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1. Introduction

In the practical situation of estimation of a power spectrum we
shall proceed as follows:

1. First, we set the resolvability required of the estimate, which
determines the bandwidth (in some sense or other) of the spectrum
window to be adopted for estimation, and then

2. We settle the requirement of the statistical accuracy or the
sampling variability of the estimate, which is determined by the length
of data used in the computation.

In case these two requirements of the estimate are given it is
a simple matter to provide an estimate satisfying these two conditions,
if only the desired length of observation is available. But, in most of
the practical situations of estimation of power spectra, we usually can
not have much confidence in the primary selection of resolvability of
the estimate (or the bandwidth of the spectrum window) and it is
a common practice to evaluate the adequacy of the primary selection
of resolvability after the result of computation of the spectrum is ob-
tained. Some people consider that we can evade the difficulty by set-
ting the required resolvability high enough. Unfortunately it is usual
that such a selection of resolvability requires formidable length of orig-
inal data to attain the desired low level of sampling variability. This
means that our smoothing operator (spectrum window) in the frequency
domain usually has to have a fairly narrow pass band (or a wide band-
width of spectrum window) to suppress the noise due to sampling fluc-
tuation and thus we inevitably have to pay our attention to the linear
distortion, or the bias, introduced by applying the smoothing operator.
The most natural way of evaluation of this distortion would be to
change the window in an intended manner so as to make the difference
of estimates sensitive to a prescribed type of bias and check the differ-
ence against its expected sampling variability. This is the procedure
we are going to discuss in this paper, and it is in close relation with
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the procedure proposed by H. E. Daniell [4].

There is another point to which we must pay our attention. This
is the practicability of the procedure, or the amount of necessary com-
putations for the procedure. The procedure is kept most simple and
economical if we adopt spectrum windows corresponding to lag windows
of trigonometric sum type [1, 3]. We shall see that the lag window
with different bias characteristics, obtained by the present author [1],
can quite conveniently be used for the present purpose. Applications
to an artificial set of data and two sets of real data are illustrated,
which suggest the practical applicability of the procedure. A result of
a Monte Carlo experiment is also included to verify the validity of
mathematical derivations in this article.

2. Test statistics or an index of bias

Throughout the present paper, we shall assume that a record
{2(t): —T<t<T} of stationary time series is given and consider that
type of estimate of power spectrum which is given by a smoothed
periodogram. Thus our estimate would be of the form

P(f)=3 WiI(f;= 1)

where
|1 { —q _J__) :
1£)= | | exp (—ize Lot)orar|
P =— (k:O’ il’ -|_—2, ...)

and {W,} is a set of real numbers satisfying 3] W,=1 and defining the
k

smoothing operator or the spectrum window. When the original data
x(t) is discrete in time, the integration in the above formula should be
interpreted as a corresponding summation.

We define our index of bias b(f;) by

sy el
=)

where p,,(f;) is obtained by replacing { W,} in the definition of $,(f;)
by {4W,} satisfying the condition % 4W,=0.

We select {W.} as an ordinary spectrum window which responds
to rather slow (low frequency) change of the spectrum in frequency
and {4W,} as a window which responds mainly to the rapid (high fre-
quency) change of the spectrum. Thus if there is a significant energy
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of power spectrum at higher frequencies (in frequency) filtered out by
{W.}, b(f,) will show a significantly positive or negative value and
otherwise it will remain in the neighborhood of zero. It is expected
that {4W,} can be such that b(f;) will be significantly positive where
Du(f;) is significantly lower than the true p(f;) and vice versa. We
should have only to check the value of b(f;) against its expected sam-
pling variability to evaluate the significance of the value.

In this article we assume that I(f,)’s appearing in the summation
are mutually independent and following negative exponential distribu-
tion with EI(f,)=p(f,), where p(f) is the power spectral density func-
tion of the process xz(t) and is assumed to be locally sufficiently smooth
to make the present assumption reasonable (see section 4 of [2])*.

We have

Bpu(f)= Winlf;— )
and
D*p.(f;)= % Wi fi— 1) -

Thus if we can assume in the summation that p(f;— fi) is nearly equal
to p(f;) we get the (approximate) relations

Ep.(f)=p(f))
Dpo(fy)=(E Wp'(fy) -

Now we assume that {W,} is the set of Fourier coefficients of a square
integrable time-domain function D(t), i.e., W, is given by the formula

W,=-L ST exp <—i2ni)p(t)dt .
2T -1 2T
Then we have
Z}W”=—1——ST DY(t)dt
% k 2T J-r )

Thus if we fix a D(t) which vanishes outside a finite interval of ¢ and
make T large so that D()=0 for |t| > T we get the relation

a1 (5
SWi=o- S Dyt

This shows that the variance of p,(f;) is inversely proportional to 2T
(the observation length). In practical situations of spectrum analysis

* In practical situation I(— fi)=I(f:) holds. We are assuming in the following discus-
sion that the contribution from the negative frequencies is neglegibly small. Also we are
assuming that the mean of the process under observation is vanishing.
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we usually keep D,(f)/(ED.(f,))? fairly smaller than 1, say less than
1/10, and thus it would be useful to evaluate the statistical properties
of a statistics

= Pa(f) 1— D,(f5) — p(f)
) =L (1 )

which is an approximation to b(f;) when |(®.(f)—»(f))/p(f;)| is suffi-
ciently smaller than 1.

Under the present assumption on the distribution of I(f,)’s we can
easily show that the following relations hold :

Ef(f)=—S W)W,

D)= AWy —4 5 AW} W,+6 5 (AW W
+E WS W+(E AWIW) .

We can use these quantities to evaluate approximately the sampling
variability of our index of bias b(f;). When { W,} and {4W,} are given
we can directly calculate EB(f;) and D*8(f;) by using the above formulae.
But as will be seen in the next section, the computation of necessary
quantities is quite simple when we adopt as D(t) a lag window of trig-
onometric sum type.

3. Evaluation of ES and D?B for a window of trigonometric sum
type

Here we consider the case where D(t) corresponding to {W,} is
given as follows:

K
> a,,exp(—inr—"—?’—t) for |t|<L,
D(t)={ % 2L

0 otherwise ,
where it is assumed that L<T and that a, is real, a_,=a, and 3 a,=1.

We shall also assume that {4W,} corresponds to a difference of
two time domain functions of this type, i.e., {dW,} is the set of Fourier
coefficients of a function 4D(f) which is given by

ﬁ‘, Aa,,exp(—i21rLt> for [t|<L,
AD(t)={ "% 2L

0 otherwise ,

where da, is real, da_,=da, and X da,=0.



ESTIMATION OF POWER SPECTRA 59
In this case we have the following identities:

> (AWE)W,‘—— 3 (aa,,

K
2
2 Wk T n_z_xan ’

O AR i (da,),

>3 (dWL) W, = (gg)[i 3 (daya,+ (2 e 3 (e)z—ran)|,

4 K
> (da.Ya
3 n=—K

K
+2 X ((Aa'n)zcn — 7t Onfn— Tnan):l ’

n=—K

pomwi= () L[4

where

=5 q, (T

man (n—m)

— 1 — ( —_ l)n—m
mgnam (’n-— ’rﬂ,)2

=[ N Aamw] da,

mEn (n—m)

e[ 22

man (n—m)

1

— 2

_En(AaM) (n—m)
1

TR )

L=>a L _

mzn  (M—m)

and the summation 3 is extended all over the m’s which are different

mxn

from n.

Thus if we are given a properly chosen set of two trigonometric
sum type lag windows Di(t) and D,(t) and put D(t)=D\(t) and 4D(t)=
D,(t)—D\(t) we can easily evaluate EB(f;) and D?B(f;) by using the
present result. We can see how the lag window of trigonometric sum
type is suited to get an overall view of the sampling variabilities of
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related quantities. Also we should pay our attention to the computa-
tional ease obtained by the adoption of this type of windows [1, 3].

Now, we will give a concrete numerical example. In the paper [1]
cited above, various kinds of windows of trigonometric sum type were
constructed. Here we put K=2 and adopt as D,(t) (=D(t)) the one
given by the set of coefficients (@,=0.5132, a,=a_,=0.2434, a,=a_,=0),
which is bias free for local variation of p(f) of odd orders, and as
Dy(t) (=D(t)+4D(t)) the one given by

(2,=0.6398, a;=a_,=0.2401, a;=a_,=—0.0600)

which is expected to be bias free for locally quadratic variation of p(f)
besides that of odd orders. These lag windows were denoted in the
paper as W (0, af) and W,(2, af), respectively.

We have, in this case,

%‘. Wi=0.763723

~— S

% (AdW,)W,=0.126849
%‘. (4dW,)*=0.046499

% (A Wk)2 Wk - 0.029849

o Bl B B Y

S~ ~—— ~——
[

w

ST (AW, Wi=0.027584

N
N~

o

P U e U

53 (AW)(S Wi)=0.035512

o

S5
S—— S——

(Z (dW,) W)= 0.016060

98
'ﬂ‘b‘

Thus we get
L
EB(f,)=—0. <_.__>
B(f;) 0.126849 5

D2,8(f,)=0.046499<%> (1—1.4586( 215, ) +3. 5593(21,_;, )2) .

As a rough approximation we have, assuming % to be small,

DB(f,)=0. 216\/— (1 0. 73(2@>+1 51(211;,)3



ESTIMATION OF POWER SPECTRA 61

. 1 L
h = J)=—0U. =0. . —
Thus if 5T =10 we have EB(f;) 0.013 and DB(f,)=0.064. When 5T

<—i% holds we can practically consider EB(f,) to be almost equal to zero
and DA(f,) to be nearly equal to 0.2164/ % This is equivalent to re-

placing A(f;) by a much simpler p_;),z'(’;f_;) to neglect the contribution of
J
sampling fluctuation of the denominator.

It should be noted that, in practical situation, our present result
has to be modified slightly at and around the frequency f;=0 and f;=
folding frequency (=—2zt . dt=time interval between observations of
original data or a sample covariance function). At these frequencies,
there are usually various kinds of difficulties we shall not discuss the
point in any detail here.

4. A result of Monte Carlo experiments

It would be interesting to verify the results of section 3 by Monte
Carlo experiments. For this purpose we have taken 10 records of out-
puts of a random number generator each of length of 1000. The gener-
ator was developed by Mr. M. Isida of the Institute of Statistical Mathe-
matics and is supposed to produce a 6 bits uniformly distributed random
number at each call from the main computer. 5, (f;) and p,(f;) were
computed by first taking the (non-circular) mean lagged product, trun-
cating it at lag 100, taking Fourier transform and then averaging by
the weights given in section 3.

Computations were limited to the frequencies f;= 280 »=0,1,2,
..+,100), where the time intervals between observations are assumed
to be equal to unity. To avoid the possible boundary effects on the
distribution of $,(f;) and §,,(f;) we have further limited our observa-

tion to the frequency range {f,= 280 : v=6,7,---,95}. Thus for each

record we have 90 b(f;)’s and we have 900 b(f;)’s in all. Obviously there
is a dependence between b(f;)s within a record.

We observed the distributions of b<2;0>’s in each record. Appar-

ently there was no significant variation of the distribution between

the records, and we gathered all the b( 2;0>’s (v=6,7,---,95) of 10 re-

cords to get a distribution of b(f;) of size 900. This distribution is
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shown in Table 1 with its (sample) mean and standard deviation of un-
grouped data. These two statistics are compared with the correspond-
ing theoretical values of EB(f;) and DB(f;) obtained by the formulae of

section 3. We can see a fairly good agree-

Table 1 ment between the corresponding quantities.

b(f) frequency It thus seems that EB(f;) and DB(f,) are use-
0.620 1 ful approximations to Eb({j) and LDb(f,), re-
_gj:g i spectively, for this value 0 of 57 -

—0.220 10 Table 1 also shows a skewness of the
—0.180 16 distribution of b(f;) with a longer negative
—0.140 35 tail. This suggests that when we adopt the
—0.100 83 windows of section 3 we should expect that
—0.060 137 highly negative values of b(f;) could appear
—0.020 180 as a result of mere sampling fluctuation.

0.020 218 Thus we should be more tolerate in deciding

g'(l)gg 12: the significance of a negative value by scal-

0:1 0 ing with their standard deviation than in the

0.180 1 case of a positive value. It was observed

that significantly negative or positive values

Sample mean=—0.0128 of b(f;) appeared at those f, where D, (f))
Sample Standa:; g;z‘zatmn showed low or high values respectively. This
E ) shows the positive correlation between §,,(f;)
B(f3)=—0.0127 . . .
DA(f7)=0.0643 and 9,(f;) and explains why EB(f,) is nega-

tive in this case.
The results of observations of this section should be taken into ac-
count in understanding the meaning of the numerical examples of the

following section 5.

5. Numerical examples

We can most clearly see by numerical examples how our D(t) and
Dy(t) of section 3 work in practical situations. As the first example,
we computed b(f;)’s by applying D,(t) and Dyt) to a theoretical covari-
ance function which was free from sampling fluctuations. The results
of computation are given in tables 2 and 3. The difference between
Dy(t) and Dy(t) can be clearly seen and we can get some feeling about
the behavior of b(f;) at the frequencies where p(f) shows a rapid
variation. Especially we can see that b(f;) shows significantly positive
values at the peak of p(f) and significantly negative values at its knees.
This tendency is also clearly observed in the applications to real data.
In tables 4, 5, 6 and 7 are given some results of applications to the
analysis of random vibrations of an automobile. In these examples,
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Table 2 Table 3
i Po(f) | B(S) c(f) 5 () | W | CH)
2 0.5289 | —0.033 | —0.031 2 1.6449 | —0.034 | —0.030
100 . . ) 200 ) . .
10 25
10 0.7141 | —0.057 | —0.043 200 2.2535 | —0.046 | —0.041
1 1.0639 | —0.088 | —0.074 2% 3.2910 | —0.064 | —0.056
% . . . 200 . . .
12 27
—_— — *| —_— —_— — —_—
Too 1.8019 0.201 0.115 500 5.1971 0.079 0.075
13 28
—_ —_ | —_ —_— — —
100 4.0124 0.195 0.226 200 8.7874 0.041 0.077
1 9.4545 | +0.046 | —0.142 il 13.8835 | +0.042 | +0.021
100 . . . 200 . . .
15 13.1725 | +0.141% +1.444 30 16.5869 | +0.082 | +0.147
100 . . . 200 . . .
16 9.1050 | +0.041 | —0.162 3L 4 136349 | +40.042| +0.021
100 . ) . 200 . . .
17 3.5728 | —0.230% —0.260 32 8.3551 | —0.047 | —0.086
100 . . . 200 . . .
18 1.4309 | —0.253% —0.139 33 4.7097 | —0.091| —0.086
100 . ) . 200 ) .
19 0.7639 0.116% —0.096 3t 2.8320 | —0.076 | —0.066
lm . - . - 2m . . -
20 35
100 0.4623 | —0.081 | —0.059 00 1.8426 | —0.056 | —0.049
A 0.3102 | —0.048 | —0.045 36 1.2793 | —0.041| —0.037
% . . . 200 . . .
Note: L 1
We assume 2T=10" and we have

For the purpose of illustration, we

assume L _L and we have
2T~ 20°

C(H)=

where

EB(f)=—0.006
DB(f7)=0.047.

S — Dy f)
Duy(f3)

P(fj) is the theoretical value.

In tables 2 and 3 the unit of time
is taken to be equal to 1.

In tables 2 through 7 “*” shows
that |6(f5)— EB(f3)| >2DpB( f;) holds.

EB(f;)=—0.013
DB(f7)=0.064.
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Table 4
fiat Puy(f3) b(f)
3
50 9.4240 +0.025
4 4.9637 —0.538*
= ) )
—5— 11.5907 —0.334*
= i X
—9— 34.1257 0.068
50 . +0.
7
—_— %*
50 47.3913 +0.160
i 28.7036 0.015
50 . +0.
i 8.6252 —0.434*
50 ’ '
10
= _ ¥
50 3.9897 0.236
11
—_— — *
50 3.1080 0.267
12
50 3.0531 —0.001
13
50 2.9555 —0.014
27T =7814¢ EB(f)=—0.004
L=254¢ DB(f5)=0.038

Table 5
it Puoy(f3) b(f5)
Tg'o' 11.8593 | +0.001
l—gb— 4.2183 | —0.276
% 1.5690 | —0.763%
2 3.7571 | —0.206%
100
117(:) 9.125 | —0.052
1% 16.5204 | —0.114%
% 31.4081 | —0.055
13 53.8570 | -+0.070
100
11%0 60.3067 | +0.078
% 47.8660 | +0.052
%% 24.8287 | —0.066
11770 8.7604 | —0.350%
%.% 5.2008 | —0.164%
% 5.3633 | -+0.038
% 4.6181 | +0.058
% 2.6079 | —0.140%
% 2.4047 | —0.109%
% 3.1497 | +0.040
% 3.3082 | +0.034
12750 3.1447 | —0.003
% 2.9615 | +0.021
2T =7814t EB(f7)=—0.008
L=504¢ Dp(f)=0.052
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Table 6 Table 7
fdt Puy(£) b(£5) £t Puy(f9) 762)
3 _ * 6
= 4.8919 0.200 1% 5.0153 +0.030
4 12.0470 —0.299* 7 7.4379 +0.007
= } } 0 . .
S 33.9834 —0.022 8 9.5385 —0.097
= . . 100 . .
6 9
—_— * _ —
% 59.4136 +0.125 100 15.5770 0.084
=z 53.7521 | +0.078* 10 26.8841 | —0.113*
= ) . 100 ) .
8 31.0314 —0.073 1—1 50.7901 —0.002
= . . 100 } ;
S 17.6957 | —0.096* 12 75.3418 0.091
50 . . 100 . +0.
10 13
= 11.3088 —0.036 100 71.3490 +0.053
11 14
Pkl — * —_ —
™ 6.5494 0.077 100 51.7640 0.038
12 15
_ —_ £ 3 —_— —
5% 3.9001 0.097 100 40.5896 0.002
13 16
—_ — £ 3 —_— —_
% 2.7770 0.082 10 29.5078 0.005
17 19.1196 —0.091
2T ="7814¢ EB(f1)=—0.004 100
L=254¢ Dp(£7)=0.038 % 15.8271 | —0.048
19
100 15.7318 +0.062
20
o0 11.5293 +0.003
21
£ . —0.125%
- 7.1288 0.125
22
== . 0.044
o 6.5395 +
23
2 . —0.038
= 4.5807
24
= . —0.077
0 3.4551
25
=2 ; .056
100 3.3689 +0.0
26
! 100 2.5257 +0.044
2T =7814¢ EB(f7)=—0.008
L=504¢ Dp(f3)=0.052

65
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estimates of power spectral densities were obtained by first taking the
(non-circular) mean lagged product, truncating it at the lag L, taking
Fourier transform and then averaging by the weight {a,} [1, 3]. It
seems that the value 25X (unit of time) of L in the examples of tables
4 and 6 is introducing significant biases at the frequencies at and

]08'?;@ )
2T=7814r
- : (4t=10ms.) -
—e— - L=2541, (W, =W,)
. o L=a5d1] (W,=W,)
102— ) o : Tx== L=504t, (W; =W, )

1
[

vertical acceleration of -
front floor board

——f C.P.S.

x0.237

Fig. 1
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around the peaks of the power spectra. Taking into account the pos-
sibility of highly negative values of b(f;) under white noise assumption
indicated by our sampling experiment, we can see that the value of L
for tables 5 and 7, which is twice as large as that of tables 4 and 6,
seems to be fairly satisfactory. In fig. 1 are shown the results corre-
sponding to tables 4 and 5. These examples suggest that 2¢ criterion,
described in the note of table 2, and the knowledge of possible occur-
rences of highly negative values of b(f,) provide us with fairly reliable
and useful information for the decision of the bandwidth of spectrum
window or the length L for each frequency. Of course, such a deci-
sion is about hitting a balance between the bandwidth, which is direct-
ly concerned with the bias when the shape of the window is fixed, and
the variance of the estimate and it would become unnecessary if either
one of these were given beforehand.

6. A practical procedure of spectrum computation

It is needless to say that to draw a conclusion from the result of
a spectrum computation, we have to use every kind of information
about the physical properties of the object under observation and there
will never exist a perfectly formal procedure which will tell us about
the adequacy of the selection of our window. But our present numeri-
cal examples strongly suggest that our b(f;) computed by using D(t)
and D,(t) of section 3 gives a fairly reliable information about the ade-
quacy of the selection of L at various frequencies. We shall here sum-
marize the results in a form which will be directly applicable to practi-
cal computations of power spectra.

0. We assume the case where a set of original data is given and
the available length of date is fixed.

1. Compute d,,(f;) and p,,(f;) for necessary values of f,.

2. Compute b(f,) by the formula

b — i)w,(fj) _1 .
(f) DuF)

3. Compute EB(f;) and DB(f;) which are independent of f,.
4. Pay attention to the frequencies where

[6(f))—EB(f;)| >2DB(f;)

holds. Especially watch for the specific patterns to be observed at the
peaks (and probably at the sharp troughs) of p, (f;).

5. When there is a specific pattern in the frequency range of in-
terest and refinement of the estimate is desired, halve the bandwidth
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of the spectrum window (or double the length L) for that range.

6. Adopt as our final estimate of power spectrum those 2, (f;)’s
which do not suggest the need for any further reduction of the band-
width of spectrum window and with the largest possible bandwidth or
with the smallest possible L.

7. When the expected statistical variability of this final estimate
turns out to be too large for the purpose of application, try to get
a longer record or to get a set of records of repeated independent ob-
servations.

The present problem may be considered approximately to be the
problem of detection of a sharp spike like signal in the presence of
a back ground noise which is composed of a very low frequency com-
ponent (smoothed spectrum) and a white noise (sampling fluctuations of
periodogram, though the variance changes proportionally to p(f;)). The
specific pattern of b(f;)’s at the peak of power spectra is a (smoothed)
impulse response of the filter determined by {4W,}, which does not
respond to the very low frequency variation of p(f;) in f, but is act-
ing as a smoothing operator for the (locally) white noise generated by
the sampling fluctuation of the original data. It would be an interest-
ing problem to review the design of {W.} and {4W,} from this stand-
point also taking into account the use of the method of fast Fourier
transform.
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