+ F(E+A)
hold is that f(t) and g(t) are represented as follows :

(1) case (a’lv "’yan)EAn(O)
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"‘_.. — f(t)_ —26“ y g(t)_ ;ueat ’ .-
where 2 and o are constants, and 1= p when p<n.

.-4,X

C(ii) case  (ay, - o a,) € B¥(p) . ‘
L fO==a@)e, g(t)——ﬂ(t)e“‘
where A(t) € P*(p), #(t) € P*(p), and A(t)=p(t) when p<'n
(iii) case . p<m, - ‘(al, ,au)eC’(p)
JO=—-GO+p@)e,  9O)= —(Z(t) ﬂ(t))e"‘
where A(t) € P*(p) and u(t) € P~(p).

PROOF. -We can use Linnik’s arguments [3]. See also Laha and
Lukacs ([7], pp. 137-146). _ :
For any ¢<0, we have

3.3) ' 0= f(t)= f(0)> —oo
and -
(3.4) 0=9(t)=g(0)> —oo .

We introduce

w@=_enree

and
0
w@=| o,

which converge and are regular in the half plane Réz<0. -We can
easily verify the relatlons,

(3.5) - . O'o(z)Xf(z) Ef(z)+(ap+1+ +a,,)(x,,(z) Xf(z)) y
and . _ . "
(3.6) ‘,‘ "_gr;.(é)z;_@_':E;(z)¥(d;+l%u-?-+a;)(;,(g)—xf(g)>'; |
where

E@=3a (" enrodt+ 3 o[ e gyt o
and

E‘,(z)zjz}:l a: S" e~*g(t)dt + z a,g e f(t)dt .
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From (3.5) and (8.6), we obtain .
(3 kg o, “x/(2)a(z)=E'(z),. for Rez<0,
where -

(1“‘0'1 co—ap)E (2)+ (gt - Ha)E(2)  if p<n

@ it p=n.

E'(x)=

For any real 4,
e )= e

converges in the half plane Re z< —A.
Complex inversion formula of the Laplace transform is then applied
to obtain, for <0,

(3.8) S’" e=* f(c)dr = —lim -1 S T 2@t g
t ' v 210 Jr-ty z

where

r<o0, r<—41.

LEMMA 1. All zeros of o(z) are located in some strip x,<Rez=<a.
There exist two constants k, and k, such that the multiplicity of each zero
does mot exceed k,, and the number of zeros in any horizontal strip of
width 2 does not exceed k;.

Proor. Let ay=min (@, ---,a,). Then for sufficiently large z*>0,
there exists a positive constant C such that [¢(z) |=Cai*>0 holds if z=
Rez<—«*. On the other hand, if z>a, then |ai+---+a;+a;, +--
+‘a,,;|< T+ +ai<l, or |a(z)l>0 ‘We have thus proved the first as-
sertion. Slnce both g,(z) and ¢,(2) satisfy linear differential equations of
degree at most n with constant coefficients, the multiplicity of any zero
of gy(2z) and al(z) cannot exceed n-l—l The last statement is proved by
applying Jensen’s theorem. (q.e.d.)

For m=0,1,2, ---, let y=y, be the line lying in the horizontal strip
between y= m and y= m+1 and the distance from each zero of a(z) is
at least ¢, say. We denote by L, (m=1,2, --.) the contour bounded
by the. .Lmes,\ Y=Yn-ty Y=Ym, T= a+s,, “and x=x,—¢, and by L_, the
reﬁecflon of L, by the real axis, " while L., is the contour bounded by
Y=%, Y=—t, T=a+te, and x= xo—sl( 974) "

LEMMA 2. |E’(z)| is bounded in every ha,lf plane Re z=C.
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PrOOF. If Rez=z, then

n

1B@ s e |, oS- —r0Faf, e,

Since the right-hand side is continuous in z, it is bounded in every finite
interval [—|C|[,0]. If =0, then the above inequalities imply,

| E'(z) |< — £ (0) ,Z'i e 4s Si, dt=fO) 3 A< (aed)

LEMMA 3 (Yu. V. Linnik*). If |z—{|=¢ for all zeros { of d(2),
then | a(2)|=C>0 where C is a constant depending only on e.

It follows from lemmas 2 and 3 that | E’(z)/e(z)| is bounded on the
contours 2=x+1yn, £=2* (z* is an arbitrary but fixed number), so that
we have

*tWm eeny  E7(2) _ 22 4 I_ ( 1 -
Szlm,,,e Py e i e )

and for fixed «, and ¢,

S:::: - EA()?(z) l' < )

Hence if (0>) x,>A4>x,;, (3.8) becomes

1 SI’H””‘ ey E'(2)

21 Jzg-ivy, (z— A)a(z)

E (A) 1 1 S’«'ﬁ'il/m t(z—A) E (z) d
o) 2w Jeewn . (@—A)o(@)

_E'U) ta-n__E'(2) 1 -0
) §2m SL,G (z—A)a(z)dz+O( mt’ )

(3.9) S e f (e =—lim

where E’(4)/o(4) is the residue of the integrand at 4, and is equal to
x,(A):So e *f(r)dr. Thus we have

t —At de= t(z—A4) __Ef@_
@10 [ ews@destim B oL e T

in which the series converges uniformly in ¢ (<0).

A zero { of o(z) is said to be active if the residue of E”(z)e'*~*/
(z— A)a(z) does not vanish at {. We shall show in lemmas 4-6 that every
active zero is of the form a-+1y.

* Cf. [3], lemma IV.
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LEMMA 4. The infimum B of the real part of the active zeros of
a(2) 18 an active zero.

PrROOF. Suppose B is not an active zero. Then there exists a
real number /4 (<z,<p) and a complex active zero {,=p+1ir, (z,>0),

such that every active zero except ¢, and {, is located outside the circle

centred at 4 and passes through ¢, and . Let dy=|4—C| and d,=
(inf |A4—C|+d,)/2 where infimum is taken over all zeros { of ¢(2) other
C+Lp &

tha:)n0 g and g,. Clearly 6,>d,. It follows from lemma 1 that for any
m=0, there exists a real number u, between (8+4)/2 and B such that
the line segment =u,+1, Yn-1SYSYn (—%=Y=7, if m=0) is at
least at a distance of e,=min (¢, (8— 4)/4k,) from each zero of o(z). We
can then replace in (3.10) the left wall z=x, of L, by z=u,.

For any function A(t) integrable over (—oo,0), let

L(h(t)) = S'm dt- - S-«, h(t)dt .

" r times
It f(t)= S’_w e~* f(r)dr, then
31 t—A E’(2)
(3.11) LU)=5 5| e A e

Here term by term integration is permissible because the series in (3.10)
converges uniformly. The resulting series (3.11) converges absolutely
and uniformly in £<0, for r=1. Write

1 S PUCEYy E'(2) 2
2mi Jr, (z—A)*e(2)

Then |R,|<Be®» "M, /4", where B, is a positive constant, M, is
supremum of | E/(z)/e(2)| on L,<C, (by lemmas 2 and 3), 4,, is infimum
of |2—A| on L,=m, and u,=(8+4)/2. Hence,

m—

5 |RalgBesn 53 (L) prmaggom 5 ()

Im| 28, mzd \ M mz23 \ M

éBze(P—A)tlzao—(rﬂ) E (_5_0_)2=Bae(ﬁ-4)t/2/55+1 ,
m

mzs,

where B, is a constant independent of r and ¢.

We next consider the active zeros of o(z) other than £, and ¢, lying
in the horizontal strip bounded by the lines y=4, and y=—4,. There
exist only finite number of such zeros, ¢, ---,{,, say. Let C;, j=1,
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-++,8, be mutually disjoint circles centred at {; with radius at most
d,—d,. Since on each C,, | E’(2)/s(z)| is bounded (c.f. lemmas 2 and 3),
we can find a positive constant B, such that

! 1 S (G- E'(2) .d < B g#-Dtr2fgr1 ‘
?'27:«; o a—dyte 1= 167

Thus we have proved that the contribution of active zeros other than
& and ¢, to the sum (3.11) is bounded in absolute value, by .

B0t 5741 |
We finally consider the zeros {, and E.,, The sum of residues of e“=*-
E'(2)/(z— Mo(2) at { and §, is v

Q(t)=e*P(t)+¢"P(t) ,

where N 4

A=l A=de
and | |

P@t)=bt’+---+b,, by#0.

Since Re 4=p,—A4>0, I,4=7,>0, we have cosa>0 and sina>0. Sup-
pose first v=0, then writing b,=|b, [¢?, we obtain
(3.12)  L(Q(t)=2Re L,(be*)
o =2| b, |d;" Re {exp (4t +i(0—ra))}
=2| b, |d;" Re [exp {dyt cos a+i(dt sin a+ (o—rd))}] .

Let r be so large that

2| by |dy" exp {do cos a _,4” } >2B:6; "t exp { _,2” ‘B__A}
sin a dysinae 2

holds, and let it be fixed. Let k& be an integer such that
— 42 <2kr—(0—ra)< —2r

and set
ty=@2kr—(0—ra))/dysina  (<0).
Then,
(3.13) - L (Qt)=2| by |ds™ exp (dyt, cos a)
=2| b, |d;" exp <do ;:Z cos a)
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IR 4
PR, 223 5-—(1+1) ( ﬂ ) )
exp dysina 2 .
=2B;6; "+ exp (-‘3—.—_2-'—4%> .
Thus,
(3.14) Lt =B exp (ﬁ_;_/‘.to)>o .

This is, however, impossible, because for any negative t, f(f) is nega-
tive and L,(fi(f,)) must also be negative.
When »>0, we can show by induction on 7 and k that

Egt) — gt (G+r=1)! e
G615 L= D O b
. Then, '
(3.16) - ° " L:{Q®)} =2 Re L, {P(t)e*)
_ +r—1)! e t
=2Re (- TR {(1+BL)]
where
o (Grr=11 v\t
B= 5 GG
o E b, w (GEr=1! gvre-d
+,,on20 .,( vy (vtr—1)! () &

is bounded for t< —e<0.
Again first select a sufficiently large r, keep it fixed and select a

suitable. = ty in-the interval (—4z/d,sin @, —2r/d, sin a], from which we
obtain L,(fy(t))>0.

LEMMA 5. There exists a posz'tive constant D, such that

Nt

3.17 L,- 0! SDo‘—y
(3.17) | LAfu(®)) | e A

for all t<0.

PROOF - We first prove the lemma in the case p=n. Since in thls
case a is. the only real zero, we conclude from lemmas 1 and 4, that
every real zero must be of the form a+1y, or more precisely there ex-
ists a monotone sequence {s,} of non-negative numbers such that active
zeros are exhausted by,

Cn=a+tis, and C,=a—is,.
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They are all simple, and the residue of integrand e'“~*E (z)/(z— A)ay(z)
at ¢, is given by

e‘“M“"’E f(Cm)/ (Cm - A)"é((m) .

Hence

_2 e“nOF (L) _7
L.(f(2) > Dol where {_,=Cn.

Using lemma 1, we obtain

r+1

I Cm—‘A |r+1=l a_A lr+1

1448
+i—e

o—

zla—ai(1+ (2 ) ) -

On the other hand, since |d{({,)|=|ai@) ], | E,Cn)/oi(Cn)| is bounded by
a constant, we obtain (3.17).

In the general case we consider F(t)=f(t)+g(t) instead of f(t).
Since then F(t) satisfies the equation,

F@O)=Ft+A)+---+F(+A,),

the problem reduces to the case p=mn, and we obtain

| L(Fyt) |<D—

I a_A |'r+l

where

Fit)= S; e F(z)dr .
Considering the fact | L,(fy(t)) |S|L.(Fy(t))| we obtain (3.17). (q.e.d.)
LEMMA 6. fS=a.

PRrROOF. | B<a is clear. Suppose f<a holds, and set

di=|4-g|, &=(d+inf|4-C])/2,
@,_ 70 S04
where infimum is taken over all active zeros of ¢(z) other than 8. We
can use the argument of the proof of lemma 4 to show that the con-
tribution of all zeros except 8 to the series (3.11) does not exceed in
absolute value,

Boe(ﬂ—d)t/ﬂlai“i-l .
The residue of e'“~*E’(2)/(z—4)a(2) at B is given by,
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+-2Pyt),
where
P‘(t)=00tp+"'+cp y 00¢0 .

If ¢,>0 is taken sufficiently large, either P,(t)=P,(—t,)>0 for all t<—t,
or P(t)<P(—t,)<0 for all t<—t, holds.
Writing 8,=| P(—t,)|, we obtain for f,<—t,,

(3.18) | L,(e®~"Py(ty)) |=L(e?~** | Py(ts) ])
=8,L, (e~ Pt) =g,e¥~ 0 [(f— A) =s,eM10/d] .

Let r be so large that ,C,,[\\

% sledlto/d{ > B oeml/z)t(,/(;i»ﬂ > D, ‘f" /(a— A)'r+1 .

Then, 5l
| L filto) | Zsi6to/d5 — Besajo; =
| ) o< i o~
Z - sld; > Debinl(a— A+, A
. a-Mte 'Rl ?‘ '
contrary to lemma 5. 2 Doé /{01 -A) (q.e.d.)

It follows from lemma 6 that every active zero of ¢(z) is of the
form a+1iy. Note that zero of ,(2) of the form a4y is simple (k=
0,1). In fact if owa+iy)=0, then dila+iy)=—(A@a:+- -+ A,a2)>0,
k=0,1. We consider the three cases separately.

(i) case (ah ""a"n)eAn(O)
In this case « is the only possible active zero. Since o,(a)#0 when
p<m, a is simple zero of ¢(z), and (8.10) is reduced to

(3.19) S_ e~ f(c)dr =gt ;o
where
4=E(a)/(a—A)d'(a) ,
or
(8.20)  f)=—2e", for all <0

where

A= —(a—A)Zl .
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Similarly we obtain
(3.21) g(t)= —pe, for all t<0. Conel

When p<n, substituting (8.20) and (3.21) into (3.1) and (3.2) we ob-
tain 2=p.

- If A=min (J4,|, - |A,.|) we can show by mductlon using (3 1) and
(3.2) that (3.20) and (3 21) hold for all t<mA, m= O 1,2 ---. This
means that they hold for all £.

(ii) case  (ay, -+, @) € Bio)
In this case, possible active zeros are

Ln=a+i2mz/p, m=0, +1, ... T

They are all simple. Writing £&,=E’((,)/(Cn—4)0'({x), the residue of
¢ PFI(2))(z— A)o(z) at L, is given by,

&m0t B

and (8.10) is reduced to

(3.22) St—w f)e*dr= }:_12 ) gm g jgiein/Ptglamt
= 2,(t)ee"

where
2(t)=lim j% £,6%/0 ¢ PH(p) .

Since f(t)e~* is left continuous, both sides of (3.22) have derivatives:
on the left. Differentiating, we obtain

(3.23) f@)=—a@t)e", t<0
where

W)= —x"(t)— (a— DA(t) € P*(o) .
The desired result follows from the same argument as in the case (i). .

(ili) case (ay, ---,a,) €C%p), p<n
oy(a+1iy)=0 implies y=2mx/p, and, o,(a+1y)=0 implies y=(2m+ 1)7t/p,
m=0, +1, ---. Possible active zeros of o(2) are,

Ln=a+i2mzlp, m=0, +1, +2, -- -,
and

Ch=a+i2m+1)z/p, m=0, +1, .-+,
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These are all simple. Writing

=B/ (Ca)/(Cn— 4)'0’(Cn)

and
Pu=E'(C)/(Crn—A)d'(Ch)
we obtain
3.24) L{fit)= S'_m dt g’_w f@)e*dr
=(4(8) + u(t))e""* t<0
where

Zl(t)—_—i 7],,,8“2"“/")‘ € P+(P) ,
,u,(t):i aelamtdelelt ¢ P=(g)

Completely the same arguments are applied to the function g(t) to ob-
tain

@25) | at| gwerdr=(uty+mere, =0

where

2(t) € P*(o), (t) € P~(p) .

Now set,
t t
(3.26) fl(t)=e“S dt S_ fe*dr, <0,
and
t t
(3.27) gl(t)=e"‘s_ dtg_ ge)e*de,  £<0.

Since f(t)e=* and g(t)~* are left continuous, the functions fi(t) and g,(t)
have second derivatives on the left. We have, for any negative A,

t

fle+ay=e | _at

" fet+ A *de,

o

and

g:i(t+A)=e" St_m dt S; g(t+A)e*dr .
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Using (3.1) and (3.2) we obtain the relation,

(3.28) fit)=fit+A)+ -+ ilt+A)+a(E+Ap )+ - -+t + A,
3.29) gi)=g.t+A)+ - +o(t+A)+fit+Ap)+ - +h(E+A) .
On the other hand, from (3.24) and (3.25),

(3.31) [iO)=(4t)+p(@))e

(3.32) 91(8) = (A(t) + (t))e”* .

Substituting these expressions in (8.28) and (8.29) and considering the
fact that (), 2,(t) € P*(o) and (), =(t) € P~(0), we obtain

At)=2(t) and p(t)=—p(t) for all ¢.
Thus (3.25) and (3.32) become respectively

(3.33) St_m dt Siw g(r)e*dr=(A(t) — p(t))e<=*
and
(3.34) i(t)= (A (E) — uu(t))e .

From (3.31) and (3.34) we obtain
A4(®)=(f1(t)+g.1))e /2
and
w@®)=(f1t)—g:(@t))e /2 .

These equations show that A,(f) and g (f) have second derivatives on the
left 27"(t) and p;”'(t). Differentiating (3.24) and (3.33), we obtain

(3.35) F(@®)=—Q@)+p@)e , t<0
and

(3.36) 9@O)=—Q@@E)—p(t))e" t<0
where

At)=— (A" () + 2(a— DA(E)+(a— AP2(t)} € P*(p)
and
#(®)=—{#r"O)+2(a— D) +(@— 4Pm(t)} € P~ (o) .
As in the case (i), (3.35) and (3.26) hold in fact for all . (q.e.d.)
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4, Proof of the theorems

Let ¢(t) € Tu(ay, -+, @p, —@pyy, ++, —@,). Then for any positive inte-
ger m, ¢(t) can be expressed as a product of exactly n™ ch.f.’s of the
form g(aft- - -app(—a,) 7+ - (—a,)nt);

f)= T gt (= ap )i (—a)t)

Epteeetky=m

If a=max {a,, -+, a,}, then for any ¢, |a¥1---akr(—a,, )r+1- - - (—a,)t |
la™|—0 as m —0. ¢(t) is infinitely divisible ch.f. and is uniquely put
in the form ‘

41)  log olt) =irt—%azt2 +{7 bet, wyantiay+ S"_w h(t, 2)dN() ,
where

h(t, x)=e*"—1— it
(&) =e 142°

and
M(z), —N(—x)e M.

Now for any ¢>0, we have,
. 1 500 ( x
log p(t) =iy +7(0))t— L ettt +S h(t, 2)dM <_>
2 0 c

+ S"_w h(t, ©)AN (%)

and
log ¢(t)=—i(er+7(@)t—<o'wt+ | ht o) (~N (L))
+{ e, o2 (-n(-2))
where
=] g i o
+So—~< 1+a(ccx)2 T )dN(“)} :
Substituting these expressions in (1.2) with ¢=a;, s, -+, @, and con-

sidering the uniqueness of the representation (4.1), we obtain
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4.2) ai(Ly+31 @)~ 33 7(a,) =0,

(4.3) a(2)a*=0,

(44)  M(@)=Mafa)+ - +Mafa,)—N(~zfa,)— - —N(—afa,)
and

(45)  N@=N@/a)+ - +Nla)—M—afay) - - -~ M(—2fa,) .

LEMMA 7. Suppose P(x) is a real valued momotone nonm-decreasing
Sunction defined on (0, o).
If P(x) satisfies

(4.6) P(z)=P(z[a))+ - - -+ P(x/a,)

and if P(z) is mot identically zero, then

(i) P(#)<0 for all >0, and lim P)=0,
(ii) S:x’dP(x)<oo if and only if 1>a,

and

(i) S“’ PdP@) <o  if p<a.

ProOF. We can show by induction on m that we have for any
positive m,

4.7) Pa)= > —™  pah--ak.
it Ty k- -k,

(i) follows directly from (4.7) and the assumption that P(x) is non-
decreasing.

To prove (ii) it suffices to show that there exist positive constants
C and D such that for all =1,

(4.8) —Clz*<P(x)<—D/x"
holds. Let,

e(x)z—P<-$1?)/x‘ . (>0).

Then (4.6) is equivalent to,
&x)=at(ax)+ -+ - +aié(a.x) .
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“Since af+---4+a2=1, we can find for any given x,>1, and for

any positive integer k, a sequence a;, - -, a;, such that

5(x0)§5(a1:1' cee 'aikxﬂ) .
If b=min(a,, -+, a,), then a;- --- -a;_2=1/b implies a;- -+ -a;, %=
Q- - -aip_lbxogl. Hence by suitable choice of %, we can make
@i+ -+ @y lie in the interval [1,1/b]. This means that

sup £(x)= sup &(x).
r=1 1/bzx21
Putting the right-hand side C, we see that this implies
—Cle*<P(x), r=1.

Suppose C=o0 (or =0), then there exists a sequence {%,},-1.. in the
interval [1, 1/b], such that

m—oo

lim &(z,.)=—lim P(-ﬂ%—)/x;’nzoo (or =0).

But this implies lim P<L> = —o0 (or =0) which is impossible. Another

—»00
m m

inequality is proved in the same way.

To prove (iii) let the sequence {C,} of positive numbers be defined
as follows: C,=1, C,=C,_,/a; if P(C,_,/a;)<a;P(C,-;), k=1, ---, j—1,
and if P(C,-i/a;)=a;P(C,-;). Then the sequence {C,} is strictly mono-
tone and C, — o as m— c. Moreover, if C,_,=C;_;/a;,

(P(C)— P(Ci-))Ci= — P(Ci-)Ci= — b7 P(Ci-1)Ci -

=—b"?P(Cy-s/a,;)Ci_sa7* < —b"*P(C;-;)Ch_05~*
< —b*P(Cy-2)Chs0* P < —=b*P(1) (@ #)*1.

Hence if f<a, we have

Sf’" x'dP(x)< —b""P(1) kﬁ (a*P)t< —PA)bP(1—a*F)< oo .
(q.e.d.)

Now set P(x)=M(x)—N(—x). This function belongs to M and satis-
fies the equation (4.6).
If =2 we have by lemma 7 that P(x)=0 or M(x)=0 and N(x)=0,

and in this case (4.1) is reduced to ¢(t)=exp {irt——%—aztz}.

In what follows we assume that 0<a<2. Then ¢,(2)#0, and (4.3)
implies ¢®=0.

Functions f(t)=M(e™*) and g(t)=— N(—e™*) satisfy the assumptions
of Theorem 5, and (4.4) and (4.5) are equivalent to (3.1) and (3.3) re-
spectively.
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Proor oF THEOREM 1. It follows from Theorem 5 that f(t)= —2e*,

g(t)=—pe* or equivalently,

M(x)=—2[x", x>0,

N@)=p/l=|*, <0,
where

A=p ﬁ.p<n.

If a#1, (4.1) becomes*

olty=exp {irt —oli"(1+4F: tan Za)| .

Substituting this in (1.2) we obtain

r=0 if p=n
and

p=0 if p<n.
If a=1, we have A=y irrespective of p. In fact, if p=mn, then ¢,(1)=0
and (4.2) becomes 21: 7(a;)=0, which implies 2=p. Hence ¢(t) is the ch.f.
of the Cauchy distribution. (g.e.d.)

PROOF oF THEOREM 2.

Necessity. Using Theorem 5, we obtain f(t) =g(t)=—i(t)e* or
equivalently,

(4.9) M(x)=—A(—log x)/x*, x>0
and
(4.10) N(x)=2(—log |x|)/ x| r<0,

where i(t) € P*(p), and (4.1) is reduced to (2.1). Considering (1.2), we
obtain (2.2).

Sufficiency. If M(x) satisfies the conditions of the Theorem, then
we have

M@la)=a;M(z), k=1,2,---,n.

Hence lemma 7 is applied to M(x) to show that M(x) e M. The
complex valued function ¢(¢) defined by (2.1) is then an infinitely divisi-
ble ch.f. If, further, (2.2) is satisfied, ¢(f) satisfies the equation (1.2),
proving the sufficiency of the Theorem. (q.e.d.)

* See [2].




CHARACTERISTIC FUNCTIONS SATISFYING A FUNCTIONAL EQUATION 207

PrROOF OF THEOREMS 3 AND 4.

Necessity. As we have already shown, ch.f. ¢(t)€ Tuay, -+, @y,
—@yy, * 0, —@,) With a<2, can be put in the form
(4.11) log (t) =it + S:h(t, z) dM(x) + S h(t, ©)dN(z) ,

where M(x) and N(x) are monotone non-decreasing functions defined
respectively on (0, c0) and (—oo,0), and satisfy the relation (4.4) and
(4.5). It follows from Theorem 5 that M(z) and N(x) can be written
in the forms (2.8) and (2.9) under the assumptions of Theorem 3, and
in the forms (2.10) and (2.11) under the assumptions of Theorem 4. We
consider three cases separately.

(i) case 1<a<2

Lemma 7 implies in this case that

oggj (a;— -7 )dP(x)<°° :

pr
or

(4.12) 0§S:(x— I-T-x’) AM(z)=p<oo
and

(4.13) OZS; (a:— 11#) AN (@) =7,> — oo

and (4.11) becomes (2.3) with g=r+7yi+r:.
Substituting (2.3) in (1.2), we obtain (2.4) if p<n, and =0 if p=n.

(ii) case a=1
Necessity has already been shown.
(iii) case 0<akl

Lemma 7 implies in this case that

oggj ® _ gP(x)<oo

1428
or
00 m _
(4.14) ogso i dM@)=n<e

and
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0
X —
(4.15) 02{ 2 dN@=r>—e,

and (4.11) becomes
log ¢(t)=1pt+ S:(e“’-— 1)dM(z) + So (¢**—1)dN(z) ,
where B=r+r+7:.
Substituting in (1.2), we obtain 3=0.

Sufficiency. Suppose that ¢(t), M(x) and N(x) satisfy the conditions
of either Theorem 3 or Theorem 4. Then M(x) and N(zx) are related
to each other by equations (4.4) and (4.5), from which we conclude that
¢(t) formally satisfies the equation (1.2). We have only to prove that
¢(t) is a ch.f. If follows from lemma 7 that M(x) and —N(—x) belong
to M, and that (4.12), (4.13) (if 1<a<2) and (4.14), (4.15) (if 0<a<])
hold. Hence in any case ¢(t) can be rewritten as (4.1) with ¢*=0,
showing that ¢(t) is an infinitely divisible ch.f. (q.e.d.)

5. Examples

Example 1. Let X and Y be independent and identically distributed
random variables, and let @ and b be real constants whose absolute
values are 2/3 and 1/3 respectively. If the distribution of aX+bY is
identical with that of X, then the distribution is the Cauchy distribution.

Example 2. When p<n, ¢(t) € Toay, -+, Ay, —Cps1, **+, —a,) is Sym-
metric except for a factor ¢”* in many cases but not always. We shall
give a simple example. Equation xz*—(1—x)*=0 has unique real zero a,
between 0 and 1 exclusive. Let 0<a<2 and set a;=a¥*, and a,=(1—a,)"".

We can easily show that (a,, a,) € C;(—log a,/2a).

Let =1 be any integer and let 2, ---, 2,; g, ---, #, be any real
numbers, while 2 be a positive number. Set,

Ma)={—2+3) 4 cos (ﬁ,fi log z)-+ 31 cos (_zaglé'; loga)| /o,
0 0

x>0

and

N(@x)= {l—il 2 COS (ﬁ):k; log |x|> + 2:] 1, COS (3"‘532-——%& log |x|> }/lxl" .

Then for sufficiently large 1, M(x) and N(x) satisfy the conditions of
Theorem 3, and
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wlt)=|, e =1 aM@ +| _E—1aN@)

is a ch.f. belonging to T.(a,, —a,) if a<l. It is symmetric if and only
if = -+ =p,=0.

When 4,= ... =1,=0, we have

lpo)lP=e>11"

where

or

[1]
[2]

[3]
[4]
[5]

[6]
[7]

{8]
[91]

[10]
[11]

c=2a S:(cos r—1z~"'de>0

lpo(t)] =€=41" .
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