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0. Summary

The definition of the randomized rank-sum statistics introduced by
Bell and Doksum [2] is extended to the case of k populations, and pro-
perties of the statistics are developed which generalize some of the results
of Bell and Doksum [2]. Both the randomized rank-sum and the non-
randomized rank-sum (heretofore called ‘scores’) statistics are employed
in Gupta’s [9] subset approach to the k population selection problem. A
useful small-sample property of the randomized rank-sum procedure is
demonstrated. The asymptotic relative efficiency (ARE) of the procedures
based on the two types of rank-sum statistics is shown to be equal to
unity, and the ARE of either relative to the procedure based on sample
means is shown to be the same as that of the ‘scores’ procedure relative
to the means procedure in the k-sample testing problem. The three
procedures are shown to have the same asymptotic performance charac-
teristic when sample size ratios equal the asymptotic relative efficiencies.
It is further shown that an ‘indifference zone’ procedure based on the
randomized rank-sum statistics and the ‘indifference zone’ ‘scores’ pro-
cedure are asymptotically equally efficient.

1. Introduction

Let X,, (¢=1,2,:--,k; j=1,2,--+,n,) be independent random sam-
ples drawn from populations with continuous cumulative distribution
functions F'(x—86,). For the problem of selecting a subset of the popu-
lations containing the one with the largest (smallest) 6-value, a natural
procedure proposed by Gupta [9] is the means procedure which retains

in the selected subset those populations whose sample means X, are
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sufficiently close to the largest (smallest) sample mean. Likewise, for
selecting the population with the largest (smallest) 6-value, the natural
procedure investigated by Bachhofer [1] is the means procedure which
selects the population associated with the largest (smallest) sample mean.
The asymptotic relative efficiency (ARE) of two subset selection pro-
cedures in the case m;=n,=.--=n, is defined as the limiting ratio of
the sample sizes required to achieve the same upper bound on the ex-
pected size of the selected subset for a given parameter configuration.
The asymptotic relative efficiency of two ‘indifference zone’ selection
procedures proposed by Bechhofer [1] is defined as the limiting ratio of
the sample sizes required to achieve the same minimum probability of
selecting a ‘good’ population. Lehmann [14] applied the ‘scores’ sta-
tistics to Bechhofer’s [1] ‘indifference zone’ approach to the selection
problem and showed that the asymptotic efficiency of the ‘scores’ pro-
cedure relative to the means procedure is the same as for the associated
tests in the k-sample problem. Hence it is of interest and importance
to consider, as alternatives to the means procedures for the selection
problem, procedures based on randomized rank-sum statistics of the type
introduced by Bell and Doksum [2] and procedures based on the ‘scores’
statistics already studied for the k-sample problem by numerous authors
(for a list of which see [2]). Of concern are the asymptotic efficiencies
of these alternative procedures relative to the means procedures.

2. Some results concerning distribution-free statistics based on
ranks

Let X,, (¢=1,---,k; j=1,.--,m;) be independent samples from
populations 77, having continuous cumulative distribution functions (cdf’s)
of the form P(X, ,<x)=F(x—#0;). Let us pool the 3} n,=N observations
on the k populations and rank them, denoting the rank of X,; by R, ;.
Let H be any cdf. Let Z, ---, Zy be a random sample with cdf H, and
let Z(j) denote the jth smallest order statistic of Z;, -+, Zy. Then one
defines the rank-sum statistics

Sy (H)=n;" ,% E(Z(R(X, ;)| H) , v i(H)=n;! :gi‘{ Z(R(Xy,,)) »

(2.1) 1::1’ ...’k

SN,!(H )=S§,1(H ) —Sz’v, k(H ) ’ TN,t(H )= TI{I,i(H )— Tl{l, k(H ) ’
, t=1, ..., k—1.
When k=2, the statistic Sy (H)=Sy(H) is, for various H, equivalent

to statisties considered by Fisher and Yates, Terry, Hoeffding, Wilcoxon,
Hodges and Lehmann, Savage, Chernoff and Savage, Lehmann, Capon,
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and others for the two-sample problem, and the statistic Ty ,(H)= Tx(H)
has been proposed by Bell and Doksum [2] for the two-sample problem.
Randomized statistics have also been considered by Durbin [5] and Ehren-
berg [7]. The important properties of Ty (H) follow, primarily, from
the lemma of Bell and Doksum [2].

LEmMMA 2.1.1. (Bell and Doksum [2], see p. 203). Let F be a con-
tinuous cdf and let H be any cdf. If Wy, -+, Wy and Z,,--+, Zy are
independent random samples with cdf’s F and H, respectively, if R(W,)
denotes the rank of W, among W, ---, Wy and if Z(i) is the ith order
statistic of Z,, -+, Zy, then Z(R(W))), - -+, Z(R(Wy)) have the same joint
distribution as the random sample Z,, - -+, Zy .

As an immediate consequence of this lemma, one obtains the follow-
ing theorem, which generalizes, to the case k>2, a result of Bell and
Doksum [2].

THEOREM 2.1. When 6,=-.--=6, (that is, F,=-.--=F,), Ty.(H),
coo, Ty oi(H) are jointly distributed as the differences of means of inde-
pendent samples of sizes ny, - - -, n, from populations with cdf’s H.

Proor. If 6,=---=0,, then X, -+, X, *, Xiysy -+, Xin, cCOD-
stitute a random sample of size N from a population with edf F=F\=
---=F;. It follows from Lemma 2.1 that Z(R(X,)),- -, Z(R(X,,.,)) are
independent samples with cdf H, consequently the Ty . (H) are means of
independent samples of sizes %, from a population with edf H, and the
theorem follows.

One notes that the randomized statistics Ty (H) have the advantage
over the non-randomized rank-sum statistics Sy ;(H) of having a known
and well-tabulated joint distribution when F,=-..=F,, for proper choices
of H. In particular,

(i) If H=0, the standard normal cdf, then {[nn./(n;+n.)1"* Ty, (D)}
= {[nme/(ni+1)1 [0t 2 Z(R(X,y))—ni' 3 Z(R(Xy,))]} has a (k—1)-variate
normal edf with zero mean vector, variances equal to unity and covari-
ances g, ;={nmn;/(n,+n)(n,+n)}"*;

(ii) if H=U, the standard uniform cdf, then the cdf of

{%+%TN,i(U)] ={_;_+_;_[n;l S 2R(X, ) —ni* S AR, )]}

is the same as the joint cdf of k—1 random variables, which are the
sums of n;+n, standard uniform variables, and the marginal density of

1 1p (U) is my[m—11tS (—1)r< m)(x—r/m)m-l, where the sum-
2 2 r

mation is over r<mx, and m=n,+n,;
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(iii) if H=K, the standard exponential cdf on [0, ), and if ==
«..=mn,=mn, then the joint cdf of {2nTy(K)}={2[3 Z(R(X.;))—
SVZ(R(X..,)]} is that of k—1 random variables, each of which is the
difference of two independent chi-square variables, each with 2n degrees
of freedom.

As one might expect from the construction of the Ty .(H), these
statistics are in a certain sense asymptotically equivalent to their rank
sum counterparts Sy . (H). We will note this from the theorems that
follow, which are generalizations to the case k>2 of some of the results
of Bell and Doksum [2].

LEMMA 2.2. Let ay, ;=1 if the jth observation in the ordered com-
bined sample of N=3m, observations is from II,, ay.,=0 otherwise.
Also let 2,=n;/N (i=1,2,---,k). Then one can write

N
Ty, {H)=(4:4N)™ 12=1 Z(5)( Ay, s, ;— A5, 1)

N
Sy, {(H)=24N)™" 12=1 E(Z(5) | H)(Ay,i,;— A8x,x,5) »
where the Z’s and the ay,,;’s are independent.

ProoF. Follows from straightforward calculations. For k=2 this
reduces to Lemma 2.3 of Bell and Doksum [2].

We now generalize, to the case k>2, theorem 2.5 of Bell and
Doksum [2].

THEOREM 2.2. If H s any cdf, then

(i) E(TwdH)|F, -, F)=ESyH)I|F, -+, F}) for each i=1, -+,
k—1. If H has second moments and if A; is bounded away from 0 and
1 for all 1, then

(ii) Var(NY[Ty,(H)—Sy(H)|Fi=F,=-+--=F,=F)—>0as N—>oo
for each i=1,---,k—1 and

(i) Var(NY [Ty (H)—Sy(H)|F,, -+, Fi) >0 as N— oo whenever
one of the following is true

(a) Aix=0o(N) as N—o or (b) A,y=0,
where -
,N=‘EGCOV {Z(s), Z(t)} E[(Aay,1,s— 2w, 5,6) Ae,i,0— A1y, 5,0) | F1y - -+, Fi]

ProoOF. (i) follows immediately from Lemma 2.2, which also may
be employed to show that
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Var (Nl/z[TN,t(H)_SN,t(H) | Fyy oo, Fy)
N
=(A4) N ! E Var(Z(s) | H) E[(4y,1,s— A0, 5,:)* | F1, -+, Fil
+2(4,4.) N A, » .

(iii) now follows immediately from Lemma 2.4 of Bell and Doksum [2].
(ii) then follows from (iii) (b) upon observing that, when Fi\=...=F,=F,

E[(&ay,s,s— 20,5, ) (Ax, 1, — 2w, 1,)] = — 222+ 2)[(N—1) ,  for s+t.
Since the Ty (H) are asymptotically jointly normally distributed

when Fi=...=F} by virtue of Theorem 2.1, one obtains, using (i) and
(ii) of Theorem 2.2, the following corollary.
COROLLARY 2.2.1. If H has second moments, Fi=-.-=F,, and 2,

1s bounded away from 0 and 1 for all i, then the distribution of
{[nine/(n;+n)]"%605'Sy,(H)} tends to a (k—1)-variate normal distribution
with zero mean vector, variances equal to unity and covariances ¢, ;=
[nan,/(ni+n)(n;+ )] as N— oo,

Similar results were obtained for k=2 by Dwass [6] using essentially
the same approach. These results have also been obtained for k=2 by
Chernoff and Savage [4] by means of a different approach, in which
they invoke the regularity condition

2.2) J(u)‘ < K[u(l—u)]-i-12+

e
for 5=0,1,2, for some >0 and for 0<u<1 where J=H-! and K is a
constant. Puri [16] has extended Chernoff-Savage results for £>2. These
results have been generalized for k=2 by Govindarajulu et al. [8] under
the weaker conditions that J be absolutely continuous and that (2.2)
holds for j=1 and some §>0. The results of Govindarajulu et al. [8]
hold when the F}’s are not all equal. Thus one has

COROLLARY 2.2.2. If either (a) or (b) of Theorem 2.2 holds, J is
absolutely continuous and (2.2) is satisfied for j=1 and some 6>0, and
2; 1s bounded away from 0 and 1 for all t1=1,---,k—1, then as N— o
the cdf of the {(Ty(H)—py)loy.} tends to a (k—1)-variate normal
distribution with zero mean vector and with covariance matriz S, where
Uy and ay; are the means and variances of the Sy (H) and 3 is the
covariance matrixz of the limiting joint normal distribution of the stand-
ardized Sy (H).

This corollary yields the asymptotic equivalence of {Sy (H)} and
{Ty,(H)} for all parameter points (4, ---, 8,). The condition for this re-
sult is that (a) or (b) of Theorem 2.2 holds, which is somewhat difficult to
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verify. However, if only local asymptotic properties are desired, a more
easily verifiable condition under which the result of part (iii) of Theorem
2.2 holds locally (that is, for those parameter points in a neighborhood
of 6,=-.-=6,) is the contiguity condition of Hajék and LeCam (see
Hajék [11]). Define

(2.3) g,(u):%Ga(u)=% FIF-(u)—0], O<u<l

where g,(u) is assumed to be continuous with respect to # in some non-
degenerate closed interval about =0 for almost all w in (0,1). Also,
let U denote the random variable distributed uniformly on [0, 1]. Then,
the contiguity condition of Hajék and LeCam [11] is given by

2.4 lim E{[(64*(U)—gy(U))/0gs* (V)] — J(w)/2} =0
where
(2.5) Hu)=J(u)= 6(2nag;(u)) _

If H has second moments and (2.4) is satisfied, then Lemma 3.1 of
Matthes and Traux [15] can be used to show that Var (NY Ty .H)—
Sy.{(H)}) =0 as N— oo for sequences of parameter points of the form
0, »—0.=cm™. Also, it is known from Bell and Doksum [3] that the
function H given by (2.5) is ‘optimal’ in the sense that randomized
tests based on this H are locally most powerful for the translation al-
ternatives. However, the contiguity condition (2.4) and the optimal
choice of H presupposes the knowledge of F. Hence, the preceding re-
sults are not adequate for our purposes.

We consider next, the application of randomized and non-randomized
rank-sum statistics to the subset formulation of the selection problem,
and determine their efficiency relative to the sample mean procedure.

3. Application of the distribution-free statistics to the subset selec-
tion problem

Suppose that one wishes to select a non-empty subset of the k£ popu-
lations, which he will assert contains the population with the largest
6-value. Using the means procedure (M) of Gupta [9], one will include

I, in the subset if and only if X,= max )_(,—c,,, where ¢, is a number
J
chosen to satisfy the requirement

(8.1) P{CS; i, n}=P*  for all 8={6,---,6,},

where P{CS} denotes the probability of correct selection, i.e. the proba-
bility of including in the subset the population with the largest 6-value.
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If more than one population has the largest #-value, one considers that
a single ‘tagged’ population from among these is best.

Assuming, without loss of generality, that 6,<--.-<6,,<8,, the
left-hand side of (3.1) can be written P{CS; ¢y, n} =P(X,=X,—c,, for
j=1,.-.,k—1). Clearly P{CS; cy, n} is a decreasing function of ¢; for
j=1,---,k—1, and, for all F, is smallest when |

3.2) O="---=0,1=0,,
so that one determines ¢, to satisfy
(8.3) P(X,< X, +cy, for all i)=P*

when 6 satisfies (3.2). Having determined cy(n) from (3.3), one may
determine the common sample size » by imposing the additional require-
ment that the expected size of the subset (expected number of popu-
lations retained), E(S) satisfy

(3.4) E{S; ecx(m)} =1+

for some ¢>0, whenever 8 lies in a given proper subset of the parameter
space, for example, the subset defined by

(3.5) 01="'=0k—1=0k_d* ’ d*>0 .

In similar fashion, one can define a subset selection procedure based
on each of the distribution-free statistics. The randomized rank-sum
procedure T(H) is to include /7, in the subset if and only if T3 (H)=
mzja.x T} (H)—cy, where T} (H) is defined by (2.1) with n,=-.-=mn, and
¢y is a number chosen to satisfy P{CS; ¢;, n}=P* for all 6. Since with
probability unity Z(j5)=Z(z) for j>i, P{CS; 6}=P{n! AjV‘_J Z(R(X, ;)=
n '3 Z(R(X,,;))+cr, for all i} is a non-increasing function of 6; for

7

1=1, .-+, k—1. Thus P{CS; T(H)} is also minimized when (3.2) holds,
and one determines ¢, from the requirement

(3.6) P(T} (H)S T4 (H)+cr, for all 1)=P*

when 6 satisfies (3.2). The common sample size n, for the procedure
T(H) may then be determined from a requirement similar to (3.4),
namely

3.7 E{S; ¢cz(nr)}=1+e¢,

when 6§ satisfies (3.5).
Finally, one can define a subset selection procedure S(H) based on
the non-randomized rank-sum statistics such that it includes I7; in the



86 NOEL S. BARTLETT AND ZAKKULA GOVINDARAJULU

subset if and only if S} .(H)= m;j).xS;,,,(H )—cs, where S} (H) is de-

fined by (2.1) with n,=...=m, and c¢s is a number chosen to satisfy
P{CS; ¢s5, n}=P* for all . Since E(Z(j)| H) is a non-decreasing func-
tion of j, P{CS; 6, - -+, 6,}=P{S} (H)Z S} (H)+c¢s, for all 7} is a non-
increasing function of 4, for ¢=1, ---, k—1. It follows that P{CS; S(H)}
is minimized when (3.2) holds, and one determines ¢y from the require-
ment

3.8) P(St,(H)=S8# «(H)+cs, for all i)=P*

when 6 satisfies (3.2). The common sample size ng for the procedure
S(H) may then be determined from

(3.9) E{S; es(ns)}<1+e,

when 6 satisfies (3.5).

Before proceeding to a comparison of the three procedures based on
their asymptotic efficiencies, it is well to note the following interesting
property of the randomized procedure T(H), which holds for all sample
sizes.

THEOREM 3.1. For any continuous cdf F, and any cdf H, c.(k,n,
P*), the solution of (3.6) for given H, can be obtained as the solution of

(8.10) P(Y.<Y.+c,, for i=1, ..., k—1|H)=P*

when 6 satisfies (3.2), that is, co(k, n, P¥)=cy(k, n, P*), where cy(k, n, P*)
18 the comstant required to apply the means procedure for selecting a
subset containing the largest 6-value when the cdf of II, is H(x—86,), for
1=1,---, k.

PROOF. As a consequence of Lemma 2.1, when F,=-.-.=F,, the
random variables 7% (H), ---, T4 (H) are independent and identically
distributed as means Yj, ---, ¥, of random samples of size n from popu-

lations with cdf’s H. Thus (3.6) is equivalent to (3.10). Suppose that
one has k populations 7}, ..., II; with cdf’s of the form P(Y,<y)=
H(y—6,), and that one uses the means procedure for subset selection.
The constant ¢, required to apply the means procedure is to be de-
termined from (8.3), where X, .-, X, are independent and identically
distributed as means of random samples of size » from populations with
cdf’s H. Thus with e;=cy, (3.10) is equivalent to (3.3), and the theorem
follows.

This means that for the subset approach to the selection problem,
the procedure T(H) has the advantage over the procedure S(H) that
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one can calculate, or determine from already existing tables, the constant
necessary to carry out the former procedure, for any given sample size.
For instance, one has

Example 8.1. (i) If H=®, the standard normal cdf, then, for any
continuous cdf F, cy(k, n, P*) for the randomized rank-sum procedure
for selecting a subset containing the best population when II; has cdf
F(x—6,) is the same as cy(k, n, P*) for the means procedure for select-
ing a subset containing the normal population with the largest mean
when the variances are known (and equal to unity). Gupta [10] provides
values of (n/2)"?ey(n, k, P*) for k=2(1)51 and P*=.75, .90, .95, .975 and
.99.

If, in particular, F is a normal distribution with unknown variance,
then the problem is to pick a subset containing the normal population
with the largest mean when the populations have common unknown
variance, and by using the randomized rank-sum procedure with H=¢@
one can evaluate the constant ¢, as though he were dealing with normal
populations with known variances.

Note that it is not possible to find n, to satisfy (8.7) for the random-
ized rank-sum procedure, since the joint distribution of the Ty (H), 1=
1, .-,k is not known when the F, are not all the same, that is, when
the 6, are not all equal.

It will be convenient in what follows to replace (3.5), when the
sample size is n, by

(3.11) 0=+ =0,_1=0,—d™ .

The sample sizes n, ns, and n, for the means, non-randomized rank-sum,
and randomized rank-sum procedures will be determined from (3.4), (3.7)

and (3.9), respectively when 6 satisfies (3.11). We are not changing our
definition of goodness of a procedure with sample size, since we will later
associate d™ with d*. This temporary device emphasizes that we are
first going to consider d as a function of n, rather than »n as a function
of d.

LEMMA 3.1. For fixed P*, if cy(n) is determined so that (3.3) holds,
then as m — oo,

(3.12) cx(m)=n"Ycg+o(n %),

where o* is the variance of F and c is the solution of

(8.13) QR ¢, -+, 27 %)=P*,

where Q is the cdf of a normally distributed vector (Wi, - -, Wi_y) with
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(3.14) E(W)=0, Var(W,)=1, Cov (W, Wp:% for all i, 7.

ProoF. The condition ng)_{mu—c”(n) is equivalent to Y.<
(26%/n)%cy(n), where Y,=(2¢%/n)""X,—X,), for each i=1,...,k—1.
Since #,=---=0,, the Y, certainly satisfy (3.14). By the central limit
theorem the cdf of the random vector (Y, -+, Y,_,) converges, uniformly
in its arguments, to the cdf of the normally distributed vector (W, ---,
Wi-1). Consequently requirement (8.83) is equivalent to lim P(W.=
(2d%/n)~2cy(n), for all 7)=P*. If ¢ is defined by (3.13), this equation
will be satisfied if and only if (3.12) holds.

LEMMA 3.2. For given e, with cy(n) given by (8.12) and if n is
determined from (3.4) when 6 satisfies (3.11), then as m — oo

(3.15) d®=n"" dgto(n"1"?)
where d is the solution of

(3.16) Q2 "c+d), + -+, 27%(c+d))
+(k—-1)Q2 ¢, « -+, 27%, 27 (c—d))=1+¢

where Q is the cdf of a normally distributed vector satisfying (3.14).

PrOOF. One can easily show that E{S}=j§‘, P{1I; is included in the
=1

subset}, hence, E{S}=X] P{ngz—cx(n), for all i#4}. Let 6,=(6,n,
cve, 0.0 be a sequencej of parameter points satisfying (3.11), and let
Y.,=@2d/n)"(X,— X;—6,,+6,,), for i, j=1, -, k. Then for each j and
n, the random vector {Y,;, i+ j} satisfies (3.14). Furthermore, expected
value of S is equal to %‘, P{Y.,;=(26*/n)"Y48;,,—0: .+ cx(n)), for all 1 j}.
By the central limit theorem each of the cdf’s in the last expression

tends to a normal cdf uniformly in its arguments. Thus (3.4) is equiva-
lent to

lim [P{Y,,<(20°/m) " (cu(n)+d™), i<k} +(k—1)P{ Y, 1= (20°/0) " cy(n),
1<i<k, Y, 1= @20 /m) (eu(n)—d™)=1+e .

If ¢ is defined by (3.13), cx(n) by (8.12), and d by (8.16), this equation
will be satisfied if and only if (3.15) holds. Note that there is a unique
solution d of (3.16) for given ¢, and ¢ since the left-hand side of (3.16)
is a strictly decreasing function of d.

Now if one is given a value d*, and wishes to find the sample size



SOME DISTRIBUTION-FREE STATISTICS 89

n for which (3.4) is satisfied when @ satisfies (3.5), then he sets d*=
d™=n""*de, or

(3.17) n=(do/d*) .

This defines » as a function of k, P*, d*, and e.

Consider now the rank-sum procedures. From Theorem 3.1 and
Lemma 3.1, one obtains the following lemma for the randomized rank-
sum procedure T(H).

LEMMA 3.3. For fixed P*, let cy(nry) be determined so that (3.6)
holds, and suppose that H has second moments. Then as ny — oo,

(3.18) cr(nr)=nr*cA+o(nz'?) ,
where ¢ is defined by (3.13) and A’ is defined by

Ar— S:JZ(u) du— <S:J(u) du>2 ,

where J=H"' and thus oy=A"

One expects the same result to be true for the non-randomized pro-
cedure, and in fact one obtains

LEMMA 3.4. For fixed P*, let cg(ng) be determined so that (3.8) holds
and suppose that either (1) H has second moments, or (ii) J=H™' is
absolutely continuous and satisfies (2.2) for j=1 and some 6>0. Then

as ns—) oo,
(3.19) cS(nS)':ng'l/ZCA'l‘O(nE‘/z) ,
where ¢ 1is defined by (3.13).

Proor. A correct selection occurs if, for each 2=1,.-.,k—1,
Sy i(H)=Zcs(ng). By Corollary 2.2.1 and the comments immediately fol-
lowing it, if (i) or (ii) is satisfied then the vector {(24%ns)V:Sy (H),
«e o, (2A%ng) V: Sy -1(H)} tends to a normally distributed vector (W, - - -,
W,-.) which satisfies (3.14). The requirement (3.8) is therefore equiva-
lent to

lim P{W;<(2A%ns) cs(ng), for all 1} =P*,
ns—mo
so that with ¢ defined by (3.13), this equation will hold if and only if
(3.19) is satisfied.
The following theorem, which is analogous to Lemma 3.2, enables
one to determine the sample size required for the non-randomized rank-
sum procedure and to establish the ARE of S(H) relative to the means
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procedure. One can then use Corollary 2.2.2 to prove a corollary to the
theorem, which states the same results for the randomized rank-sum
procedure. ‘

THEOREM 3.2. With cs(ns) given by (3.19), let ns be determined so
that (3.7) holds when 0 satisfies (3.5). If (ii) of Lemma 3.4 holds, then

as ng— oo,

Y
—oo

@200 dew=n;dal|" L F@NF@]| o)
where d is defined by (3.16).

PROOF. Let 6, =(fyng * -+, Oing) be a sequence of parameter points
satisfying (3.11). Then one sees that

E(S)= 3 PISK/(H) 2S5 (H)—cs(ns), for all i)

=3 P{@AY ) S5, AH) — St ()= 1005) + 1161,)]
S [10g) — 10ng) 05 @AYRS) ", i3} .

The vector {n¥{’[S}.(H)—pm(6,)], ---, W8 [Sk(H)—(0a)]}, is asymp-
totically normal with the limiting covariance matrix o, ;=(d;,,—k")A%,
where 4§, , are Kronecker deltas. (See Puri [16] or Govindarajulu, et al.
[8].) Therefore by virtue of Lemma 3 of Lehmann [14], the random
vector (U, ;, 1+ 5} has for each j=1, -, k, an asymptotic normal distri-
bution which satisfies (3.14), where U, ,=(24%ns)"*[S§ (H)—Sk (H)—
(0 g)+14(0,)]. We temporarily defer the proof that

32D lim (40 )~ O] =0k d?|” L (JF@NIF@),

ns—»oo —00
for i=1,---,k,

from which it immediately follows that
nlgil_[fi [12/(0ng) — p(0n )1 = (87,s—04,1) d‘"*"’gl-% {J[F(2)]}dF () ,

for 4,5=1,.---,k.

Using these results, one notes that the equation for determing ng be-
comes
lim E(S)=P{ U< @AYns) | 29" L (JIF@]} dF@)+estns) |,

ng—o

1§i<k}
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+(k—1) P{ U1 S @4%/n) ] e(ns)
—o,d0|” L (JIF@E)) aF@E) |, 1<isk]
=1+4e¢.

Thus, if d is defined by (3.16), the preceding equation will be satisfied
if and only if d™s’ satisfies (3.20).

To complete the proof of Theorem 3.2, one needs to demonstrate
the validity of (3.21). To this end let d{"s> be defined by ds’=
(1—0,,)d"s’, for 4=1,---,k. 6, will denote the configuration Osng=

ng
Orng—di"s?, for =1, ..., k—1. Setting F;(z)=F(z+d$s’), and applying
the definition of p,(d), one obtains

oo

w0, —nO=|" Ik B F, @) |aF@-|" TF@)ar@)
=" [k B ratape—aeo)]-gran| aFre -

The left-hand side of (3.21) is thus equivalent to SA,,s(w)B,,s(x) dF (x),

where

4, @)= {J| k" 5 Fa+dyo—drs) |- TF @] /B, @)
and

B, (z)=k"" jé F(z4+dys—des)—F(z) .

Now, d{"s>—>0 for j=1,---,k as ng— co. Thus, under the assumed
regularity conditions,

lim A, (x)=-% J(u) , and lim B, (#)=k™ 3 (d5'5—d"s)F'(z) .
ng—o § du ng—ro § Jj=1

u=F(x)

It follows that
k o
lim [1(0r,) — (O =k 3} @9 —dr)|” L {JF @)} dF (@)
ng—e J=1 - dx
from which (3.21) follows. This completes the proof of Theorem 3.2.

COROLLARY 3.2.1. With c,(n,) given by (3.18), let n, be determined
so that (3.7) holds when 6 satisfies (3.11). If either (a) or (b) of
Theorem 2.2 holds and J=H"" is absolutely continuous and satisfies (2.2)
Jor j=1 and some 6>0, then as ny — oo,
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(3.22) 4o =z dA[S d% (JIF@)]) dF(x)]_l+o(n;"z) :

where d is defined by (3.16).

Now, given d*, one wishes, as with the means procedure, to find
the common sample sizes ng and n,, for the rank-sum procedures, for

which (8.9) and (8.7) are satisfied when @ satisfies (3.5). This is done
by letting d*=d"s>=d“z’, and from (3.20) and (3.22) one obtains
2

(3.23) S [dA / {d*glé—i— (JIF @)} dF(x)}]

From this result and (3.17) one concludes that

THEOREM 3.3. The non-randomized and randomized rank-sum pro-
cedures are asymptotically equally efficient for the subset approach to the
selection problem, and the ARE of either relative to the means procedure
8

" 4 F@) dFE)A].
X

(3.24) A(T(H), M)=A(S(H), M)= 1113%[05

This ARE of the non-randomized rank-sum procedure to the means
procedure is the same as that found by Chernoff and Savage [4] and
Puri [16] for the two-and k-sample problems, and by Lehmann [14] for
the indifference zone formulation of the selection problem. Therefore,
as is by now well known, one has

Example 8.2. (i) If H=®, or in fact if H is any normal distri-
bution, then A(S(®), M)=A(T(®), M)=1 for all F, with equality if and
only if F is normal. The non-randomized procedure when H=@® is the
well-known normal scores procedure, which is also known to be asympto-
tically equivalent to the Van der Waerden X-test [17].

(ii) If H=U, the standard uniform distribution, or any uniform
distribution, then, as shown by Hodges and Lehmann [12], A(S(U), M)
=A(T(U), M)=.864 for all F; ASU), M)=A(T(U), M)=3/nr~.955
when F is normal; and A(S(U), M)=A(T(U), M)>1 for many non-
normal distributions. (For comparison of the efficiency of this procedure,
often called the rank-sum procedure, relative to the normal scores pro-
cedure, see Hodges and Lehmann [13].)

We have studied three procedures for selecting a subset containing
the best population, imposing the common requirement that the minimum
probability of including the true best population is the same for all pro-
cedures, and have found that if the sample sizes are related as in (3.24),
then the expected size of the subset for parameter points satisfying
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(8.11) is approximately the same for all three procedures. One may ask
whether, for parameter points not satisfying (3.11) or (3.2), the proba-
bility of correct selection is asymptotically the same for all procedures.
The answer is contained in the following theorem.

THEOREM 3.4. Let m and mg=n, be related as in (3.24), that is,
let the sample sizes be determined by identical requirements. Then S(H),
T(H) and the means procedure have the same asymptotic probability of
correct selection and the same expected subset size for any parameter
configuration.

PrROOF. Let us investigate first the behavior of the means procedure,
considering any sequence of parameter points satisfying

(3‘25) 0k,n—0i,n=di,n=n_l/2 d£0'+ O(n_l/z) y

for =1, .--,k—1. The joint limiting edf of the random variables Y,=

(20*/n)""((X,— X,) is the same as that of a (k—1)-dimensional normal
vector (W, ---, W,_;) for which

(326) E(W)=-2"d,, Var(Wy=1, Cov(W, W,)=%

for all +,7.
Therefore, since P{CS}=P(X,= X,z —cx(n)),
(3.27) 1132 P{CS; d,, - -+, d -} =Q2 Y c+dy), - - -, 27 (c+dx-y)) -
Furthermore, if one defines p;=P (include II; in subset), then p;,=
P(X; = Xpax—Cx(n)). The joint limiting distribution of the random vari-

ables Y, ,=(2¢%n)""%(X,—X,), for i#j, is the same as that of a (k—1)-
dimensional normal vector (Wi, -, W,_y;, Wjis «++, Wy;) for which

(3.28) E(W,,)=2"'%d,—d), Var(W,,)=1, Cov (W, Ww)zé,

for all 4,t
where d,=0 by definition. It follows that
(3.29) }Eﬁl pidy, - -+, de) =P{W, ;=(26*/n)cy(n) for all i#j}
=Q2 c+d,—d,), - -+, 27 c+d,—d;)) .

Let us now consider the non-randomized and randomized rank-sum
procedures. Using the asymptotic joint normality of the random variables
n{*[S§,(H)—1:(0,,)], Lehmann [14] has shown (Theorem 1) that the mean
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of Sy «(H) in the limiting distribution of (Sy (H ) -, Sy.x-1(H)) is equal
to —d,/2"%, that is, for 1=1, ..., k—1,

(3.30) Hm 2Ans) ™ 1(0,) — 1)) = —dif2

when n and ng are related by (3.24). Consequently, the joint limiting
distribution of the random variables (24%ns)~?Sy (H) is that of a
(k—1)-dimensional normal vector satisfying (8.26). For the procedure
S(H), P{CS; S(H)}=P(Sy,.(H)<cs(ns)); thus (8.27) must also hold for
S(H), and this means that S(H) has the same asymptotic performance
characteristic as the means procedure, where the characteristic is taken
to be the probability of correct selection. The same must also be true
of the procedure T'(H) under the conditions of Corollary 2.2.2.

Now for S(H), p;=P(S}, ,(H)= Sk (H)—cs(ns), for i+ 7). It follows
from (3.30) that the joint limiting distribution of the random variables
Sw.i,;(H)=(2A4ns) " *[Sk, (H)—S} (H)] for i#j is the same as that of
a (k—1)-dimensional normal vector (W, ,, ---, W,_y;, W,.1,, W, ;) satisfy-
ing (3.28), from which one concludes that S(H), and therefore T(H),
satisfies (3.29). Since E(S)=fi1 p;, this means that S(H), T(H) and the
means procedure also have the same asymptotic performance character-
istic when that characteristic is taken to be the expected size of the
subset.

Let us observe that these remarks remain true for sequences of
parameter points for which not all the differences 6, ,—4,, tend to zero
at the n~'2 rate assumed in (3.25). If any difference tends to zero more
rapidly, we replace d, by 0, and if it tends to zero more slowly, or tends
to a finite limit, then we replace d; by oo, and still obtain the same
asymptotic behavior. This completes the proof of Theorem 3.4.

4. Application of the distribution-free statistics to the indifference
zone formulation of the selection problem

Suppose now that one desires to select from among the k& populations
a single population which he will assert has the largest #-value. Using
the means procedure (M) of Bechhofer [1], one will select 7, as best if

—_ —_— — n
X,=max X, where X,=n"'3] X, ;. One determines the common sample
] Jj=1

size % from the requirement that P{CS}, the probability of correct selec-
tion of the true best population, satisfy

(4.1) P{CS; n}=P*,

whenever
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(4.2) 0i<0k—d* y 'l:=1, sy, k—“l y

where P* and d* are given constants, and where, without loss of gener-
ality, we suppose that 6,=0,,..

When (4.2) holds and one is using the means procedure, P{CS; n}=
P(Y,<Y,+06,—0, for j=1,...,k—1), where Y,=X,—0, (§=1,---,k)
are independent, identically distributed random variables with cdf F(y).
Clearly P{CS;n} is a decreasing function of 6, for all j<k, so that, for
all F, P{CS;n} takes on its minimum value when 6 satisfies (3.5), and
one determines the sample size from the condition

(4.3) P{CS; n} =P(X,=Xax) = P*

when 6 satisfies (3.5). As alternatives to the means procedure one de-
fines the non-randomized rank-sum procedure S(H), under which one
selects 17, as best if S} (H )=m5xx S%,,(H), and the randomized rank-sum

procedure T(H), under which one selects 77, as best if T} . (H)=
majx T4 (H), where Sy ;(H) and T}, ;(H) are defined by (2.1) n,=n,=

...=mn,. The procedure S(H) just defined was suggested and its pro-
perties investigated by Lehmann [14].
The sample sizes ng and n, needed for S(H) and T'(H), respectively,

are determined from the requirement that (4.1) hold whenever é satisfies
(4.2), for given P* and d*. Because, as was mentioned in discussing
the subset formulation, E(Z(j) | H) and Z(4) are non-decreasing functions
of j, P(St«(H)=S} (H)) and P(T% . (H)=Tf, ,(H)) are non-increasing
functions of 6, for all j<k. Therefore, the infimum of P{CS; S(H)}
and P{CS; T(H)} over all parameter points (4.2) occurs at the configu-
ration (8.5), and one determines n»s and n, from the conditions

(4.4) P(S%,«(H)=S# (H), for all 7)=P*
when 6 satisfies (3.5), and
(4.5) P(T}; (H)=T} (H), for all i)=P*

when 6 satisfies (3.5). Let us note first of all that for this indifference
zone’ formulation there is no result comparable to Theorem 3.1, that is,
one cannot compute n, explicitly for T(H), since under the configuration
(8.5) the joint distribution of the T% (H) is not known. Thus T(H)
has no apparent advantage over S(H) for finite sample sizes in the
present formulation, as it did in the subset formulation.

The results of Lehmann [14] for the means procedure and the pro-
cedure S(H) will now be briefly mentioned for the sake of completeness.
It will then be shown, using the results of Section 2, that the same
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results are true for the randomized procedure T (H).
To this end, consider again a sequence of situations for increasing =,
in which (4.3), (4.4), and (4.5) are required to hold when 6 satisfies

(8.11). For the means procedure, if = is determined by (4.3) when 8
satisfies (3.11), then as » — oo (8.15) holds, where d is the solution of
(3.13) with d in place of ¢ (for a proof, see Lemma 1 of [14]). For the

procedure S(H), if ng is determined by (4.4) when @ satisfies (3.11) and
if F and J=H"! satisfy certain regularity conditions (for instance, the
sufficient condition of Govindarajulu, et al. [8] and the assumptions of
Lemma 7.2 of Puri [16]), then as ng— oo, (3.20) is satisfied, where d
is the solution of (3.13) with d in place of ¢ (for a proof see Lemma 2
of [10]). As a consequence of Corollary 2.2.2, one has the following
theorem.

THEOREM 4.1. If either (a) or (b) of Theorem 2.2 holds, if F and
J=H" satisfy the regularity condition of Govindarajulu, et al. [5] and
the assumptions of Lemma 7.2 of Puri [16] and if, for fized P*, n, is
determined so that (4.5) holds when 0 satisfies (3.11), then as mp— oo,
(8.22) 1is satisfied, where d 1s the solution of (3.13) with d replaced by c.

PROOF. (4.5) may be written as P(Ty (H)<0, 1=1, ---, k—1)=P*.
Let 6,, be a sequence of parameter points satisfying (3.11). Then as
shown in [14], the variables (24%/ns) "[Sy,i(H)—p(0n;)+ (0. 5)] have a
limiting joint normal distribution with means, variances and covariances
satisfying (3.14). Therefore, by Corollary 2.2.2, the same is true of the
variables (24%/n;) [Ty (H)—p0n,)+ (6,,)]. Thus (4.5) is equivalent
to lim P{W,<(2A4%nz) " *[11(B,,) — pi(B,,)], all i}=P*. Consequently, one

np—roo

requires that lim (24%/n, )" [¢(0,,) — p:(6,,)]=d/2"?, which will be true if

'ILT—DOO

and only if (3.22) holds.

Remark 4.1.1. For a given d*, the sample sizes n, ng and n, re-
quired for the three procedures to have the same minimum probability
P* of correct selection are to be determined from (4.3), (4.4) and (4.5)
when 6 satisfies (3.11). Setting d*=d™=d®s’>=d"r, it follows from
(8.15), (3.20) and (8.22) that n must satisfy (8.17) and ns and 7, must
satisfy (8.23). Consequently Theorem 3.3 and Example 3.2 hold also for
the indifference zone approach to the selection problem. (The expression
for A(S(H), M) in (3.24) was obtained by Lehmann [14] for the indiffer-
ence zone approach.)

Remark 4.1.2. Let the ¢th population be considered good if 6,=
Onax—d*, where d* is a given constant, and consider the probability that
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the selected distribution is good, for parameter points not satisfying
(3.5). Lehmann [14] has shown that if the sample sizes are related by
(3.24), then S(H) and the means procedure have the same asymptotic
probability of selecting a good population. The proof hinges on the fact
that for any sequence of parameter points satisfying (3.25), the joint
limiting distribution of the random variables (24%ns)~"2Sy (H) is that
of a (k—1)-dimensional normal vector satisfying (3.26), when » and ng
are related by (3.24). Since in the proof of Theorem 3.4 it was shown
that the random variables (24%n;)"2Ty . (H) have the same limiting
joint distribution under the identical conditions, it follows that T'(H) has
the same asymptotic probability of selecting a good population as S(H)
and the means procedure, when the sample sizes are related by (3.24).
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