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1. Introduction

Consider the following data generating process: For a non-negative
integer r

(1.1) 5:,=a05¢+ax5¢_1+ e +a,5¢_,+5¢ 'I:=0, 1, e

where (i) 6_,,-+-, 64, 6y, +, 0,,+-+ is a Bernoulli process with a param-

eter p, i.e. 6’s are independently and identically distributed with a bi-
nomial distribution B(1, p), (ii) ay, a;,- -, @, are real and assumed to be
known and (iii) {%;}i,,... is a sequence of random variables which are
independently and identically distributed with the normal distribution

N(0, ¢®. Also it is assumed that {6,} and {%,} are independent. (It is
clear from (1.1) that #; and %, are independent if |i—j|>7.) Further,

we assume that {%} is observable but {6,} and {Z,} are not observable,
the realized values of these random variables remaining always unknown.
Then, our problem can be stated as follows: On the basis of the ob-
served values {z,}:-...., how can we detect whether the realized value,

6,, of 6, was 0 or 1? This problem is considered as a special case of
the general problem which was treated by M. Tainiter [3]. However,
it will be worthwhile treating the model (1.1), because the model seems
to be prevailing in various fields of application. Also this will serve as
a good example of the empirical Bayes approach ([1], [2]).

2. Bayes solution when p and ¢* are known

From the data generating process (1.1), it is easily seen that the

process (Z,, 5,,),,=0,1,... is strictly stationary. Also the stochastic process
{Z.}n=0,1,2,... is marginally strictly stationary. The definition of marginal
stationarity is given by Tainiter ([3] Definition 2.2).

The conditional joint distribution function of {%}:,, ..., given speci-
fied values of all random parameters which appear in the model of each

&, 1=1,---,s is given by
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(2'1) F(xklr"’, xk,loklr""ok)

8
8

() ey [_&;“_)}dx dm

—00

where we assume k,<k,<..-<k, and define

oki“_‘(aki’ 0"1"1’ cty 0ki—r) 'i=1, RRPE |
2.2)

a=(a0’ £ ST ar)' .
However, since 6, ,---, 6., may have common elements, the following
expression will be more appropriate. Let us define 0,....x,, as the vector
which is obtained by arranging the elements of 6, -+, 0, in the order
of magnitude of the subscripts without duplication. Further, let d(k;,

+++, k,) denote the dimension of 0a,....xy. Then, the left-hand side of
(2.1) can be written as F(@e, -, @, | Oy,.np).  Now, writing Ok

oy oo kpla(] — p)d—O0ey-kpla for B, ... €8,
D oy ees g

2.3 Ou,.c.ot)=
(2.3) g4 s ,k,)) 0 otherwise ,

where

S={(6y,--+,0)10:=00r 1, 1<i<d=d(k;,- -+, k,)}
and

1,=d(k;,- - -, k.)-dimensional column vector whose components are
all 1.

Using the integral representation with respect to a discrete measure,
we have the marginal distribution function of Ty, -, &, as follows:

2.4) F(wyy,- -, w)
=S Flay,, -, o, | Ok, 10)93( Ok ., 1) AN (O i .. 1))
s

where N(A) is the counting measure of ACS which is defined by N(A)
=number of points of S contained in A.

The problem stated in the previous section is a two-decision problem,
the action space being {A,, A;} where A, and A, are actions to decide
6=0 and #=1, respectively. We shall consider the following loss function:

0 if =1,
(2.5) LA, 0)=: w, if 4=0 and =1,
w, if ©=1 and 6=0.
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A decision procedure for our detection problem is a sequence of de-
cision functions, 7'={¢,}s-o,1,,..., Where each decision function ¢, takes on
values in the action space A. When p and ¢* are known, it is reason-
able to restrict ourselves to decision functions ¢, which depend only on
Lp—ry®**y Ly, SiNCE Xy, ++, X;_,_, do not supply any information for the de-
tection of 6,. Then, the Bayes risk of a decision function ¢, for the de-
tection of 6,, say R(t,; p, ¢%), is, for v=7r,

26)  R(t;p, "Z)ESR,,S

¢ dF(xv—n e, T, I 0(v—r, ---,u))gd(o(»—r,o--,v))dN(o(v-r,-".u))

L[tu(wv—r’ b ’ wv)’ 0»]
+1

Ry

where, in fact, d=d(v—7,---,v)=2r+1 and

2.7 Oreey=(00o2r,-++,0,).

We can write 6,_,.....,=(0_,...,.-1 6,) and so

(2.8) gd(a(u_r’“.,v))=p0(v—r,...,v—l)ld—1+0u(1_p)d-o(v—r,-..,y—])ld—l—ﬂu
=p?(1—p) =09, 1(O—r, ..o—1) -

Let us define, for +=0 or 1,

(2.9) Fi@rrt o 8| Oryosu0) SF &y -+, 8| (Bumr, ey, 1))

and

@10)  F@on2)=|  Fi@en o 0l Oons)

* gd—l(o(u—r, -~-,v—l))dN(0(v—-T, ---,v—l)) .

Since
(2.11) R, ;p,¢)=(1—Dp) S 5 L(t,, 0)dF &,y +, 2, [ O¢r,...s—1))
Rg—-1JRBRr41
* gd-l(a(v-r,--u,v—l))dN(o(v—r,---,v—l))
+p S S L(tw l)d-F'l(xv-n e, Xy l o(v—r,-n,v—l))
Rg—1 JBrq1
. gd—l(a(u-r,---,u-1))dN(0(v—r,---,u—1))
we have

(2-12) R(t,, oy 0.2)____(1_p)w0 SR tv(xv—n ttty w,,)dFo(x,_,, ] xu)
+1

T

+pw, S (L t@ery -y )AF (s -+, 1) -
Br41

r
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Now, the random variables %,_,,---, #,_, are independent of the random
variable 6,, hence

(2‘13) F(xv—ﬂ ey Xy [ (0(V—T,"',v—1)7 ?:)):F(xv—ry ey Xyg I 0(v—r,--~,v—-1)) .

Therefore, we can write

@1  F@oa)=| | Felo,n)
Rjg_1JR

r

= dF(x,_,-, ey Xy I 0(v—r,---,v—1))
° gd—l(o'(v—r,--',v—l))dN(o(v—T,-'-,V—l))

= SR Fi(xv l Lyery* xv—l)dF(xu—r! ct %y xu-—l)

or
(2'15) dFi(xv—r: Ty xV)zdR(xv | Lyery* oy x,_l)dF(xu_,, Yy xv—l) .

From (2.12) and (2.15), we obtain
(2.16)  R(.;p, 02)=W1+SR [A—p)wof (., | Xy s+ -, @y)
r+1
_Wlfl(xv I Lymry* oy xv—l)]tu(xv—’r9 82 Ry xv)dxv
* f(xv—r, ) xu—l) dmv—r SUE dwv—l

where fyx,|2.—,, -+, 2.-0), i@ |y, o+, @) and f(x,—,, ---, 2,_;) are
probability density functions of Fy(x,|®,—,---, ®,—y), Fi(x,|20,, -+, 2,_y)
and F(x,_,, -+, 2,_;), respectively.

The Bayes decision rule which minimizes R(¢,; p, ¢°) is defind by

0 if A—p)wofo(e,|b,—yry- -+, 2,—y)
_pwlfl(xu | Lyery® s xu—1)>0 ’

1 if A—pwofu@. | Ty, 0,-y)
—pwi fi(®, | Bory e+ -, 2,4)=0.

@17ty e, @)=

Since f‘t(xy l Loery **°y xv—l)zfi(xu—n Yy xu)/f‘i(xv—'r! ct x»-—l); ’i=07 17 Where
fi(+) is pdf of the corresponding cdf Fi(:), and fy(x,_,,-- -, %,_))=fi(@._,,
coe, X, ) =f(%o—ry * * +, X,—;), the decision rule (2.17) can be written as fol-
lows :

0 if (1—p)w0f0(xu—n tt xv)
—pwlfl(xu—n ct 0y x,,)>0 ’

1 if (1—p)w0f0(xv—r’ ct Y xv)
—Wlfl(wv—r} ct xp)éo .

(2.18) @,y --, T)=
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On the other hand, from (2.1) and (2.14) we have

Fi@emrre s 2= (52 [ exp | — L S @0 sar

+ (2, — 0% a*)?-}]g¢-1(0<,_,,...,,_D)dN(o(,_,,...,y_n)
(2.19)

e ) M e Do [ P,

+(xy—ao—'o:‘a*)2}]gd-l(oc,-,,...,,_,,>dN(o@_,,...,,_D)

where a*=(ar’ ttty al)ly 0:k=(0v—n ttcy 0::—1)'
Using the definition of g, ,(f.--....,-»), We have the decision rule
(2.18) in the following form :

0 if ¢@r,re, 23D, 0)>0

2.20 t., v—ryt 0y W)= .
@20) 4 =) {1 i (s, @3y )0

where

2.21)  ¢(@yyr e, 25D, 60
_ 1 % %
= = |a-pu—puexp(— 5 la—2am—0ran))}

O¢—7,ee0,0-1)
. p’(v—r, . -,v—l)ld—l(l _p)d—' 1 —0(»—7', ---,v-l)ld—l

. R N P RO _ 2])
exp( 202[(93, OFa*) +jZ=]l(x,-, 0,_;a)|).
The Bayes risk of the above decision rule ¢,(.) is, for v=7,

@22)  Re;p A=pot| (| s 050 on]dnns - da..,

E?‘
where K denotes the set defined for each (x,_,,---, z,-;) as
K(xv—r! b '! xv—l)={wv I ¢(xv—-f’ ** " xv ; p’ 02)<0} .
It should be noted that R(¢,; D, ¢*) does not depend on v at all if v=7.

3. Empirical Bayes solution when p and ¢* are unknown

In this section we will treat the same problem as in the previous
sections, when p and ¢ are unknown; we shall construct an empirical
Bayes solution for this problem. For this purpose we need consistent
estimates of p and ¢*. As such estimates we consider » and ¢* which
are given in (3.1) and (3.9). Let us define, for »=0,1,2,---
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L1
(3.1) Gp = B
and
3.2) Si=1 51 (r,—ap)
y i=0

for the data {«;,7=0,1,---,v} from the data generating process (1.1),

r
where a,=>) «; and we assume a,#0. Further, define
=0

x 1 4.
3.3) Gh =7 I
and
(3.4) St=1 51 (@—ap).
Y i=0

As is easily seen we have

(3.5) E{p}=p,

and for v=7r

86 ES)="tlpi-pITadte——L _p1-pa4,,
v i=0 v(v+1)
Where alzgai’ cesy aj= gat’ v, A =0, a-1=é Ay * 0, a_,: é [>7ZC N
i=0 i=0 i=1 i=j

e_,=a, and A,=j_{_,_." a}+(v—r)a; for v=r. Since the observable random

variables are generated from independent random variables {6} and {Z,}
as in the model (1.1), we can apply the zero-one law to the proofs of
the following statements: When p and ¢* are the true parameters we
have

3.7) P{lim 5, =p}=1
and
3.8) P{lim §=p(1—p) ga§+oz} ~1.

Thus we obtain a consistent estimate of ¢%:

(3.9) a=S—-p(l-p) 2 dl.
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An empirical Bayes decision rule {¢}} is thus defined by

0 if ¢(w,_,, ce, X, ; IA)H &E)>0 ’

3.10)  t5(@ey- -+, 3= ,
( ) @ @) 1 otherwise ,

where ¢ is the function defined in (2.21). Now, to express explicitly
that the density functions in the previous section depend on the unknown
parameters p and ¢, we write fi(x,| %, ., ¢, Toog; D 0%, S (@0 e, Tumps |
Boyy ov s Xt} Dy 0, f@oey, +++, 4,13 D, ¢") instead of the corresponding
density functions.

In the remainder of this section we wish to prove that the sequence
of risks of the decision rules {t¥}, {RX(t*;p, %)}, coincides asymptotically
with the Bayes risk of the decision rule {t,} given by (2.22). Since p,
and & are consistent estimate of p and ¢% it is quite plausible that for
any p (0<p=1) and ¢ (>0)

(8.11) lim R¥(t*; p, ) =R(¢,; p, o) .

y—o0

It should be noted that R(¢,;p, ¢°) is independent of v if v=r. We shall
consider only the case when v=r.

PROOF OF (3.11).
(3.12)  RX(t¥;p, o)=pw E{1—tX@,---, &) |0.=1}
+(1—p)w, B{t¥(@y, - - -, &) 6.=0}
=pw1+g v_,S g (@, e -, 3,5 D, 0V)d,
R R R
¢ f(xv-r! "ty w,,_1|xo, LI P / a’)dx,_, eee dm,_1
< f(@oy e+ 0y B yey | Dy )XY - - dX_
where
(3'13) ¢(x»—n e, 0,5 D, Uz)=(1_p)w0f0(xu ! Ly sty X1y D, 02)
—pw [i(®, | oyt oy By 3D, )

Interchanging the order of integration and replacing the variables =,_,,
«eo, 2, bY Y0, Y1, -, Y., respectively, we have

@10 Rrese d=put| (] (| #@ oo )

RV
<@gy v oy Tomrmt | Yoo v Y15 D, a)da,- - 'dxv—r—l)

° ¢(yo, c Yrs D Gz)dy,-if(yo,' y Yr-13 D 02)

c dyor - dY,—y .
Now
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(3'15) SR”_' t:k(xm oy Bumyety Yoy 0 0 0y yr)

° f(moy ety Bymgy I Yo,*** Yr 3 Dy o'z)dxo'r * 'dxv—r—l
=P{t:k(§70’ ] :Eu—r—lr Yo+ yr)=1 I v, 0.2}
=P{¢(y09 Y ;Ev’ %u)<0 | D, 02}

where

=f’u(§70v Yy au-—’r—l! Yoy **5 yr)

Ell

(3.16) i
T.,=&z(féo; 0y iv—r—l) Yor** yr) .

From (3.7), (3.8) and (3.9) we have
P{lim z,=p|p, i’} =1

3.17
@.17) P{lim #,=d*| p, o*} =1.

From (3.17) and the continuity of é(ys,- -+, ¥.; P, ¢°) in p and %, we ob-
tain '
(3.18) lim P{g(y, - -, ¥ 7., 7.)<0|p, o’}
={ 0 if ¢(y0""’yr;p)02)>0
1 if ¢(yoy"°yyr;p!02)<0'

By the Lebesgue dbminated convergence theorem, we have, from
(3.14), (3.15) and (3.18),

(3.19) lmRr @ ip, A=pwt| | oo vip )
C Y W s Yross Dy )Yy - - dY s

where K is the set defined by (2.23). Thus the proof has been com-
pleted.
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