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1. Introduction

Let X be a random variable which is known to have one of the
distinet distribution functions Fi(z), ---, and F,(z), i.e. P(X=Zx|0=1)=
Fi(x). When we denote by L(p(x)|6) the loss incurred in using a rule
¢(x) for the decision about unknown # based on an observed value z on

X, the risk function is given by R,(go):S L(p(x) | 6)dF(x). When we con-

sider # as a random parameter, if the prior distribution &'=(w,, -, ®,)
is given, i.e. P(@=1i)=w; for i=1, ---, r, the expected risk with respect

to this o' is R“(¢)=¢é o;R(p). We are interested in the rule gw(x)
=1

minimizing Ra(p) for fixed @’. The rule ¢q(x) is called a Bayes rule and
the corresponding Bayes risk is given by B(w)=ERa(¢w).

On the other hand, in the case that @' is unknown, the general con-
sideration on asking for ¢,(x) such that lim Ra(p,)=B(w), on the basis

of (Xi, -+, X,) considered to be a random sample from the population
n with the distribution function F(x)=i} o, Fy(x), was suggested by H.
i=1

Robbins [12]. His paper contained more general case about ' than one
as mentioned herein and the problem was reduced to asking for an esti-
mator for @’ that converges in probability to @’ as n—oo. Especially,
in the case of @' =(w,, -, ®,), he showed the general form of unbiased
estimators for o'.

In this paper, we shall be concerned with an embodiment of his idea
for the case of @'=(wy, -+, ®,). At the outset, we shall deal with the
case of @' =(w,, ®,) because of easy handling. Originally, H. Robbins
brought forward a problem termed by him the compound decision prob-
lem which arose when one was repeatedly confronted with the same
decision problem n times for such a case (of r=2), [10]. His aim was
to bring the overall expected loss below the level attainable through =
independent applications of the most powerful test in the case of testing
type, and the possibility was shown for the case of normal distribution
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with known variance, say ¢*=1, and with an expected mean # which
was known to have one of only two values, either §=—1 or 6=1. J.
Neyman applaudingly mentioned his work “Robbins’ breakthrough on
the Bayes’ front” in [9]. Consideration on the same or on the allied
subject has appeared in [3], [4], [8], [14], and [15].

In section 2, we shall be concerned with estimating @'=(w,, ®,) based
on a random sample (Xj, -+, X,) from the population = with the distri-
bution function F(x)=w,Fy(x)+ o, Fi(x), and we shall make use of the

method proposed in [6]. Consider fzoz—”l;-ki Fy(X,) and f)lzif_}lF,(Xk).
=1 =
Then, 61=%+(ﬁ—-;—>4“ is an unbiased estimator for unknown e,

where i,:%{f;ﬂum and A=SFo(w)dF,(x)—%-. E.J.G. Pitman has given

the maximum likelihood estimate for @'=(w,, ), [13], but our method
is applicable to the non-parametric case if past samples from Fi(x) and
Fi(x) are available. When we take @, as an estimator for o, a con-
fidence interval for o, with the confidence coefficient not less than (1—a)
for any given a (1>a>0) is given and an asymptotically confidence in-
terval can be also obtained since it is shown that &, is asymptotically

normally distributed with the expected mean o, and the variance E}a?
in section 3, and the empirical Bayes two-way decision procedure is dis-
cussed in section 4. The case of two p-variate normal distributions with
equal covariance matrices is shown in section 5.

The case of @' =(wy, -+, ®,) is considered in sections 6, 7, where o’
denotes the transpose of the r-column vector @. We shall take a=
A~'p as an unbiased estimator for w if | 4|#0, where A and p are the

(rX r)-matrix and the r-column vector such that A= (-;—+A‘ ,) = (S Fy(x)

dF @) and p=(b)=(1 DFX)) (3=1, - 7).

2. Estimating the prior distribution o'

Consider a population = of individuals such that with each individual
is associated a value of the observable one-dimensional random variable
X. Let z be divided into two sub-populations =, and x;, and let X have
the distribution function Fi(x) in =, and Fi(x) in =;. For convenience, it
will be assumed that F,(x) and F(x) are continuous and Fy(z)> F(x) for
all . If the prior probabilities of an individual of = belonging to =, and
z, are denoted by o, and »,, X is considered to have the distribution
function
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2.1) F(x)=o,Fy(x)+ o, Fi(x) .

But, in the usual case, @’=(w,, »;) is unknown.
Let

(2-2) (le M) Xn)

be a random sample of size n from z. That is, (2.2) is a mixed sample
drawn from =, and x,; with (prior) probabilities w, and ;. For instance,
such a situation will arise in the two-way classification (or the two-way
allocation) problem. Previously in [6] the author treated the case that
(2.2) is a random sample from either z, or z;. The procedure used in
[6] will be extended in a similar manner in this paper. We shall be con-
cerned with estimating them on the basis of the sample (2.2) in the case
that @, and @, are unknown.

At the outset, we assume that Fy(x) and F(x) are completely known.
Then, if we define

(2.3) 4={" IF@—Fi@F@
=" F@dr@-+ .
4 is determined for specified Fy(x) and Fi(x), and takes on a positive

value because of the assumption of stochastic ordering as described above.
Consider two statistics

@.4) =13 F(X),
n k=1

and

(2.5) ﬁ=%§‘; F(Xy).

Then, their expectations with respect to F(x) are
elpt =" Fu)Fa)=1+od,
and
b= F@dF@)=—ad.
Therefore, if we take

2.6) ao=(%—@l)4—l and wl—( ;>A-
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as estimators for o, and w;, we have
8{50} =@y and 8{(7)[} =w; .

But these estimators have not always the properties (i) @+@&=1 and
(i) @=0 (¢=0,1), that must be satisfied by a probability distribution.
However, so far as relating to (i), if we take

@.7) a=(3—0)d" and &=(p—1)d,
2 2
where d=p,—p,, @, and &, have the property @+ =1. Since 4 is an
unbiased estimator for 4 with finite variance, we have &,—w, (t=0,1)
with probability one as n— co.
A modification of (2.6) that satisfies (i) can also be given as follows.
If we take

(2.8)

where ﬁ=—;—{i)o+z‘>1}, we have

Clo} =, (2=0,1).

The assumption of ordering between Fy(x) and F(x) is not essential
for our method and the argument is valid for 4#0. When 4<0, re-

place F, and F, by each other. Then 4 =S FldF.,——;—> 0. Hereafter, we

shall, without loss of generality, assume that 4>0.

Suppose (Xi, - -+, X,) is a random sample drawn from the population
= with the distribution function F(x) defined in (2.1). (It is assumed that
Fy(x) and Fi(x) are comtinuous and 4>0, where 4 is defined by (2.3).)
Then, if we take @' =(&,, @), &' =(,, &) or @ =(&,d) as estimators
Sfor components of @'=(w,, ®), @ and & are unbiased estimators for ',
and @' 1is a consistent estimator for o', where @', &' and & are defined
by (2.6), (2.8) and (2.7).

The property (ii) that estimators for , and o, take on non-negative
values is usually more important than the property (i) from a viewpoint
that they denote weights with which we consider that an observation
will come from =z, or x, in future experiment. We shall consider @, and
@, given in (2.8) as to (ii), since other estimators can also be handled




ON THE EMPIRICAL BAYES PROCEDURE 173

in the same manner. The property (ii) for &, and ®, means

1 d4_3;_1.,4
2.9 L e P
(29) g z="=gt3

if 420. Expectation of i with respect to F(z) is

(2.10) eih) =%+.;1—w04
=—;——'—g—+wld .

We shall make use of the following theorem given by W. Hoeffding [5].

If random variables X, ---, X, are independent and a,<X,<b, for
k=1, ..., n, then for t>0

@2.11) P{X—p2t} <exp {—2n2t2 / pa| (b,,—a,‘)z},
where X = ’éXk/n and p=E{X}.
Since {Fy(X)+F(X)}/2, -+, {Fy(X,)+Fy(X,)}/2 are independent and

0 {FX)+F(X,)} /21 for k=1, - -, n, Hoeffding’s inequality as men-
tioned above gives us

2.12) p{ h— (%Jr _121__% A) > t} P
or

_]_'.__4 )__AZ }S —2nt?
(2.13) P{(2 2+w1A h=ti<e

for t>0. (Note that an upper bound for P{X—p=t} is also an upper
bound for P{—X+p=t}.) Putting t=0,4 in (2.12) and t=w,4 in (2.13)
if 4>0, we get

P{ i& _2__%_ + % } < g~ tntepd?

and

< 6—215(4»14)2 N

IIA

isL_)
Plis3-3

Thus, if 0<c¢<min {0, ®;} and if we can take a sample size n such that

n=log —1—/20242 for 0<a<1, we have
a
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P{e,<0}<a and P{o,=1}=a.

In this sense, we shall always infer that w,=0 when ®,<0 and that
;=1 when @,=1, and that w,=&, when 0<0,<1.

In the analogous form to (2.7), the method can be extended to the
non-parametric case that the distribution functions Fi(x) and F(x) are
unknown, but random samples of size n, and 7, drawn from =z, and =,
are available. Such a situation will arise when our knowledge based on
past experiments about distributions on 7z, and =z; is not perfect.

Suppose that random samples (X?, ---, X;”) and (X, - - -, X) have
been obtained from =z, and x,, respectively. Let (Xj, ---, X,) be a new
random sample drawn from z. For these samples, define

[the number of pairs (X, X,) such that X®< X,]

2.14) B=
(2.14) B, prgen

and

B [the number of pairs (X, X,) such that X< X, ]
1— ’

2.15
(2.15) g

u=1, ..., my, v=1, ---,m; and k=1, ---, n, and set
= 1 ~ \ 2 1 =~ 1 R
(2.16) W= E_pl 4 and ;= p.,—-z— 41,

where 4 =p—9,. This is (2.7) with §,, D, replacing %,, p;. Since (%
—ih>, (1"70—-;—>, and 4 are unbiased estimators with finite variances for
wd, 0,4 and 4 respectively, the following corollary is obtained.

If 4>0, @ =(a,, @) defined in (2.16) are consistent estimators for o'.

On the other hand, even if Fy(x) and F(x) are completely specified,
it may happen that calculation of , and %, is troublesome. In such a

case, take random numbers U, ---, U, and Vi, ---, V, uniformly distri-
buted on [0,1], and transform them to X®=F;(U,) and X =F7V,)
for u=1, .-+, n, and v=1, ---,n,. For these X’s, X*’s and a sample

(2.2), consider P, and P, given by (2.14) and (2.15). Then,
~_ 1 (7 1
2.1 x=1 (h——>A-‘
( 7) [O% 2 2
is an unbiased estimator for ;, where ﬁ:%{fmﬁﬁl}. The same can be

said also of
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2.18) oF= (% — f),)d“ and &F= (@, — %) 41,

3. Confidence intervals for o'

We shall consider to constitute confidence intervals for o, in the
case of @'=(w,, ®;). In the case that Fi(x) and Fi(x) are completely
specified, if we take @ given in (2.8) as an estimator for ', Hoeffding’s
inequality as mentioned above can be used for this purpose. If 4>0,
a slight modification of (2.12) and (2.13) gives

(3.1) Pl{o,<@,—e(4, n, af2)} S af2,
and

(3.2) P{o,2&,+e(d, n, af2)} S af2,
where ¢(4, n, aj2) = \/ 27: & log :2'- . Thus we have
(3.3) Pllo—o,|<e(4,n,af2)} 21—a.

Hence, we can state as follows.

If we take @' = (&, @) as an estimator for &' =(w,, ), a confidence in-
terval for w, with the confidence coefficient not less than (1—a) (0<a<1) is

given by (@,—e(d, n, a/2), &,+e(4, 1, a/2)), where e(4, n, a/2)= \/ 2;42

log—z— .
a

The relation (3.3) with &} replacing &, also holds true, that is,
P{lof—o | <e(4, n, af2)} 21—a,

where @ is an expedient estimator for calculation and is defined in
(2.17). The verification has been given in [6].

On the other hand, we can derive an asymptotic distribution of esti-
mators for o, that is expected to give a good approximation for our aim
in the case of a fairly large sample size and is considered to be practi-
cally convenient. Now wFy(Xy)+ @ Fy(X;) is distributed with the uniform
distribution on [0, 1] for each random variable X, contained in a sample
(2.2) because each X, is distributed with the distribution function oy Fy(x)
+oF(x), k=1, -++,n, 80, wPy+wd, has a probability distribution which
approaches to the normal distribution as the sample size increases, and
the expected mean and the variance are 1/2 and 1/12n, respectively.
Therefore, since
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o+ oD — -—:12— = A&, —wy),

the probability distribution of Z(E)l—wl) approaches to the normal distri-

bution with the expected mean zero as m—oco, and since d—4 with
probability 1 as n — oo, if 4>0, (0,—e,) is asymptotically normally dis-

tributed with the expected mean 0 and variance ﬁ for large n.
"

As for the other estimators &, and @,, since we have

A A 1
oDyt o P ——

2 _o_4,
A 1 A 1
and
wof)o+w1f71_l ~
2 :<a_l>_£<w_l>
4 ) A\t 2

the result as mentioned above also holds for (@,—w,) and (&, —®,). Thus,
we obtain the following theorem.

When we take @,, @, or @, given in (2.6), (2.7) or (2.8) as estimators
for w, if 4>0, &, @, and &, are asymptotically normally distributed

with the expected mean o, and the variance for large n.

1
12n4

An asymptotically confidence interval for «; with the confidence co-

. . . ~ k -~ k - k
fficient (1— b < . S —_"_>, < _
efficient (1—a) is given by (&, YA o+ Iion (N i/ion

@+ 27150 12n> or ((’o\l— y «/kla2n , @+ y Vk{2n>’ where k, is determined from
«/%S e rdt=1—a.
T —kq

4. The empirical Bayes two-way decision procedure

Let #n, and #; be two populations and Fy(x), Fy(x) the distribution
functions of =, and x;, respectively. Let X be a random variable which
is known to have one of two distinct distribution functions Fy(x) and
Fi(x). Consider the problem to decide whether an individual belongs
to =, or m, i.e. the random variable X has Fi(x) or F(x), on the basis
of an observed value £ on X. Let the loss structure be as follows:
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decision
e A e
Ty Ty
o 0 L1[0)
population
) LO|1) 0

where L(0|1) and L(1|0) are two given positive numbers.

A randomized decision rule ¢(x) is a measurable function with re-
spect to o-field on the sample space with 0=<¢(x)<1, that is, when X=
x is observed, one decides #=1 or §=0 with probabilities ¢(x) or 1—¢(x).
Then, for any rule ¢(x), the expected losses due to an incorrect decision,
called the risk functions of ¢(x), are given by

Ry(p)=L(1]0)Eo{p(X)}
Ri(p)=LO[1) & {1-p(X)},

4.1) and

where &, denotes expectation with respect to Fy(x) (6=0, 1).

Now, suppose that = consists of sub-populations =, and =,, and as-
sume that the prior distribution is given by &'=(w,, ®;), Where ;=
P(6=1) for t=0 and 1, that is, an individual of # drawn at random be-
longs to =, and =, with probabilities @, and w,, respectively. Then, for
the rule ¢(x), the expected risk with respect to this prior distribution is

(4.2) Ra(p)=(1—w)Ry(p)+w.Ri(p) ,

and one finds rules pe(x) minimizing (4.2) for fixed w'.
Let fi(x) denote the likelihood function of 6 given z. Then, for
given o', (4.2) is minimized by ¢a(z) of the form

0 if L(1]|0)1—w)fi®)SLO| Dorfi(z)
43  gal0)= _
1 if L] 0)(1—)fi@)>LO| Dofi@) .

The rule ¢a(x) is usually called a Bayes rule with respect to the prior
distribution @', and the corresponding Bayes risk is

(4.4) B(@)=PRo(pw) =min Ralp) .

Suppose now that such decision problems occur repeatedly and in-
dependently with the same but unknown @’. Let

(4‘5) (Xh 01); ] (Xm on)y (Xn+1, 0n+l)l e

be a sequence of pairs of random variables, each pair being independent
of all the other pairs, where the value of 6, (¢:=1, ---,n,n+1, ---) ap-
pears according to the common prior distribution @’. When the decision
about parameter is made, we shall have observed values on X, ---, X,
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and X,,;, but the values of 6,, ---, and 4, are still unknown. However,
we can use any estimate for @' based on X, -, X, for the decision
about 6,.,.

Let ¢a(x) denote the rule of the form (4.3) with @' replaced by the
estimator @’ given by (2.8) based on (X, -+, X,). If we adopt the rule
pa(x), the actual expected risk with respect to @’ will become

(4.6) Ra(pa)=(1—w)Rips)+ o Ri(es) -

Then, Ra(ps) represents a straight line segment of a support for B(w)
which is continuous and concave as functions of @', at the fixed value
of @'.
If we put w,=®,+e(4, n,a/2) in (4.6), we have
(1—&,—e(4, n, a/2))Ri(pa) + (@ +e(4, n, «[2))Ri(pa)
=B(@)+e(4, n, /2) (Ri(pa) — Ri(pa))=B*
and
(1—a&,+e(4, n, 2/2))Ry(pa) +(@,—e(d, n, a[2))R\(pa)
=B(@)+e(4, n, a/2)(Rypa)— Bipa))=B~ .
Put @&*=(1—&,—e(4, n, af2), &,+e(4,n,af2)) and @~ =(1-—a,+e(4, n, «/2),
o,—e(4, n, a/2)), and define
4.7 K(@, 4, n, a[2)=max{K*, K"},
where K*=B*—B(@*) and K-=B-—B(®~). Then, if |&,—w,[<e(4, n,
a/2), we have '
(4'8) 0§R¢(¢&)_B(w)§K(a’ A! n, a/2) ’
since B(w) is a concave function of @. Hence, we obtain:

If we take &' =(&,, ®) given by (2.8) as an estimator for &'=(w,, @),
we have

4.9) P{Ra(¢s)—B(w)=K(@, 4,n, ¢[2)} 21—«
for any a (0<a<l), where K(@, 4, n, a/2) is defined by (4.7).

We can also give an approximate evaluation of the left-hand side
of (4.9) in the same way, by using the result such that & is asymp-
totically normally distributed. On the other hand, let ¢*(x) be a mini-
max rule such that Ry(¢*)=R,(¢*). The rule ¢*(x) is a Bayes rule with
respect to some w* =(wf, o)), the least favorable prior distribution, in
the sense that the Bayes risk takes on a maximum for this value o*
of @'. Then, if |&,—of|<e(4, n,a/2), we should take rather ¢* than
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pw for the benefit of practical convenience.

5. The case of two known multivariate normal distributions

The method proposed in the previous sections is applicable to the
case of multivariate probability distributions if we can select a suitable
transformation to a one-dimensional random variable from a multi-
dimensional one, i.e. a linear function of components of a vector random
variable.

We shall deal with the case of two p-variate normal distributions
with equal covariance matrices, namely, N(m®, ¥) and N(m®, X), where
m®' =(m, - .-, mP) is the vector of expected means of the population
7, (t=0,1), (m®’ denotes the transpose of m®,) and X is the common
matrix of variances and covariances of both populations.

Denote by X a p-column vector random variable distributed ac-
cording to N(m*, X) for the sake of the descriptive simplicity, and con-
sider a linear function X“’a of components of X (i=0,1). Then, we
have

1 mYa—m®a
.1 ()1 ax o ( ) s
(5.1) P{XYa<XVa}=9 el JaSa
where @(c):% Sc e It
T —00

Since our method tends to estimate @’ more efficiently for pairs of
two distribution functions Fy(z) and Fi(x) when the absolute value of

4= S" F‘(x)dF,(x)—% (i#j) becomes larger, if m®™a>m®™a (or if
m®'a <m®a), a (1=0,1) maximizing (5.1) (or minimizing (5.1)) will
provide a suitable linear function for our aim. It will be easily seen
from the right-hand term in (5.1) that such a linear function is the

discriminant function.
On the other hand, the log-likelihood-ratio is

(5.2) log fl(x) =x12—1(m(1)_m<o))_ l(m(l)_*_mm))lz‘—l(m(l)_ m(O)) ,
Jo(x) 2

where

Sfdx)= exp [ — —%- (x—m®)Y X Y(x— m(i))] .

1
@) | 3 |2
Let

(5.3) U_____ Xlz'—l(m(l) —_ m(O)) — _1_ (m(1)+ m(O))Z-—l(m(l)_ m(0))
2
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for the random variable X distributed with either N(m®, 3) or N(m®,
%), and consider the “Mahalanobis’ distance” between N(m®, Y) and
N(im®, %) .

(5.4) (m® —m®Y Z-(m® —m®)=d .

Then, U is distributed according to N(%d, d) if X is distributed accord-

ing to Mm®, 2). If X is distributed according to N(m®, %), U is dis-

tributed according to N(—%d, d). Thus, when m®, m® and ¥ are
given, if a random sample (X, ---, X,) drawn from w,N(x|m®, 3)+
o N(x|m®, ¥) is available, we can estimate @'=(w,, ) based on (U,
-+, U,) transformed from (X, ---, X,) by (5.3), since X'I{(m®—m®)
is the well-known discriminant function, (where N(x|m®, X) is the dis-
tribution function of the p-variate normal distribution with the expected
mean m* and the covariance matrix ¥ (¢=0, 1)). In this case, 4 defined

by (2.3) becomes

(5.5) A=4m=¢(\/%)—§ .

and the rule ¢4 is:
0 if XZ'(mP—-—m®)
— %_(m(l) + m(O))z’—l(m(l) — m(O)) é ].Og k s

(5'6) ?&(X) = 1 if x;zv-1(m(l) _ m(ﬁ))

_ _%(m(n + m«») z‘-l(m(l) _ m(o)) >logk,

where k is given by

pe L] 1)
SL(L[0) ’

and @'=(@y, ®) is an unbiased estimator for @'.

6. Estimating the prior distribution o'

Let the random variable X be known to have one of a finite num-
ber of specified distribution functions Fi(x), -- -, F,(x) depending on the
respective values of a random parameter § which has an unknown prior
distribution @’=(w,, -+, w,) such that P(#=1)=w, for i=1, ---,r. We
shall be concerned with estimating the unknown prior distribution @’'=
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(o, *++,®,). When a random sample (X, ---, X,) drawn from the dis-
tribution function

6.1) F@)=3 o/F (@)

is available, the problem can be extended in the similar way as proposed
in section 2.
Consider r statistics

S F@) =17,

k=1

(6.2) p=1
n

Then, their expectations with respect to F(x) are

(6.) ebl=3o,|" F@iF@ (=1,

respectively.
We shall define 4,; by

(6.4 4,=\" F@ar@-1.

It will easily seen that 4,,=—4,,. If the prior distribution that must
be estimated and r statistics defined in (6.2) are denoted in vector
forms by

[ f’l
(6.5) o=| : | and p=| : |,
wr j’r

and if matrix A is defined by
1/2 1/2+Alz e 1/2+Alr

(6.6) A=| 1244 12 1244,

1/2+4,, 124+ 4,5+ 1/2
(6.3) is written as follows
(6.7) Cip}=Aw.
Hence, we obtain:

If we have | A |#0, unbiased estimators for components of @ are ob-
tained from

(6.8) o=A"p,

R ST
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where | A| denotes the determinant of A.

In most of the usual cases, it can be expected that | A |+#0, but we
shall show the special cases of =3 and 4 since it may be rather com-
plicated to seek the conditions that have to be laid on the distributions
for | A |+0.

In the case of r=3,

| A lzé‘(dlﬁ' o+ 4y) .
Thus, if we have

(6.9) dyp+ dy+- 4y = S (Fi(x)— Fy(x))dFy(x)— S (Fy(z)— Fy(x))dFyx)
unbiased estimators for components of @'=(w;, w;, @) are given by
ax'—'— % {(f)s—f’z) + 4y},

(6.10)
{(Dy—Ds)+4u}

NG

By=
and
a.=-}{(i>z—ﬁ)+an} ,

where d=4,;+4y+4y. In fact, we have
EPy—P} =—dnt+od,
Ep—p} =—duted,

and E{D—D}=—dutod,

where &{ } denotes expectation with respect to F(z), so, their unbi-
asedness is quite clear.
In the case of r=4, we have

| A |=(dypdis+ dsydos+ dssdir)? -

Thus, if 4yudi+ disdy+didy#0, unbiased estimators for components of
' =(w;, @3, @y, ©) can be obtained in the same way.

7. The empirical Bayes r-way decision procedure

Suppose that populations =y, 7, +-+, . are given and observations
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from =, (#=1,2, - -+, r) have the distribution F,(x). Let X be a random
variable which is known to have one of r distinct distribution functions
Fy(z), Fy(z), - -+ and F,(x), say Fy().

We shall consider the same problem as discussed in section 4 for the
case of r distributions. When the true parameter ¢ is 7, if we make a
decision §=j, assume that we incur the loss L(j]%)(=0) (3,j=1, ---, 7).
A randomized decision rule ¢(z)=(p®(x), - - -, ¢(x)) is a vector of meas-

urable functions such that ,é P (x)=1, ¢’(£)=0 and ¢“(x) is the prob-
=1

ability of deciding X as coming from r; when we observe X=z. When
6 is the parameter, the risk funection for any ¢ is

(1.1) Rip)=E.{ 31 L(i10)p*X) |,

where &, denotes expectation with respect to Fy(x), and when the prior
distribution of ¢ is @'=(w,, ---, ®,), the expected risk with respect to
o is

(1.2) | Ra(¢)=3} 0.B(9) .

Let fi(x) denote the likelihood function of # given x. Then, for
given &', (7.2) is minimized by ¢u(x)=(pP(), -, o%’(x)) of the form

0 if 2 L(j | O)ouf (| 6) Zmin 3 Lu | O)onf (]6),
(7.3) ¢P@)=
1 if 3 LG | 0)anf (@] 6) <min 33 L(u | )aifilw |0)

(j’ u=17 °* ')r) .

The rule pa(x) is a Bayes rule with respect to @' and the correspond-
ing Bayes risk is

(7.4) B(w)=Ea(pw)=min Ra(y) .

The following lemma due to G. Suzuki [16] will be of avail in the next
place. :

Let py(x) be the rule of the form (7.8) with &' =(w,, -, »,) replaced
by any estimator 3'=(y,, ---,n,) for @'. Then we have

(7.5) 0= Ralpy)—B@)<3 | o= L,
where L,=mjax{L(jl'i)} (4,5=1, .-+, 7) and B(w) 1s defined by (7.4).

We shall give a probability inequality for the relation between Ro(ps)
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and B(w) as mentioned in the lemma for the case of r=3, where ¢3
denotes the rule of form (7.3) with the estimator @'=(&,, ®,, @) given
by (6.10) replacing @'=(w,, @, @;). In the case of r=3, (7.5) is written as

3

OéRﬂ((P&)_B(w)éiZ_llai_wi | Ly
= Iai—wi | (Li+ L),

i#2

since (&,—o,)+(@,—,)=(0,—&;), Where L;:miin {L;}. Thus, we have
P{Ra(¢s)—B(@)2¢} = P(X | @i—o | (Li+ L) Z£)
<3 P{|@i—w;|Z7/2}
i#2

for any £>0, where =min{ 3 }
7 i L+ L,

On the other hand, if we make use of Hoeffding’s probability in-
equality, we have

P{(ﬁu_ﬁﬂ)—(wld_dﬂv)gt} ée—"ﬁn (D:;’:y#:l; Y, Y Z=1, 2’ 3) ’

since (F.(X)—FJ{X)), -+, and (F(X,)—F.X,)) are independent, and
—1<(F(X)—F.(X))<1 for k=1, ---,n. We shall, without loss of gen-
erality, assume that 4>0 since 4 can be made to take on a positive
value by interchanging subscripts v, g of 4,, for v, ¢=1,2,3 unless 4
=0. Then, we have

P{a,— o, =t/d) e,
Hence, we have
P(|3,— o, | 2t/4} <27
for any t>0. Thus, for the case of =3 we can state:

When we take the rule g of the form (71.3) with @', replacing @' if
4>0, we have

P{Ra(¢s)—B(w) <} Z1—4exp {‘%(%)2}

where L=Ir‘19.x {L;+ L}, and L1=miin {L;} for i=1,2,3.
#2
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CORRECTIONS TO
“ON THE EMPIRICAL BAYES PROCEDURE (1)”

HirosI HubimOTO

The variances of @, and &, in the theorem on page 176 of the above
paper (Ann. Inst. Statist. Math., 20 (1968), 169-185) which states that
@, and @, are asymptotically normally distributed with the expected mean
@, should be read as '

Var@)=—2>1 41 {@(Sl Fo(w)dﬂ(w)—%——d)—wfd},

12nd*  nd
and
~ 1 1 «
Var@)=—5—+—(@a—1(|"_ F@iF@)
-7 Fr@dF@-24)- o171,
respectively.

The second terms in the above expressions were left out.

The author wishes to thank Professor John W. Pratt, Harvard
University, for pointing out these errors.
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