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1. Introduction

We assume throughout this paper that the population under con-
sideration has the distribution function F(x) and the density function
Sf(x) with finite mean g and finite variance ¢*. It should be noted that
we assume nothing about the distribution except the above existence
assumption, that is, we shall consider a non-parametric problem. When
we are concerned with estimation of the population mean: we often
encounter the situations where the measurement of the quantity of each
element drawn from the population is very laborious but several elements
can easily be arranged in the order of magnitude, for example, the case
where the elements can be arranged without the measurement of each
quantity. In practice the number of elements which are easily arranged
will possibly be two or three, but we shall consider the general case.

The following three examples will give us a better understanding of
the situations:

FExample 1. Let us suppose that the quantity under consideration
is the length of a kind of bacterial cells and the length of the cells in
a microscopic field is measured by using a micrometer. While the oper-
ation for the measurement will be laborious, the order of magnitude of
two or three cells in the same microscopic field may be found by a glance
in most cases.

Example 2. Let us suppose that the quantity under consideration
is the height of trees. We can find by a glance the order of height of
two or three trees standing nearly each other.

Example 8. Let us suppose that the quantity under consideration
is the number of a kind of bacterial cells per unit volume. If there are
several test tubes containing the cell suspension, we can rearrange these
tubes in order of concentration by using an optical instrument without
knowing the exact values.
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In the situation mentioned above, we can obtain an unbiased esti-
mator of the population mean based on the sample which is stratified
by means of the order of magnitude as follows.

Let lel) AXIZ’ tt ‘len; X-Zly X227 ) -XZn; """ ’ an! XuZ’ ct Xnn be inde-
pendent random variables all having the cdf F(x) and X, Xie - - +» Xicwr
be the order statistics of X, X, -++, Xin (i=1,2, --+, n).

Let us define X,; by I—([,,J=§1Xm,/n. We shall consider the statistic

X,y as an estimator for g To obtain an observed value of the X, we
need an observed value of (X, Xiyy ***y Xuw). To obtain an observed
value X,;, we need the ordering of the sample of (X, X, - -, Xi»). Thus
we shall be able to expect that the variance of the unbiased (see (3.3))
estimator X.,; of z will be considerably smaller than that of the usual
estimator X,, the sample mean of a simple random sample of size n.
The reason why we compare the variance of X’m not with X, but with
X, is that in our situation the cost of ordering need not be taken into
account and we have only to take into account the cost of measurement.

In general the above procedure will be repeated m times. Then, we
have m observed values of )?(,.]. The total number, say N, of elements
whose quantities are measured, is mn, while the total number of elements
which are drawn from the population is mn?, whether they are measured
or not. The estimator of y is the arithmetic mean of m observed values
of X,3.

Let us here interpret our procedures by an example in the case
N=6;

Simple random sampling procedure :

Draw 6 elements from the population.
Measure the quantity of each element.
Make the sample mean as an estimate of p.

Our procedure, n=2 (thus m=3):
Draw 6 pairs of elements from the population.
Find the order of magnitude in each pair.
Measure the quantity of the smaller element in the first, second and
third pair and that of the larger element in the fourth, fifth and
sixth pair.
Make the arithmetic mean of these quantities.

Our procedure, n=38 (thus m=2):
Draw 6 triplets of elements from the population.
Find the order of magnitude in each triplet.
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Measure the quantity of the least element in the first and second
triplet and that of the middle element in the third and fourth
triplet and that of the largest element in the fifth and sixth triplet.
Make the arithmetic mean of these quantities.

Let us denote the variance of the kth least order statistic of a
sample of size n from the population by o, (k=1,2,:.-,n). If the
variances ¢%, are known (or have been estimated), then we can apply
the so-called Neyman allocation to our problem. For simplicity we as-
sume that o,,:0,5::++:0,,=N;:N;:---:N,, where N, N,, ---, N, are
positive integers. Let Xj, Xy, «+, Xins Xty Xop, + o vy Xy =+ 0+ 3 Xavty Xovay
«++, Xy, be a random sample of size mN from the population, where
N=N;+N;+---+N, and X, X, ***, Xiy be the order statistics of

)Cﬂy -Ycz; ttty )(in ’ (i=11 2, ctty N)- We now deﬁne -i(n)N by X(n)N=

1(1 §'X + 1 N1+N2X 1 X ) Th.SX.._
n _Nl— e TV;*=§+: it et N, i=N+N4ein, 1 i Je 18 Awmw

is an unbiased estimator of the population mean.
In this paper we shall also consider this estimator, but our main

purpose is to study the properties of the estimator X;,; which seems
more practical.

2. Notation and preliminary

Let X, . be the kth least order statistic in a sample of size n drawn
from a continuous population with the pdf f(x), the cdf F(x), the mean
2 and the variance o (We shall use the abbreviations ‘the pdf’ and
‘the cdf’ throughout this paper for the probability density function and
the cumulative distribution function, respectively.). The pdf, the cdf,
the mean and the variance of the distribution of X, , will be denoted
by fu:(®), Fou(x), p.. and oi,, respectively. Let us denote I'(n+1)/
(l'(k)-I'(n—k+1)) by a,;. Let us denote the expected value and the
variance of a random variable X by E(X) and ¢*(X), respectively.

Some well-known results will be shown below for the latter use.
We have, in the first place,

@1 fu® =0, F@A-F@y @), k=1,2,-,n.
Suppose in the next place that f(x) satisfies the relation

(2.2) f@=Zafl@), =12,

where fi(x) is a pdf and «; is a positive constant. Then i}m=1 must
i=1

be satisfied. Let us denote the mean and the variance of fi(x) by g
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and ¢i. If ¢ is an unbiased estimate of yx; and ¢,4%, .-+, ¢, are inde-
pendent, then

(2.3) t=,;é a’it¢

=1
is an unbiased estimate of z and has the variance
2.4) a“(t)=§1 ad'(t,) .

If ¢, is the sample mean of a simple random sample of size N, drawn
from fi(x), then

(2.5) #(t) =é oﬂ/N‘ .
If N,=Nu; (the proportional allocation), then
(2.6) o ()= (5:1 mg) / N.

If N,=Na,o, / (g a,a,) (the Neyman allocation), then

n 2
@1 A{E) = (g a,-o;) / N.
We also have
= i a;l;
i=1
@.8)
=t§ a0+ 12=1 alp—p)
and
(2.9) 7 ®)=r~ S au—w| /N
If aj=ay=--- =a,,=-?17, then we have
(2.10) ()= (z az> / nN
n 2
2.11) (t) = (E a,) / 2N,

and
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2.12)
={éaﬁ/%+§ym—my%:{§a$/%+gym—mr n?

corresponding to (2.6), (2.7) and (2.8), respectively.

3. The unbiased estimates of the population mean

From (2.1) the following relation can be obtained easily, but it is
fundamental to our discussion:

(3.1) F@=23 fuu@) -

Therefore, we can apply the results of section 2 to our following
discussion. Let Y, be a random variable with the pdf f, .(x), (k=1,2,
--,n) and Y,, Y, ---, Y, be independent. In order to obtain Y}, Y,
-, Y, from a sample drawn from the population with the pdf f(x) we
should take X, as Y,, that is Y,=Xiu, (k=1,2,---,7n), where the
Xia’s are the random variables explained in the introduction.

Let us define Y;,; by

(3.2) Y[n]_—_’% é Y.,

that is, X, in the introduction. From (2.8) and (2.10) we have

(3.3) E(Y.)=¢
and
— _ 1 n
(3.4) AT = 3o

— — 2
It is our purpose to compare o*(Yy;) with o%(X,)=-Z, that is, the
n
variance of the sample mean of the simple random sample of size m,
because of the situation explained in the introduction. It is, therefore,
convenient to define of,; by

(3.5) oha=-r 3] ok

3!»—*

— 2 —
Then, while *(X,)=2, (Y= 9in) . Suppose that the actual sample
n n

gize (strictly speaking, the number of observations whose values are
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measured) is N. For the simplicity let N=mn. In this case m inde-
pendent Y., Y, «--» Yium, each with the same distribution as that
of Y;,;, are available. If we define Y. by

= _1 k-
(3-6) Y[ﬂ]m—;; 1_231 [nlf »
then E(Y;,;)=p and

= 0.2 0.2
3.7 A (Yipgm)=—101 ="1n1
(3.7 (Vingn) =122 = 2

On the other hand, a"()—fN)=-l‘:7:2 . Thus ¢f,; in such a sense corresponds

to ¢’. Hence our problem will be the comparison between ¢* and of,;.
Now we define 7,; by

_ XN =T _ ol

3.8) Tt A(X) =

The 7(,; will represent in a sense the efficiency of the stratification by
means of ordering. It should be noted that r(,; is invariant under the
linear transformation of the variables. Since the covariance of any two
of order statistics in a given sample is positive [7], it is obvious that
7> 0.

In order that we may be justified in restricting our consideration
to the estimator Y, in (3.2) as the unbiased estimator of the mean of
any populations it will be necessary that we state here the following
theorem.

THEOREM 1. A linear combination of Y,’s

I

k=1
18 an unbiased estimator of population mean whatever the distribution
of the population is if and only if a1=a2=---=an=_:‘b_ .

PrOOF. The “if part” is established by (8.3). Next suppose that
> &Y, is an unbiased estimator of all the population means. We have

P Qplln =1 -
k=1

From this and the “if part” we have
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é (l'—ak )lln,k-_—o .
k=1\7n

If we can find » distributions each of which has £ as p,, (1=1,
2, -+, n) satisfying

det D,#0,
where D, is the matrix having (£ as (¢, k)-element, then the proof of

the “only if part” will be completed.
In fact, we can take the distributions with the density funections

lx‘/"‘ exp (—z'") , x>0,
fim)=4 ! (=1,2,--+,m)
0, <0
as n distributions satisfying the above condition.
We have
@ n! ! (=1)y1

e = k) =0 W b—1— ) (n—kt j+ 1)+
After some calculations we obtain the relation

nn-l (n_l)n—l e 2n~1 ln—l
,nn—z (n_l)n—z e 2n—2 1n—2

D,=C| : : Do =CTG=%0,
n—1 ... 2 1
1 1 .1 1

where C is a non-zero constant. Thus our proof is completed.
Now we have

THEOREM 2.
(3.9) O1n1 > Olniny 5

hence,
Ty <Tlnt1] for all nz=1,

uM’

1 a—
where af,,]=-h— ary and Tp= dz[”] .

ProOF. From (2.1) we have

(3.10) for= "+}rl’°fm+ _’; L

If we denote S” 2 fo(®)dx by a, ., then from (8.10) we have
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(3-11) Ay, k= %‘:’%,nﬂ,k +nL_i_1av,n+l,k+1 .
From this
(3‘12) o'ft,k::a&n,k_ain,k
= (%Oiu,k'l‘;lj_—ldn,kn) + (nT-i_:_-_]T_kﬂgﬁl,k’i"’%ﬂ:q-l, k+l>
— 2
- (‘@;:;—_}_l_kﬁn+l,k+n—k_l_l‘ﬂn+l,k+l> .

Then, from (3.12) it follows that
(3.13) atm—otnin

1 n+1

12, ,
n kz=}10"”‘ n+1 kE:1 Onitk

1 v |
=n(n—w{n(n+1)k§ frtn kz=:1 ((M+1—E)tnsr, i+ Kptnss, 141 }
=n—(nl’*—:—172{"=lk(n+l_k)(#nﬂ.kﬂ—ﬂnn,k)z}>0 .

This completes the proof of the theorem.

COROLLARY 1. Let N=ab=cd, where a, b, ¢, d are positive integers
and N>a>c>1, then the following inequalities hold.

(3.14) GZ(XN) > 1:7[.:].1) >d¥( ia]b) >d¥( I=’[N]l) .

This corrollary can easily be obtained from (8.6), (3.7), (3.9).

According to the result of theorem 1 or corrollary 1, the variance
of the estimate 17[,,3,,, decreases as 7 increases under the condition N=
mn. The large n, however, will be impractical. In most practical cases
n will be two or three. If we can practically take both two and three
as the value of n, in such a case we had better take n=3 from the
viewpoint of the variance of the estimate apart from the other problem.

4. The Neyman allocation

Let us suppose that the variances o, are known (or have been
estimated). Let us denote g,, ,é Onj BY 7ni. Let Ny=Nr,., (k=1,2,
=1

---,n). Further let us assume for the simplicity that every N, is
positive integer. Let Yy, Yy, +++, Yiv; Yo, Yo, +++, Yawys 05 Yoy Yogy
-+, Y,y, be independent random variables and Y;,, (5=1,2,---, N,) be
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drawn from the distribution with the pdf f, ,(x).
Let us define Z,, by

4.1 Zya=L3(Lsty
.1 = B 2 )

This Z , has been appeared in the introduction as )—Q,,)N. From (2.8) and
(2.7), we have

4.2) E(Zy.)=p
and
2
(4.3) o) =533 00 -
Let us define ¢7,, and 7, by

1 n 2
4.9) = <_ 5 a,,,,,> .

n k=1
and
4.5) r<,,>=—”2—_702’2 , respectively.

[2)

The variance ¢*(Zy,,) can be written in terms of ¢, as

(4.6) ﬂz,,,,g:% .

Therefore, when we use Z,,, as the unbiased estimate of g, the efficiency

of Zy,, relative to X, will be expressed by ., independently of N.
From (3.5) and (4.4) it follows that

(4’7) O'En] ('n)—'— 2 2 (an 17O, k) >0

15l<k$n
The last inequality in (4.7) will be obvious since ¢?,; corresponds to pro-
portional allocation and &, corresponds to Neyman allocation.

5. Examples of 7 and 7wy

In this section the numerical values of z,; and t, are shown for
several distributions, especially for n=2 and 3, and the moments of order
statistics which are necessary for the calculation of <z, and <., are
shown. It should be noted again that z(,; and 7, are invariant under
the linear transformation of the random variables.
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It may be useful to introduce another representation of the efficien-
cies of estimators, denoted by e, and e,,, which are defined by

2
5.1 e =—2— %100
(5.1) (n] o
and
6.2) e=-2-x100 .
O(ny

5.1 The moments of order statistics
[R] Rectangular distribution ;

_ 12k(n—k+1)
(5.3) oy sy ([11] p. 383) .

From this we have the simple form

-1
(5.4) W=t
[E] Exponential distribution ;
(5.5) A=t 1 ([11] p. 343)
. nk = (’I’l,—j+1)2 ] . .
Thus we have
4121
(5.6) T[,,]—-l ; E—k— .
[S] Symmetrical distributions ;
Let us put
Plgpr, —1<z<1,
(5.7) f@)=1 2
0, otherwise ,
where p>0. We have
(5.8) E(X;»
—o-n Y I'(j+1+(v/p))
=2 (n+1 { -1 : - :
DY B TG D m 1k LG 1555 G0
s L(j+1+(/p)) .
= LG+ ) k— NI (n+2—k+ 5+ (v/p))

Thus we have
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: _ o _ (3p°+2p+1) o
03,1 0’12 _—_(217'1'1)2

y=2Pt2)
(2p+1y
s 2 _ 310 +80+8p+4)
9 == ,
9) R oY@ D)

2 __ 3P pr
= @pt2)

p(p+2)

=5 T L1

2 @p+1)}

’

[dJ]1 J-shaped distributions;
Let us put

pxPt, 0<x<l1,
0, otherwise ,

(5.10) f(x):{
where p>0. We have

s Y=L+ DI'(k+(v/p))
(5.11) E(X: 0= Tt () DT ({21 p. 305)

Thus we have

2

g =—I_)_.__ ,
(r+1)(p+2)

. _ _p(p+1)
T @l

. _ (0+D@+2) ,
T epry

(5.12)

— 50’+6p+1—+vp(p+1)(p+2)(5p+1)
v 2@2p+1y
_ 3p'(499p°+47p*+11p+1) o
(3p+2)@2p+1y@Bp+1)
ot ,= 3@+ D(p+2)(13p°+10p+1)
’ (3p+2)(2p+1)(3p+1)°
o, = 3@+1)(®+2)
" (3p+2)(8p+1)y

X

3,1 ’

’

1
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and

—2p(p+2)(T+4p+1)
(2p+1y@3p+1y

Put p=—;-, then we have

4 3n+5 _ (n—1)(dn+T)

513) o=—2, = o= :
(6.13) =45 M Bt Dm+2) ™ 4m+2)m+1)

[B] Compound exponential (Burr’s) distributions;

Let us put
_._p_ , >0 ,
(5.14) fl@)={ QA+z)**
0, otherwise,
where p>2.

vy T+ & v\ _qy-s L(n+1—k—(j/p))
(5.15) E(X"’k)—l’(n—k+1);=:‘:)<g>( 1 Tn+1—Glp)

Thus we have

3 D , @, = B ,
(p—2)(p—1)* " (2p—1)(p—-1)
o= p'(6p—1) ,
" (p—1)(p—2)(2p—1)
oy=2P=2)
(2p—1y
(p—=1)(5p—1) 1) p—2)
1 )
616 ro=oep_1y \/(p—l)(Sp =y

ot = S=2) 1)
" (3p—2)@3p—1)*
o= 3p(13p°'—10p+1)(p—1)(P—2) .
' (8p—2)(3p—1)(2p—1)
.= 349 —4Tp +11p—1)

¥ (3p—2)3p—1)(2p—1)

,

and

o= 2p(0—2)(TP'—4p+1)
BT @p—-1M2p—-1F
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[T] Triangular distributions;
Let the pdf be

—x, O_S_xél ’
o

(5.18) f@=1_2 (o—z), 1=e=<p,
p(p—1)
0, otherwise,

where p=1. Then we have

(65.19)  E(X:)=20.. 5 (—1¢ (") L
SO i ! @k+2itv)er
v k=1 k—1 1 \n+i+i+1-k 1
a5 5 0 (7) (7)) - -
+ "“”‘Z}o,z:“o( ) 1/\ j o 2n+25+1+2—2k
Therefore,
1 .,
= (o*— 1 ,
18 (o*—p+1)
031 = 225 —5=—(60'—6p’+15p'—3p—1) ,
A= (11p 11p°+7p—-1) ,
_ 2(2p —p+1)
5.20 = 22 —pt1)
520 o 25p2(p"—p+1)
G = 4900 ——(750°— T5p*+850p* — 1400’ — 450* +40p—4) ,
032 =—— 4900 ————(146p°—1460°+3080'— 194p' +480—16) ,

05,3 =

: 490 5 (201" — 201"+ 950 — 160 —4)

and

T —

1225 (' —p+1)
[SP] A special distribution [5];

4 (1480°—1480° 4 1750'—630'+540'—27p+9)

13

The means and variances of order statistics from the distribution of

the random variable X defined by
(5.21) X=(1-U)m_y-m,
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where U has the uniform distribution on the interval [0, 1] were tabu-
lated in [5]. From the table we can obtain the numerical values of o2 ,,
Tray and o, for n<10.

[EV] An extreme-value distribution;

Liebelein [8] evaluated the moments of order statistics in sample
from the extremal value distribution with the cdf

(5.22) F(x)=exp(—exp(—x)) .

By using the results we can obtain the numerical values of 7y, 74y, 7y
and Ty »

[W] Weibull distributions;
Let us denote the cdf of Weibull distribution by

1—exp(—2a%), x>0,

(5.23) F(x)={ ) =0

where 5>0. Then we have

k-1 _
624 BXi)=a.l(1+2) S (-1 (T mti-kr-or, o).
Thus

c=r(1+2)-r(1+3),

e rfied)
o§,z=(2—2-z/b)l’<1 +.§_) — (2_2—1/11)2['2(1_'_%_) ,

1’2(1+_;_)(1—2-1/")2

D)l

(5.25) =

ams(r(ue ) )

o1,= (3.2 —2.3-) r(1+—§t) —(3-2'“”—2-3"’”)’["(1+%-) ,

o= (3—3-2-2/b+3-2/b)r(1+%_> -(3—3-2-1/b+3-'/b)21*2<1+%)
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and
2

")

x(3—2/1;_'_3.2—2/!»_3.2—1/b3—1/b+3—1/b_3_2—l/b+1)112<1+%_> .

[G] Gamma distribution ;

We consider the Gamma distribution with the pdf

O g, z>0,
(5.26) f(x):j I'(p) ? v
0, =0,

where p=1,2,3,4,5. The tables of p,. and o7, have been obtained by
Gupta ([4], [11] p. 439) for n=1,2, ---, 10.

[DE] Double exponential distribution;
Let f(x) be the pdf of the double exponential distribution:

(5.27) f(:c)=—é—e"”' ,  —oco<z<oo.

Then we have

N e
(5.28) E(Xn,k)—a’n,kg ok+1 < 1 )(k+l)"+l

BLO(=1) !
+a’""‘l=20 orHiH-k (4] — )+ .

The numerical values of o}, for n=2,3,4,5 have been tabulated by
Sarhan [10].

[N] Normal distribution;

In order to calculate 7;,; and ., we have used the table of 4} ;’s
represented in ([11] pp. 200-205).

5.2 The table of (., 7¢nys € and e, for n=2,3

Since, in the most practical situations, n will be two or three, we
shall now show as Table 1 the values of (., (s, €, and e, of the
distributions mentioned in 5.1 for »=2,3. It should be noted that in
symmetrical distribution z;; and z, are identical because of (4.7). It
may be worth-while to mention that the efficiency z,; can be expressed
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in terms of the mean difference 4, ([6] p. 46) of the parent distribution
as 4i/4d%.

Table 1. Efficiencies for n=2,3

Distribution T(2] 7[3] T () era] er3] ey e3>
[R] .333 .500 .333 .502 150 200 150 201
[N] .318 477 .318 .479 147 191 147 192
[E] .250 .389 .345 .510 133 164 153 204
[DE] .281 .422 .281 .439 139 173 139 178
[EV] .292 442 .323 .484 141 179 148 194
[SP] .286 .429 .286 442 140 175 140 179
[G] p= 2 .281 .430 .334 .497 139 175 150 199

3 .293 .445 .329 .491 141 180 149 197
4 .299 .453 .327 .488 143 183 149 195
5 .303 .458 .325 .487 143 184 148 195
[W] b=1/2 .113 .191 .393 .559 113 124 165 227
2 .314 .473 .327 .489 146 190 149 196
3 .322 .484 .323 .485 147 194 148 194
4 .322 .483 .322 .484 147 193 147 194
5 .319 .479 .322 .483 147 192 147 193
10 .310 .467 .322 .483 145 188 147 193
[T] p=1 .320 .483 .335 .502 147 193 150 201
2 .327 .490 .327 .490 149 196 149 196
3 .325 .488 .329 .493 148 195 149 197
4 .323 .487 .331 .497 148 195 149 199
[J] p=1/5 .224 .365 .350 .523 129 157 154 210
1/2 .313 .475 .336 .507 145 190 151 203
3 .306 .465 .337 .503 144 187 151 201
4 - .296 .452 .338 .504 142 183 151 202
[S] p=1/2 .313 .469 .313 471 146 .188 146 189
3 .306 .459 .306 475 144 .185 144 190
4 .296 444 .296 .463 142 .180 142 186
[B] p= 3 .120 .195 .377 .538 114 124 161 216
4 .163 .262 .364 .526 119 136 157 211
5 .185 .295 .358 .521 123 142 156 209
10 .222 .348 .351 .514 129 153 154 206

5.8 7, and 7, for n=4

In Table 2 the values of 7,; and 7, for n=2,3, 4, .-, 20 are given
for a rectangular [R], a normal [N], an exponential [E], a compound
exponential [B], and a J-shaped [J] distribution, and the values of 7,
and 7, for n=2,3,4, ---,10 are given for a gamma [G] and a special
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[SP] distribution. (Refer to 7.1 and 7.2 for Supr,; and Supr, in
Table 2.) :

5.4 The relation between efficiency and parameter

There are the families of distributions with the parameter which

T(2)=T<(2)

Fig. 1a. [S]

0.6

0.4

0.3

0.1F
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L 1
0.1 L 0 P
Fig. 1c. [J]
0.5F ~~— e ——————— T(3y
T3
0.4
—_— e —————————— = T(2)
= = T(2)
0.3f
0.2
’ ‘ L —p
0.1 T : 0
Fig. 1d. [T]

Fig. 1. The variation of values of (21, 72y, 7r3] and 7¢sy with the parameter

has its effect on z(,; and z(,,. Here we shall only show several examples.
In Fig. 1 the values of 7y, 7y, 7 and =, are traced against the para-
meter of the distribution for the families of the compound exponential
[B], the J-shaped [J], the symmetric [S] and the triangular [T] distri-
butions.
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There are some limits which are easily obtained.

25—44/T

: 1 . 3 .
In [ S ] 1’1_.1'2 1[2]='Z ’ 1}_{2 T[S]=‘§‘ ’ 1’}_‘12 Ty = 36 and
lim T<s>=—;—
In [ J ] llm T[g]-—% 13_.1'2 = 5—8‘/3 , ]i,i_..lz.} T = 17 ,
lim 7;3,=0 and limrg=L .
0 P20 2
. _ 8 . _ 33—2+66 . _ 592
In [T] 11_127[2]—‘55‘ ) },1_1.2‘%)—7‘ , {1_12731——1275 ;

__ 9018—90+438

lim 7= 1025 and max rm=-4—9— when p=2.

150

In [W] lim z'm=6<1°g2)2 and lim z=0 .
n —>|

6. Examples of the distribution of Y

In order to compare the distribution of our estimate Y;,, with that
of the usual sample mean X, we shall give several examples.
Let h,(x) be the pdf of Y, and let g,(x) be the pdf of X,.

(i) Let the pdf of the population be
(6.1) fx)=1, 0<z<1.

Then, we have

16 y3_20) , 0§x§% :
(6.2) ()=
16 D -apt+20) %gxg ,
and
(6.3) h,(m)
1
9 5184 — 2__ 3, <<=,
5 80 (3x)*{8 56(3x)+12(3x) (3x)%} 02 3

%{1191—3888(3x)+4536(3:0)’—2268(3x)’+630(3x)‘

= —_252(3x)° + 112(3x)0— 24(3z)'+2(32)'} , %gxg_g_ ,
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9 84— 56(3(1—
a5 (B(1—))(84—56(3(1—~2))

2

<zZ1.
3

+12(8(1—2))*— (3(1—=x))*} ,

The pdf’s g,, g; are well known (see, for example, [1] p. 245). The pdf’s
h;, g, are shown in Fig. 2a. The pdf’s h;, g; are shown in Fig. 2b.

sk —_— h(x)
2
—— f(x)
25 /’\\\
// N
7 \\
/4 N
l——’—'— 7 _—___—__\_“___
= 7
// \\
d N I
// \\
1] ' ~ x
0.5 1

Fig. 2a. hy and g3 for the rectangular distribution

Fig. 2b. hs and g3 for the rectangular distribution

(ii) Let the pdf of the population be

(6.4) f(r)=e—~", x>0.

Then

(6.5) hy(x)=8(e ¥ —e~**(1+22)) , x>0,
and

(6.6) g(x)=4xe™*, x>0.
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22
The pdf’s are shown in Fig. 2ec.

N\
\
0.8} \ hy(z)
\ - N mm—— g.(x)
M ’
J/ ™~ ———f (%)
o6k /[ \ N

J AN \‘\

/I \ \\\

0.4F / \\ AN

[ \\

! ~N AN

/ SO

G ~
0:2 —'; ~ A
/ e~
| \~\i*:~\ ——
0 1 2 3 *
Fig. 2c. h3 and g3 for the exponential distribution
(iii) Let the pdf of the population be
6.7) flx)=2x, 0<z<1.
Then v
256 1
= (Tx*—4x" N Osxé_ ’
35 ( ) - 2

(—2722"+7002° — 6442° + 2452 — 352 + Tx*—1) ,

(6.8) hy(x)=A1 128
35
-I—Sxél ,
g =TS

x

0
Fig. 2d. A3 and g3 for the right-triangular distribution



UNBIASED ESTIMATES OF THE POPULATION MEAN

23

and
_52 3 <zrs-—
X, 0=z ’
g2(x)
——+16x———, —=<z=1.

(6.9)

The pdf’s h,, g, are shown in Fig. 2d.

(iv) Let the pdf of the population be
—1<z<1.

f(w)=%x2 ,

(6.10)
Then
—7;—0( —25602" +406562° + 792002 + 693002
4004022+ 138602 +2016) , —-1<x<0,
6.11) h@)={ +400802"+ +2016)
W(2560x“——40656:::’+79200a:‘—69300x’
+400402*—13860x+2016) , 0=z<1,
and
;—0(32x5+80x2+60x+12) , —1<2=0,
g(x)= 3
%(—32w5+80x2——60x+12) , 0sz<l1.
The pdf’s h,, g, are shown in Fig. 2e.
— h,(x)
sf ———0:(2)
—— f(x)
2 -
A \
A\ A
\\ l’l \\ / I
r \ lfl “‘ / L l
VRN / N
/I’ \ // ‘\“I
0 Y I —
-1 0 1
hg and g3 for the symmetric distribution

Fig. 2e.
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7. Sup 7 and Sup Tw
7.1 Sup iy

From the tables in section 5, it will be found that the values of
7y are, for each fixed 7, concentrated in rather small range. It is
known that z,;<1/3 for all continuous distributions with finite variances,
and this supremum is attained by the rectangular distribution [3]. Thus
we are led to the consideration of the supremum of z;,; for general =.
We shall give the value of Supr,; which is attained by the rectangular
distribution for general n.

The 7;,; which we are going to maximize was given by

(7.1 = (=L D) =15 (as
We can without loss of generality assume that
(7.2) 7=0 and o’=1.
Then

1 n 1 2
(.3) = 3 (| ansGw 1wy du)’,

where G=G(w)=F"*(u), i.e., the inverse function of the cdf F(x).

In order to maximize (7.3) under the conditions (7.2), we put the
first variation of

(7.4) % ) (S:a,,,kG-u"'l(l—u)""‘ du)z—zzIS:G du—l(S:Gz du—l)

equal to zero. Then we obtain as the characteristic equation

n

(7.5) Z_J ,.kr,.ku" l—uy*—4—2G=0,
where
(7.6) r,.,k=§:Gu*-l(1—u)n—k du .

Integrating the left-side of (7.5), it turns out to be
(7.7) 2=0.
Multiplying (7.5) by G(u) and integrating, it turns out to be
(7.8) T =2a .
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From (7.5), G(u) must be a polynomial of degree at most n—1. Let

n—1

(7.9) G(u)= jZ=_‘:) au .

Then from (7.5), (7.6), (7.7), (7.8) and (7.9), we have

n—1

(7.10) rax= 2 0Bk, n—k+1) .
and
. (s+l)
(7.11) zG:’g(”;,‘l) é(-l)f-l(i) g‘,: (nis) a bl
n

Hence we have the following equations;

12 —(r—N\ e (_qyfT S‘H)

@1z e (j )20 (n+s> {fg( b (z)<z }
"

Now it is easy to prove the following lemma (see, [12] p. 62).

(7=0,1,2,...,m—1).

LEMMA 1. If a, b are non-negative integers, then

b
(7.13) §,<~1>““(?)<b71)= (:> :i:

PROOF. Let us consider the polynomial
(7.14) ple)=(1+2z)z*=1+=z){(1+2)—1}*
=(+ap{ 3 (4) (~ D +ay]
=S (OECT) -

The coefficient of z° is

@15 sev(7)(%5)-

On the other hand, from the definition of p(x) it must be equal to

< b ), if b=a, and 0, if a>b. This completes the proof of lemma 1.
—a
By this lemma (7.12) becomes
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(D)ot 0

n /

(7.16) (1 -

7=0,1,2,---,n—1.

Let us denote ( 1>/<n+j) by @, (7=0,1,2,.--,n—1). Since o;=
"

R e

(7'17) . 1=0)o>wl> e >wn—l>0 .

If a;=a,=-:-=a,;=0, then a,<0 and a,a,#0, since G(u) must be the
inverse function of the cdf F(x) with zero mean. From (7.16) we can
show that for a solution satisfying a,.,=a,,=---=a,,,=0 and a,#0

the corresponding 2 must be w,. Hence the solution which maximizes
the corresponding A2 must be of the form

(7.18) an_1=an_2= e =a/2=0 and alaoio .
Thus we can conclude that
(7. 19) G(u) =ay— 2@0’“
and v
-1
7.20 i=r=1
(7.20) i

From the condition (7.2), ap=—+"3 . Thus, G(u)=—+3 +2v/3 u inde-
pendently of n. Of course, G(u) is the inverse function of the distri-
bution function of the rectangular distribution.

Summarizing the above discussions, we have the following theorem

THEOREM 3.

Sup 7= L for n=2.

n+1’

This supremum s attained by the rectangular distribution, where ‘ Sup’
18 taken for all continuous distributions with the finite variance.

7.2 Sup Tiny
We shall start with proving the following lemmas.

LEMMA 2.
-1

Sup 7(ny = L
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where ‘Sup’ 1s taken for all comtinuous distributions with the finite
variance.

PROOF. Let f (x)£ pxP~!, 0<x<1l, where p>0. This distribution
has been discussed in 5.3 [J]. In this case, we have

0'3.,;, — 1)2 2) pr—F n!
e e (i S peey vty
—mn—k+1 n! 2
P <(k—1)!(np+1)«n—1)p+1) (kp+1)> f-
Hence
1- One 0 ’ lékén_l )
L'?T'{ J ., k=n.

On the other hand, by the definition

=80y (it Ouat e H 0 )
wTTE T ne )
Thus we have

limepy=1—L =21
=0 n n

This completes the proof of Lemma 2.

LEMMA 3.
Ty = n—1 ’ n=2.
n
Proor. Let X, X, ---, X, be a random sample of size n drawn
from the population. Let (X, X, - -+, Ximy) be their order statistics.

Since X;+X;+ -+ - +X,=Xoy+Xo+ -+ X, We have

ne'=a;,1+05:+ - - 405,42 Cov (X, X))+« -+ +2 Cov (Xen-159 Xem)
Sontonst o 4000 +20,10,t 0 0+ 200 0-100,n

=(an,l+on,2+ e +Un,n)2=n2agn) .

Thus we have

1 n-1

at
T<n>=1—_2")§1_——:— .
o n n

From Lemma 2 and Lemma 3 the following theorem has been proved.
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THEOREM 4.

Sup 7= ﬂ;l s n=2.

8. Related problems
8.1 A modification of sampling

The method mentioned above may be applied with various modifi-
cations. We shall here simply discuss only one example.
Let X, X;, -+, X3 be an independent random sample from a popu-

lation. Let us define Yy, Yayp, Yz and Y% by
Yy =min {X,, X,},
Yo p=min {max {X,, X}, max (X, Xe}} ,

Yop=max [max {X;, X}, max (X, X}

and

Y“) + Y(2 1)+ Y(2 b3

Y[;'ﬁ = 2

2

Then Y% is obviously an unbiased estimate of the population mean. Let
us denote the pdf of the distribution of Y, by fen(x), 2=1, 2, then

Fan(®)=2f3,(x)Fy,3(x)
Sen(®)=fi(x) .

The variance of Y is given by

and

o 17[;5)=1i6(4o:,1+a2( Yan)+aly) .

Let us define o} and %, by oj=30%( 17[;’3) and ¥%,=(a’—af})/s*. It should
be noted that Y is based on three measured observations. If of, is
considerably larger than o3,, then it will be expected that such an esti-
mate may be useful.

Suppose that the pdf of the distribution of the population be e,
(x>0). Then we have

_ 3 _ 25
2= Paa——

2 12’ E(Y(21>)=2#2,2—F4,4=£ ’

12
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a,,1=% and o§,2=751— .

Hence

o) =—'3— <4U§, 1+20%,— (#4,‘4 =

E(Y@n))’) _ 203
16 -

2 384
and

@F%:o.m .

Thus our estimates in the exponential population satisfy the following
inequalities ;

T[g]( = 0.250) < T<2>( = 0.345) < T[a]( = 0.389)
< TE';]( = 0.471) <T[4]( = 0.479) <T<3> = 0.510 .

8.2 Note on Neyman-allocation

When we want to apply the so-called Neyman-allocation we may
have to estimate the variances o2, o, - - -, 03, and sometimes we may
have to use the approximate values in practical cases. For this reason
we shall simply consider the quantity ¥, defined in the following. Let
us define o3 by

1/ a ax
0"';2=—< nl 4 Cml ++_"_") ,
CT 0\ np, n (N
where B+ f+---+B.,=1 and each §,>0. Let us define 7, by
* i—ad
Timy P .

(i) For simplicity suppose that n=2 and ¢},=0},. Then we have

,g;)=1__1_(£z,_1)’__1_(f_2,_z>’ i
4‘81 g 4ﬁz g

Let %:%:7 and let B=p=1—p4,. Then

= p(ll—p)<p(1“p)“%z>

Hence 75,20 is equivalent to
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33 VIF Sps e+ iV .

It should be noted that %gﬂg 1. For example in the normal population
7=0.68169. Hence r¥,>0 is equivalent to 0.218<p<0.782.

(ii) Suppose that n=2 and the population has the exponential
distribution. Let

1
= =1-—5,.
B 1ts B
Then
100— ot —
Ta:_—oplél"o 5.

Hence ¢%,=0 is equivalent to

5—2vV5 <p<5+2V5 ,
and

T8 2T

is equivalent to 1=<p<5.
In Fig. 3 this ¢, is traced against p.

*
T

0. 345 T(2)

0.3

0.25 T(2)

0.2

0.1 |
5+2/5

1 5 \To £

0.0
5-2/75

Fig. 3. 18 for the exponential distribution
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