ON TESTING CERTAIN HYPOTHESES

YUKIO SUZUKI

(Received May 30, 1967)

1. Introduction

Consider the following data generating process: For a non-negative integer r

$$\tilde{x}_{i} = \alpha_{0}\tilde{\theta}_{i} + \alpha_{1}\tilde{\theta}_{i-1} + \cdots + \alpha_{r}\tilde{\theta}_{i-r} + \tilde{\varepsilon}_{i} \qquad i = 0, 1, \cdots$$

where (i) $\tilde{\theta}_{-r}, \dots, \tilde{\theta}_{0}, \tilde{\theta}_{1}, \dots, \tilde{\theta}_{n}, \dots$ is a Bernoulli process with a parameter p, i.e. $\tilde{\theta}_i$'s are independently and identically distributed with a binomial distribution B(1, p), (ii) $\alpha_0, \alpha_1, \dots, \alpha_r$ are real and assumed to be known and (iii) $\{\tilde{\epsilon}_i\}_{i=0,1,...}$ is a sequence of random variables which are independently and identically distributed with the normal distribution $N(0, \sigma^2)$. Also it is assumed that $\{\tilde{\theta}_i\}$ and $\{\tilde{\epsilon}_i\}$ are independent. (It is clear from (1.1) that \tilde{x}_i and \tilde{x}_j are independent if |i-j| > r.) Further, we assume that $\{\tilde{x}_i\}$ is observable but $\{\tilde{\theta}_i\}$ and $\{\tilde{\epsilon}_i\}$ are not observable, the realized values of these random variables remaining always unknown. Then, our problem can be stated as follows: On the basis of the observed values $\{x_i\}_{i=0,\dots,n}$, how can we detect whether the realized value, θ_n , of $\tilde{\theta}_n$ was 0 or 1? This problem is considered as a special case of the general problem which was treated by M. Tainiter [3]. However, it will be worthwhile treating the model (1.1), because the model seems to be prevailing in various fields of application. Also this will serve as a good example of the empirical Bayes approach ([1], [2]).

2. Bayes solution when p and σ^2 are known

From the data generating process (1.1), it is easily seen that the process $(\tilde{x}_n, \tilde{\theta}_n)_{n=0,1,...}$ is strictly stationary. Also the stochastic process $\{\tilde{x}_n\}_{n=0,1,2,...}$ is marginally strictly stationary. The definition of marginal stationarity is given by Tainiter ([3] Definition 2.2).

The conditional joint distribution function of $\{\tilde{x}_{k_i}\}_{i=1,\dots,s}$ given specified values of all random parameters which appear in the model of each \tilde{x}_{k_i} $i=1,\dots,s$ is given by

$$(2.1) F(x_{k_1}, \dots, x_{k_s} | \boldsymbol{\theta}_{k_1}, \dots, \boldsymbol{\theta}_{k_s})$$

$$= \left(\frac{1}{2\pi\sigma^2}\right)^{s/2} \int_{-\infty}^{x_{k_1}} \dots \int_{-\infty}^{x_{k_s}} \exp\left[-\frac{\sum\limits_{i=1}^s (x_{k_i} - \boldsymbol{\theta}_{k_i} \boldsymbol{\alpha})^2}{2\sigma^2}\right] dx_{k_s} \dots dx_{k_1}$$

where we assume $k_1 < k_2 < \cdots < k_s$ and define

(2.2)
$$\begin{aligned} \boldsymbol{\theta}_{k_i} &= (\theta_{k_i}, \, \theta_{k_i-1}, \cdots, \, \theta_{k_i-r}) & i = 1, \cdots, \, s \\ \boldsymbol{\alpha} &= (\alpha_0, \, \alpha_1, \cdots, \, \alpha_r)' \, . \end{aligned}$$

However, since $\theta_{k_1}, \dots, \theta_{k_s}$ may have common elements, the following expression will be more appropriate. Let us define $\theta_{(k_1,\dots,k_s)}$ as the vector which is obtained by arranging the elements of $\theta_{k_1}, \dots, \theta_{k_s}$ in the order of magnitude of the subscripts without duplication. Further, let $d(k_1, \dots, k_s)$ denote the dimension of $\theta_{(k_1,\dots,k_s)}$. Then, the left-hand side of (2.1) can be written as $F(x_{k_1},\dots,x_{k_s}|\theta_{(k_1,\dots,k_s)})$. Now, writing $\theta_{(k_1,\dots,k_s)} = (\theta_1, \theta_2, \dots, \theta_{d(k_1,\dots,k_s)})$, the probability function of $\tilde{\theta}_{(k_1,\dots,k_s)}$ is given by

$$(2.3) \quad g_d(\boldsymbol{\theta}_{(k_1,\dots,k_s)}) = \left\{ \begin{array}{ll} p^{\boldsymbol{\theta}_{(k_1,\dots,k_s)} \mathbf{1}_d} (1-p)^{d-\boldsymbol{\theta}_{(k_1,\dots,k_s)} \mathbf{1}_d} & \text{for } \boldsymbol{\theta}_{(k_1,\dots,k_s)} \in S \text{ ,} \\ 0 & \text{otherwise ,} \end{array} \right.$$

where

$$S = \{(\theta_1, \dots, \theta_d) \mid \theta_i = 0 \text{ or } 1, 1 \leq i \leq d = d(k_1, \dots, k_s)\}$$

and

 $\mathbf{1}_d \!=\! d(k_{\scriptscriptstyle 1}, \cdots, k_{\scriptscriptstyle s})$ -dimensional column vector whose components are all 1.

Using the integral representation with respect to a discrete measure, we have the marginal distribution function of $\tilde{x}_{k_1}, \dots, \tilde{x}_{k_s}$ as follows:

(2.4)
$$F(x_{k_1}, \dots, x_{k_s}) = \int_{S} F(x_{k_1}, \dots, x_{k_s} | \boldsymbol{\theta}_{(k_1, \dots, k_s)}) g_d(\boldsymbol{\theta}_{(k_1, \dots, k_s)}) dN(\boldsymbol{\theta}_{(k_1, \dots, k_s)})$$

where N(A) is the counting measure of $A \subset S$ which is defined by N(A) = number of points of S contained in A.

The problem stated in the previous section is a two-decision problem, the action space being $\{A_0, A_1\}$ where A_0 and A_1 are actions to decide $\theta=0$ and $\theta=1$, respectively. We shall consider the following loss function:

(2.5)
$$L(A_{i}, \theta) = \begin{cases} 0 & \text{if } \theta = i, \\ w_{1} & \text{if } i = 0 \text{ and } \theta = 1, \\ w_{0} & \text{if } i = 1 \text{ and } \theta = 0. \end{cases}$$

A decision procedure for our detection problem is a sequence of decision functions, $T = \{t_k\}_{k=0,1,2,\dots}$, where each decision function t_k takes on values in the action space A. When p and σ^2 are known, it is reasonable to restrict ourselves to decision functions t_k which depend only on x_{k-r}, \dots, x_k , since x_0, \dots, x_{k-r-1} do not supply any information for the detection of θ_k . Then, the Bayes risk of a decision function t_{ν} for the detection of θ_{ν} , say $R(t_{\nu}; p, \sigma^2)$, is, for $\nu \geq r$,

$$(2.6) \qquad R(t_{\nu}; p, \sigma^2) \equiv \int_{R_d} \int_{R_{r+1}} L[t_{\nu}(x_{\nu-r}, \dots, x_{\nu}), \theta_{\nu}] \\ \cdot dF(x_{\nu-r}, \dots, x_{\nu} \mid \boldsymbol{\theta}_{(\nu-r}, \dots, \nu)) g_d(\boldsymbol{\theta}_{(\nu-r}, \dots, \nu)) dN(\boldsymbol{\theta}_{(\nu-r}, \dots, \nu))$$

where, in fact, $d=d(\nu-r,\cdots,\nu)=2r+1$ and

$$(2.7) \boldsymbol{\theta}_{(\nu-r,\ldots,\nu)} = (\theta_{\nu-2r},\cdots,\theta_{\nu}).$$

We can write $\theta_{(\nu-r,\dots,\nu)} = (\theta_{(\nu-r,\dots,\nu-1)}, \theta_{\nu})$ and so

$$(2.8) g_d(\boldsymbol{\theta}_{(\nu-r,\dots,\nu)}) = p^{\boldsymbol{\theta}_{(\nu-r,\dots,\nu-1)}\mathbf{1}_{d-1} + \theta_{\nu}} (1-p)^{d-\boldsymbol{\theta}_{(\nu-r,\dots,\nu-1)}\mathbf{1}_{d-1} - \theta_{\nu}}$$
$$= p^{\theta_{\nu}} (1-p)^{1-\theta_{\nu}} g_{d-1}(\boldsymbol{\theta}_{(\nu-r,\dots,\nu-1)}).$$

Let us define, for i=0 or 1,

(2.9)
$$F_{i}(x_{\nu-r},\cdots,x_{\nu} \mid \boldsymbol{\theta}_{(\nu-r,\dots,\nu-1)}) \equiv F(x_{\nu-r},\cdots,x_{\nu} \mid (\boldsymbol{\theta}_{(\nu-r,\dots,\nu-1)},i))$$

and

(2.10)
$$F_{i}(x_{\nu-r},\dots,x_{\nu}) \equiv \int_{R_{d-1}} F_{i}(x_{\nu-r},\dots,x_{\nu} | \boldsymbol{\theta}_{(\nu-r,\dots,\nu-1)}) \cdot g_{d-1}(\boldsymbol{\theta}_{(\nu-r,\dots,\nu-1)}) dN(\boldsymbol{\theta}_{(\nu-r,\dots,\nu-1)}).$$

Since

(2.11)
$$R(t_{\nu}; p, \sigma^{2}) = (1-p) \int_{R_{d-1}} \int_{R_{r+1}} L(t_{\nu}, 0) dF_{0}(x_{\nu-r}, \dots, x_{\nu} \mid \boldsymbol{\theta}_{(\nu-r, \dots, \nu-1)})$$

$$\cdot g_{d-1}(\boldsymbol{\theta}_{(\nu-r, \dots, \nu-1)}) dN(\boldsymbol{\theta}_{(\nu-r, \dots, \nu-1)})$$

$$+ p \int_{R_{d-1}} \int_{R_{r+1}} L(t_{\nu}, 1) dF_{1}(x_{\nu-r}, \dots, x_{\nu} \mid \boldsymbol{\theta}_{(\nu-r, \dots, \nu-1)})$$

$$\cdot g_{d-1}(\boldsymbol{\theta}_{(\nu-r, \dots, \nu-1)}) dN(\boldsymbol{\theta}_{(\nu-r, \dots, \nu-1)})$$

we have

$$(2.12) \qquad R(t_{\nu}; p, \sigma^{2}) = (1-p)w_{0} \int_{R_{r+1}} t_{\nu}(x_{\nu-r}, \cdots, x_{\nu}) dF_{0}(x_{\nu-r}, \cdots, x_{\nu}) \\ + pw_{1} \int_{R_{r+1}} [1-t_{\nu}(x_{\nu-r}, \cdots, x_{\nu})] dF_{1}(x_{\nu-r}, \cdots, x_{\nu}).$$

Now, the random variables $\tilde{x}_{\nu-r}, \dots, \tilde{x}_{\nu-1}$ are independent of the random variable $\tilde{\theta}_{\nu}$, hence

$$(2.13) F(x_{\nu-r}, \dots, x_{\nu-1} | (\boldsymbol{\theta}_{(\nu-r, \dots, \nu-1)}, i)) = F(x_{\nu-r}, \dots, x_{\nu-1} | \boldsymbol{\theta}_{(\nu-r, \dots, \nu-1)}).$$

Therefore, we can write

$$(2.14) F_{i}(x_{\nu-r}, \dots, x_{\nu}) = \int_{R_{d-1}} \int_{R_{r}} F_{i}(x_{\nu} | x_{\nu-r}, \dots, x_{\nu-1})$$

$$\cdot dF(x_{\nu-r}, \dots, x_{\nu-1} | \boldsymbol{\theta}_{(\nu-r}, \dots, \nu-1))$$

$$\cdot g_{d-1}(\boldsymbol{\theta}_{(\nu-r}, \dots, \nu-1)) dN(\boldsymbol{\theta}_{(\nu-r}, \dots, \nu-1))$$

$$= \int_{R_{r}} F_{i}(x_{\nu} | x_{\nu-r}, \dots, x_{\nu-1}) dF(x_{\nu-r}, \dots, x_{\nu-1})$$

or

$$(2.15) dF_i(x_{\nu-r}, \dots, x_{\nu}) = dF_i(x_{\nu} \mid x_{\nu-r}, \dots, x_{\nu-1}) dF(x_{\nu-r}, \dots, x_{\nu-1}).$$

From (2.12) and (2.15), we obtain

$$(2.16) \qquad R(t_{\nu}; p, \sigma^{2}) = pw_{1} + \int_{R_{r+1}} [(1-p)w_{0}f_{0}(x_{\nu} \mid x_{\nu-r}, \cdots, x_{\nu-1}) \\ -pw_{1}f_{1}(x_{\nu} \mid x_{\nu-r}, \cdots, x_{\nu-1})]t_{\nu}(x_{\nu-r}, \cdots, x_{\nu})dx_{\nu} \\ \cdot f(x_{\nu-r}, \cdots, x_{\nu-1})dx_{\nu-r} \cdots dx_{\nu-1}$$

where $f_0(x_{\nu} | x_{\nu-r}, \dots, x_{\nu-1})$, $f_1(x_{\nu} | x_{\nu-r}, \dots, x_{\nu-1})$ and $f(x_{\nu-r}, \dots, x_{\nu-1})$ are probability density functions of $F_0(x_{\nu} | x_{\nu-r}, \dots, x_{\nu-1})$, $F_1(x_{\nu} | x_{\nu-r}, \dots, x_{\nu-1})$ and $F(x_{\nu-r}, \dots, x_{\nu-1})$, respectively.

The Bayes decision rule which minimizes $R(t_{\nu}; p, \sigma^2)$ is defind by

$$(2.17) t(x_{\nu-r}, \dots, x_{\nu}) = \begin{cases} 0 & \text{if } (1-p)w_0 f_0(x_{\nu} \mid x_{\nu-r}, \dots, x_{\nu-1}) \\ & -pw_1 f_1(x_{\nu} \mid x_{\nu-r}, \dots, x_{\nu-1}) > 0 , \\ 1 & \text{if } (1-p)w_0 f_0(x_{\nu} \mid x_{\nu-r}, \dots, x_{\nu-1}) \\ & -pw_1 f_1(x_{\nu} \mid x_{\nu-r}, \dots, x_{\nu-1}) \le 0 . \end{cases}$$

Since $f_i(x_{\nu} | x_{\nu-r}, \dots, x_{\nu-1}) = f_i(x_{\nu-r}, \dots, x_{\nu}) / f_i(x_{\nu-r}, \dots, x_{\nu-1})$, i = 0, 1, where $f_i(\cdot)$ is pdf of the corresponding cdf $F_i(\cdot)$, and $f_0(x_{\nu-r}, \dots, x_{\nu-1}) = f_1(x_{\nu-r}, \dots, x_{\nu-1}) = f_1(x_{\nu-r}, \dots, x_{\nu-1})$, the decision rule (2.17) can be written as follows:

$$(2.18) t(x_{\nu-r}, \dots, x_{\nu}) = \begin{cases} 0 & \text{if } (1-p)w_0 f_0(x_{\nu-r}, \dots, x_{\nu}) \\ -pw_1 f_1(x_{\nu-r}, \dots, x_{\nu}) > 0, \\ 1 & \text{if } (1-p)w_0 f_0(x_{\nu-r}, \dots, x_{\nu}) \\ -pw_1 f_1(x_{\nu-r}, \dots, x_{\nu}) \leq 0. \end{cases}$$

On the other hand, from (2.1) and (2.14) we have

$$f_{0}(x_{\nu-r},\dots,x_{\nu}) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{(r+1)/2} \int \exp\left[-\frac{1}{2\sigma^{2}} \left\{ \sum_{j=1}^{r} (x_{\nu-j} - \boldsymbol{\theta}_{\nu-j}\boldsymbol{a})^{2} + (x_{\nu} - \boldsymbol{\theta}_{\nu}^{*} \boldsymbol{a}^{*})^{2} \right\} \right] g_{d-1}(\boldsymbol{\theta}_{(\nu-r},\dots,\nu-1)) dN(\boldsymbol{\theta}_{(\nu-r},\dots,\nu-1))$$

$$f_{1}(x_{\nu-r},\dots,x_{\nu}) = \left(\frac{1}{2\pi\sigma^{2}}\right)^{(r+1)/2} \int \exp\left[-\frac{1}{2\sigma^{2}} \left\{ \sum_{j=1}^{r} (x_{\nu-j} - \boldsymbol{\theta}_{\nu-j}\boldsymbol{a})^{2} + (x_{\nu} - \alpha_{0} - \boldsymbol{\theta}_{\nu}^{*} \boldsymbol{a}^{*})^{2} \right\} \right] g_{d-1}(\boldsymbol{\theta}_{(\nu-r},\dots,\nu-1)) dN(\boldsymbol{\theta}_{(\nu-r},\dots,\nu-1))$$

where $\boldsymbol{\alpha}^* = (\alpha_r, \dots, \alpha_1)', \; \boldsymbol{\theta}_{\nu}^* = (\theta_{\nu-r}, \dots, \theta_{\nu-1}).$

Using the definition of $g_{d-1}(\theta_{(\nu-r,\ldots,\nu-1)})$, we have the decision rule (2.18) in the following form:

$$(2.20) t_{\nu}(x_{\nu-\tau}, \dots, x_{\nu}) = \begin{cases} 0 & \text{if } \phi(x_{\nu-\tau}, \dots, x_{\nu}; p, \sigma^2) > 0 \\ 1 & \text{if } \phi(x_{\nu-\tau}, \dots, x_{\nu}; p, \sigma^2) \leq 0 \end{cases}$$

where

$$(2.21) \qquad \phi(x_{\nu-r}, \dots, x_{\nu}; p, \sigma^{2})$$

$$= \sum_{\boldsymbol{\theta}_{(\nu-r}, \dots, \nu-1)} \left\{ (1-p)w_{0} - pw_{1} \cdot \exp\left(-\frac{1}{2\sigma^{2}} \left[\alpha_{0}^{2} - 2\alpha_{0}(x_{\nu} - \boldsymbol{\theta}_{\nu}^{*} \boldsymbol{\alpha}^{*})\right]\right) \right\}$$

$$\cdot p^{\boldsymbol{\theta}_{(\nu-r}, \dots, \nu-1)} \mathbf{1}_{d-1} (1-p)^{d-1} - \boldsymbol{\theta}_{(\nu-r}, \dots, \nu-1)} \mathbf{1}_{d-1}$$

$$\cdot \exp\left(-\frac{1}{2\sigma^{2}} \left[(x_{\nu} - \boldsymbol{\theta}_{\nu}^{*} \boldsymbol{\alpha}^{*})^{2} + \sum_{i=1}^{r} (x_{\nu-i} - \boldsymbol{\theta}_{\nu-i} \boldsymbol{\alpha})^{2}\right]\right).$$

The Bayes risk of the above decision rule $t_{\nu}(\cdot)$ is, for $\nu \geq r$,

(2.22)
$$R(t_{\nu}; p, \sigma^{2}) = pw_{1} + \int_{R_{r}} \left[\int_{K} \phi(x_{\nu-r}, \cdots, x_{\nu}; p, \sigma^{2}) dx_{\nu} \right] dx_{\nu-1} \cdots dx_{\nu-r}$$

where K denotes the set defined for each $(x_{\nu-r}, \dots, x_{\nu-1})$ as

$$K(x_{\nu-r},\dots,x_{\nu-1})=\{x_{\nu}\mid\phi(x_{\nu-r},\dots,x_{\nu};p,\sigma^2)<0\}.$$

It should be noted that $R(t_{\nu}; p, \sigma^2)$ does not depend on ν at all if $\nu \ge r$.

3. Empirical Bayes solution when p and σ^2 are unknown

In this section we will treat the same problem as in the previous sections, when p and σ^2 are unknown; we shall construct an empirical Bayes solution for this problem. For this purpose we need consistent estimates of p and σ^2 . As such estimates we consider \hat{p} and $\hat{\sigma}^2$ which are given in (3.1) and (3.9). Let us define, for $\nu=0,1,2,\cdots$

(3.1)
$$a_0 \hat{p}_{\nu} = \frac{1}{\nu + 1} \sum_{i=0}^{\nu} x_i$$

and

(3.2)
$$S_{\nu}^{2} = \frac{1}{N} \sum_{i=0}^{\nu} (x_{i} - a_{0}\hat{p}_{\nu})^{2}$$

for the data $\{x_i, i=0, 1, \dots, \nu\}$ from the data generating process (1.1), where $a_0 = \sum_{i=0}^{r} \alpha_i$ and we assume $a_0 \neq 0$. Further, define

$$a_0 \tilde{\hat{p}}_{\nu} = \frac{1}{\nu + 1} \sum_{i=0}^{\nu} \tilde{x}_i$$

and

(3.4)
$$\tilde{S}_{\nu}^{2} = \frac{1}{N} \sum_{i=0}^{\nu} (\tilde{x}_{i} - a_{0} \tilde{\hat{p}}_{\nu})^{2}$$
.

As is easily seen we have

$$(3.5) \qquad \mathbb{E}\{\tilde{\hat{p}}_{\mu}\} = p ,$$

and for $\nu \geq r$

(3.6)
$$E\{\tilde{S}_{\nu}^{2}\} = \frac{\nu+1}{\nu} p(1-p) \sum_{i=0}^{r} \alpha_{i}^{2} + \sigma^{2} - \frac{1}{\nu(\nu+1)} p(1-p) A_{\nu} ,$$

where $a_1 = \sum_{i=0}^{r-1} \alpha_i$, \cdots , $a_j = \sum_{i=0}^{r-j} \alpha_i$, \cdots , $a_r = \alpha_0$, $a_{-1} = \sum_{i=1}^r \alpha_i$, \cdots , $a_{-j} = \sum_{i=j}^r \alpha_i$, \cdots , $a_{-r} = \alpha_r$ and $A_{\nu} = \sum_{j=-r}^r a_j^2 + (\nu - r)a_0^2$ for $\nu \ge r$. Since the observable random variables are generated from independent random variables $\{\tilde{\theta}_i\}$ and $\{\tilde{\epsilon}_i\}$ as in the model (1.1), we can apply the zero-one law to the proofs of the following statements: When p and σ^2 are the true parameters we have

(3.7)
$$P\{\lim_{n\to\infty}\tilde{\hat{p}}_n=p\}=1$$

and

(3.8)
$$P\left\{\lim \tilde{S}_{\nu}^{2} = p(1-p) \sum_{i=0}^{\tau} \alpha_{i}^{2} + \sigma^{2}\right\} = 1.$$

Thus we obtain a consistent estimate of σ^2 :

(3.9)
$$\hat{\sigma}_{\nu}^{2} = S_{\nu}^{2} - \hat{p}_{\nu} (1 - \hat{p}_{\nu}) \sum_{i=0}^{r} \alpha_{i}^{2}.$$

An empirical Bayes decision rule $\{t_{\nu}^*\}$ is thus defined by

$$(3.10) t_{\nu}^{*}(x_{0}, \dots, x_{\nu}) = \begin{cases} 0 & \text{if } \phi(x_{\nu-r}, \dots, x_{\nu}; \hat{p}_{\nu}, \hat{\sigma}_{\nu}^{2}) > 0, \\ 1 & \text{otherwise,} \end{cases}$$

where ϕ is the function defined in (2.21). Now, to express explicitly that the density functions in the previous section depend on the unknown parameters p and σ^2 , we write $f_i(x_{\nu} | x_{\nu-r}, \dots, x_{\nu-1}; p, \sigma^2)$, $f(x_0, \dots, x_{\nu-r-1} | x_{\nu-r}, \dots, x_{\nu-1}; p, \sigma^2)$ instead of the corresponding density functions.

In the remainder of this section we wish to prove that the sequence of risks of the decision rules $\{t_{\nu}^{*}\}$, $\{R_{\nu}^{*}(t_{\nu}^{*}; p, \sigma^{2})\}$, coincides asymptotically with the Bayes risk of the decision rule $\{t_{\nu}\}$ given by (2.22). Since \hat{p}_{ν} and $\hat{\sigma}_{\nu}^{2}$ are consistent estimate of p and σ^{2} , it is quite plausible that for any p ($0 \le p \le 1$) and σ^{2} (>0)

(3.11)
$$\lim_{\nu \to \infty} R_{\nu}^{*}(t_{\nu}^{*}; p, \sigma^{2}) = R(t_{\nu}; p, \sigma^{2}).$$

It should be noted that $R(t_{\nu}; p, \sigma^2)$ is independent of ν if $\nu \ge r$. We shall consider only the case when $\nu \ge r$.

PROOF OF (3.11).

$$(3.12) \qquad R_{\nu}^{*}(t_{\nu}^{*}; p, \sigma^{2}) = pw_{1} \operatorname{E}\{1 - t_{\nu}^{*}(\tilde{x}_{0}, \cdots, \tilde{x}_{\nu}) \mid \tilde{\theta}_{\nu} = 1\} \\ + (1 - p)w_{0} \operatorname{E}\{t_{\nu}^{*}(\tilde{x}_{0}, \cdots, \tilde{x}_{\nu}) \mid \tilde{\theta}_{\nu} = 0\} \\ = pw_{1} + \int_{R^{\nu-r}} \int_{R^{r}} \int_{R^{1}} t_{\nu}^{*} \phi(x_{\nu-r}, \cdots, x_{\nu}; p, \sigma^{2}) dx_{\nu} \\ \cdot f(x_{\nu-r}, \cdots, x_{\nu-1} \mid x_{0}, \cdots, x_{\nu-r-1}; p, \sigma^{2}) dx_{\nu-r} \cdots dx_{\nu-1} \\ \cdot f(x_{0}, \cdots, x_{\nu-r-1} \mid p, \sigma^{2}) dx_{0} \cdots dx_{\nu-r-1}$$

where

(3.13)
$$\phi(x_{\nu-r},\dots,x_{\nu};p,\sigma^2) = (1-p)w_0f_0(x_{\nu} \mid x_{\nu-r},\dots,x_{\nu-1};p,\sigma^2) \\ -pw_1f_1(x_{\nu} \mid x_{\nu-r},\dots,x_{\nu-1};p,\sigma^2).$$

Interchanging the order of integration and replacing the variables $x_{\nu-\tau}$, \dots , x_{ν} by $y_0, y_1, \dots, y_{\tau}$, respectively, we have

$$(3.14) \qquad R_{\nu}^{*}(t_{\nu}^{*}; p, \sigma^{2}) = pw_{1} + \int_{R^{r}} \left\{ \int_{R^{1}} \left(\int_{R^{\nu-r}} t_{\nu}^{*}(x_{0}, \cdots, x_{\nu-r-1}, y_{0}, \cdots, y_{r}) \right. \right. \\ \left. \cdot f(x_{0}, \cdots, x_{\nu-r-1} | y_{0}, \cdots, y_{\nu-1}; p, \sigma^{2}) dx_{0} \cdots dx_{\nu-r-1} \right) \\ \left. \cdot \phi(y_{0}, \cdots, y_{r}; p, \sigma^{2}) dy_{r} \right\} f(y_{0}, \cdots, y_{r-1}; p, \sigma^{2}) \\ \left. \cdot dy_{0} \cdots dy_{r-1} \right.$$

Now

(3.15)
$$\int_{\mathbb{R}^{\nu-r}} t_{\nu}^{*}(x_{0}, \cdots, x_{\nu-r-1}, y_{0}, \cdots, y_{r}) \\ \cdot f(x_{0}, \cdots, x_{\nu-r-1} | y_{0}, \cdots, y_{r}; p, \sigma^{2}) dx_{0} \cdots dx_{\nu-r-1} \\ = P\{t_{\nu}^{*}(\tilde{x}_{0}, \cdots, \tilde{x}_{\nu-r-1}, y_{0}, \cdots, y_{r}) = 1 | p, \sigma^{2}\} \\ = P\{\phi(y_{0}, \cdots, y_{r}; \tilde{\pi}_{\nu}, \tilde{\tau}_{\nu}) < 0 | p, \sigma^{2}\}$$

where

(3.16)
$$\begin{aligned}
\tilde{\pi}_{\nu} &= \hat{p}_{\nu}(\tilde{x}_{0}, \cdots, \tilde{x}_{\nu-r-1}, y_{0}, \cdots, y_{r}) \\
\tilde{\tau}_{\nu} &= \hat{\sigma}_{\nu}^{2}(\tilde{x}_{0}, \cdots, \tilde{x}_{\nu-r-1}, y_{0}, \cdots, y_{r}) .
\end{aligned}$$

From (3.7), (3.8) and (3.9) we have

(3.17)
$$\begin{aligned} & & \text{P}\{\lim_{\nu \to \infty} \tilde{\pi}_{\nu} = p \mid p, \, \sigma^{2}\} = 1 \\ & & \text{P}\{\lim_{\nu \to \infty} \tilde{\tau}_{\nu} = \sigma^{2} \mid p, \, \sigma^{2}\} = 1 \; . \end{aligned}$$

From (3.17) and the continuity of $\phi(y_0, \dots, y_r; p, \sigma^2)$ in p and σ^2 , we obtain

(3.18)
$$\lim_{\nu \to \infty} P\{\phi(y_0, \dots, y_r; \tilde{\pi}_{\nu}, \tilde{\tau}_{\nu}) < 0 \mid p, \sigma^2\}$$

$$= \begin{cases} 0 & \text{if } \phi(y_0, \dots, y_r; p, \sigma^2) > 0 \\ 1 & \text{if } \phi(y_0, \dots, y_r; p, \sigma^2) < 0 \end{cases}.$$

By the Lebesgue dominated convergence theorem, we have, from (3.14), (3.15) and (3.18),

(3.19)
$$\lim_{\nu \to \infty} R_{\nu}^{*}(t_{\nu}^{*}; p, \sigma^{2}) = pw_{1} + \int_{R^{r}} \int_{K} \phi(y_{0}, \cdots, y_{r}; p, \sigma^{2}) \cdot dy_{r} f(y_{0}, \cdots, y_{r-1}; p, \sigma^{2}) dy_{0} \cdots dy_{r-1}$$

where K is the set defined by (2.23). Thus the proof has been completed.

REFERENCES

- H. Robbins, "The empirical Bayes approach to statistical decision problems," Ann. Math. Statist., 35 (1964), 1-20.
- [2] E. Samuel, "An empirical Bayes approach to the testing of certain parametric hypotheses," Ann. Math. Statist., 34 (1963), 1370-1385.
- [3] M. Tainiter, "Sequential hypothesis tests for the r-dependent marginally stationary processes," Ann. Math. Statist., 37 (1966), 90-97.