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1. Introduction

Robbins and Pitman proved in [3], that the distribution of a linear
combination 3 aX}, @;>1, can be expressed as a mixture of y* distribu-
i=1

tions, whose numbers of degrees of freedom are random variables dis-
tributed like the sum of independent negative binomials. Teicher used
this relationship in his paper [4] to demonstrate a mixture of gamma
distributions, with a common scale parameter, which yields a gamma,
random variable with a different scale parameter. The relationship ex-
hibited is

(1.1) G, B)~G(, B+M), 0<i<oo, 0<p<1,

where G(2, v) denotes a gamma random variable, with a scale parameter
2, and M denotes a random variable having a negative binomial distri-
bution, with probability density

(1.2) P[M=m]=(—i)pﬂ(p—1)m, m=0,1,2,---, 0<p<l.
The mixing identity for y* random variables, which was derived by
Robbins and Pitman in [3], is obtained from (1.1) and (1.2) by substitut-
ing B=v/2, 2=1/2, and p=(1+¢)!, 0<g<oo. The effects of mixing
gamma random variables with probabilities following a Pascal distribution
were also studied by Gurland [1], [2].

In the present note we prove two theorems (in section 2), and apply
the mixing identities derivable to prove certain expressions for the mo-
ments of negative binomial random variables. The first theorem gives
a necessary and sufficient condition on the mixing probabilities of

* An earlier version of the present paper was published in Mimeograph Series, 70, De-
partment of Statistics, Purdue University, 1966 April.
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G(2, B+ M) distribution laws, which yield a G(2p, ) distribution law.
The second theorem proves that only the family of G(1, 8) distribution
laws has the property that a mixture of powers of its Laplace trans-
form, ¢(s; 2, B) say, with negative binomial probabilities yields a Laplace
transform of a gamma G(4p, B) distribution law, i.e.,

v

(13) 3 (78 )eto—1r s 2 By =9( i 1.6 -

This is a further characterization of the mixing identities studied here.
In section 3 we utilize some of the mixing identities derivable from (1.1)
to obtain various moments of negative binomial random variables, and
of their inverses. The derivation of expressions for these moments by
the aid of such mixing identities becomes a very simple task, compared
to the computation requirements for deriving those expressions directly.
In section 4 we show a case of a linear model (ANOVA model II) in
which a mixture of F-distributions yields an F-distribution, which is a
mixing identity derived from (1.1).

2. The characterization of mixing probabilities

Consider an additive Markov process X(t), for which;

(2 1) E{e_gx(g)} =< A >at+r

) A+s ’
where 0<i1<oo, —1<s<o0, t=0, a=0 and y=0. Let T be a random
variable, independent of {X(t); t=0}, and such that: P[T=<z]=F(x).
We consider the problem of characterizing the conditions under which
X (t) has a gamma distribution. In other words, the first problem we
consider is that of characterizing the distribution F'(f), which satisfies;

o) =)

for some £>0 and >0. F(t) is the mixing probability distribution of
the (random) gamma distributions, G(2, aT+7), which yield a gamma

distribution G(g, ).
It is sufficient to solve equation (2.2) for s=0. Setting

(2.3) ( 2 )":e-u §20, u=0,
2+s

we obtain

(2.4) S:e""F(dt) =g [(B-n/alu pﬁ[l —(1 —P) e—u/a]—p ,
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for u>0, p=pa~', 0<p=<1. The R.H.S. of (2.4) is the Laplace transform
of a negative binomial distribution. This implies that aT—(8—7) is
a negative binomial random variable on the non-negative integers, i.e.,

@5)  PT=a"(p—p+atml=("2 Joo-1,  m=0,1,...

for B=y. We have thus proved that a mixture of G(1, at+y) distri-
bution laws, which yields a G(2o, 5) distribution law must be a negative
binomial one. Using characteristic functions, it is simple to verify that
a negative binomial mixture of (GA, at+y) distribution laws yields a
G(4p, B) distribution law. We have thus proved.

THEOREM 2.1. A mixture on t of the family of gamma distributions
laws G(2, at+7), t=0, 18 again a gamma distribution law G(ip, B) if,
and only if the mixing distribution law is a megative bimomial with
parameters p and B, on the lattice points

(2'6) {a_l(.B“T)'f‘ka-l; k=0’ 1’ 27 . '} ’ .327‘ .

The mixing identity (1.1) is a special case, where y=p8, a=1 and
T=M. We proceed now to state and prove the second characterizing
theorem.

THEOREM 2.2. Let ¢(s) be the (bilateral) Laplace transform of a
distribution function, and let ¢(s) satisfy the equation

@7 5 (THee-vr ere=¢ (L),
v=0 y p

wm a meighborhood of s=0, with 0<p<1, B>0. Then, the distribution

Sunction is either degenerate or megative exponential.

PrOOF. From (2.7) with =1 we obtain the equation,

(2.8) PN~ (1=p)feN =4 (2 )

Since ¢(s)#0 for s=0, set (s)=¢(s). Then, (2.8) is reduced to
2.9 6(L)—1|=6(s)—1.

2.9) ol (p) |=0

Setting I1(s)=(6(s)—1)/s, we obtain
(2.10) I(z)=1II(p7) , for z=0.
Hence, by iteration,

@.11) H(p"y=M(p), for all k=1,2,---.
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Since II(s) is analytic at s=0, equation (2.11) implies that II(s)=con-
stant. Therefore,

(2.12) P(8)=(1+cs)™,

where ¢=0. Hence the distribution function, of which ¢(s) is the Laplace
transform, is either degenerate (¢=0) or a negative exponential (¢>0).

Finally, if ¢(s) is the Laplace transform of the negative exponential
law G(2,1), then ¢*(s) is the Laplace transform of the gamma distri-
bution law G(2, 8). Thus, theorem 2.2 proves (1.3).

3. Extensions and applications of mixing identities

In the present section we derive from mixing identity (1.1) further
mixing identities, which relate x>, F- and g-distributions, and indicate
few possible applications of these identities.

As is well known, a ¥* random variable with v degrees of freedom
is related to a gamma random variable G(1, p) according to the relation-
ship,

GQ, p)~%x2[2p] .

Thus, identity (1.1) yields the following mixing identity of ¥* random
variables :

(3.1) (1+¢) XD)~xv+2M], 0<gp< o0,
y=1,2, ..., where M is a negative binomial, with density

39) P [M=m]=_" (—¥2)(_¢ )" —0,1,---
@2) P [M=m] (1+¢)v/2( m ><1+¢> "

Relationship (3.1) yields immediately the expected value and variance of
a negative binomial random variable M, having a probability density
(3.2). Indeed from (3.1),

(3.3) 1+ ¢) E{xD]} =E{F[+2M]}=E{v+2M } .

Since E{yx}[v]}=v, we obtain

(3.4) Ey,,{M}=-;—¢, v=1,2,--+, 0<g<oo.

Similarly, from (3.1) we have
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(3.5)  (1+¢) Var {3’11}
=Var {¢[v+2M]}
=E, J{Var {{[v+2M]| M}}+Var, J{E{[»+2M]| M}} .

From (3.4), (3.5) and Var {¥[v]}=2, we obtain
(8.6) Vary,¢{M}=%¢(1+¢), v=1,2,.-., 0<g<oo0.

A straightforward computation of the first two moments of M, without
a use of identity (3.1) is considerably more complicated.

Division of (14¢)y'[»] by an independent #*[s]/s, yields according to
(3.1) to following mixing identity for F-distributions,

(3.7) (14¢) vF[y, s]~(v+2M)F[v+2M, 5] ,

for every v=1,2,-.. and s=1,2,---; where M has the density (3.2).
Since

E(FD,sl}= oS a>a,
identity (8.7) implies
(3.8) E,{(v+2M)(v+2M+-2)} =(1+¢)fu(v+2) ,
for all v=1,2,..., and 0<g¢<oco. This is another application of a

mixing identity, which can yield the second moment of M. However,
expression (3.8) is more useful for the derivation of the expectation of
(v+2M—2)"'(v+2M—4)"!, when v>4. We start, however, with the deri-
vation of a double mixture identity, which yields the expectation of
(v+2M—-2)", for all »>2. Dividing (14+¢)y»] by an independent
(14-¢) ¥’[v], we obtain

(3.9) Fly, vl ~ %F[Dﬁ-zﬂﬂ, v+2M],

where M, and M, are independent negative binomial random variables,
identically distributed like (8.2). Hence, for every v>2, the expectation
of (3.9) yields

10 Y __F, {—’i%} , 2, .
(3.10) v—2 ¢ v+2M,—2 v> 0<p<oo
Since M, and M, are independent, we obtain from (3.4) and (3.10),

1
A+¢)v—2)

This result proves that for all v>2, (v—2)/(v—2+2M) is an unbiased

(3.11) E,,{(v—2+2M) )= v>2, 0<g<oo.
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estimator (when v is known) of p=(1+¢)"!, where M is a negative
binomial with density,

P[M:m]:( _’;;/2>pv/2(p_l)m , m=0,1,--., O<P<1 .

To obtain the expectation of (v—2+2M)"(v—4+2M)~!, for all v>4, we
consider the second moment of F[v,v]. From (3.9) we obtain

(3.12) E { (+2M)(+2M,+2) }= (v+2)
' “l—2—2M)v—4—2M) ) (—2)—4)

The independence of M,, M, and formula (8.8) imply, for all v>4, 0<¢
< oo,

1
A+g)—2)—4)

Mixing identity (8.9) cannot be applied for the derivation of E{(1+2M)~'}
when v=1. It is interesting to note that straightforward but somewhat
novel derivations yield for v=1,

(3.13) E,,{(v—2+2M) " (v—4+2M)"} =

(3.14) E¢{(1+2M)"}=7}¢7 sin—l( ﬁ) . 0<g<oo.
For v=3 the result is simpler, and is given by (3.11), namely, E, ,{(1+
2M) ' =(1+¢)

We conclude the present section with another example of a useful
application of a mixing identity derivable from (1.1). It is well known
that if Gy(2, ») and G4, q) are two independent gamma variables, having
the same scale parameter 2, 0<1< oo, then

Gl('ly p)
G4, P+ Gi4, @)

where B(p, q) designates a beta random variable with expectation p/
(p+q). We thus obtain, from relationship (1.1), the following mixing
identity :

~Bfm 9,

(3.15) 1 ~ﬁ(-;—»l+M, —é—uz> . 0<p<l,
1+£'2'PF[”2: v
Y1

where M has the negative binomial distribution (1.2). In particular,
for v;=v, one obtain

1 1 1
3.16 I S (_. L ) 1.
( ) T 7o) B 3 v+ 2v 0<p<

o R 5 . Al S e ok A AL b et A ot et
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This relationship (3.16) can be utilized in the following problem ; Consider
two random samples X;, ---, X, and Y}, - -+, Y, from normal distributions
Jl(g, ¢1) and Jl(u, 63), respectively having a common mean g, —oo<p< oo,
and an unknown variance ratio, p=di/e}. A common estimator of p
(see Zacks [5]) is

A v S /S1 v 1
3.17 =X > Ly 1
317 #=Trsys T I TES)S,

where X, and Y, are the respective sample means, and S,=3 (X,—X.)?,
i=1
S,=31(Y;—Y,)%.. The efficiency of this unbiased estimator, relative to
i=1 .

that of the best unbiased estimator when p is known, is given by

1

1+pFn—1,n-1] )
(1+")E{ (4 pF[n—1, n—1)) }

(3.18) off. (] o) =

The computation of the expectation in the denominator of (3.18) is a
very tedious task whenever n>3. For »=3 one can show that

1+pF[2,2] | _ 2(°~1)—4plogp
©19 =) (1+0F2, 2]>2}‘ (-1 7

Very tedious computations yield, for n=>5,

1+pF"[4, 4]
@20 Bl gt

=Tp-—l1—)s[l—269+26p3—p‘-—6p log p—360* log p—6¢ log ] .
To obtain a closed formula for the expectation in the denominator of
(3.18) when »>5 is a very difficult task, which becomes impractical as
n grows. Numerical integration is always a possible solution. We utilize
here the mixing identity (8.16), for v=n—1, to give this expectation in
a power-series form. From (3.16) we obtain for every 0<p<1

(3.21) E,{(1+pF, u])‘z}zE,,,,{,B2<-;—+M, %)} .
It is easy to verify that

2 _ (p+1)p
. E , = .
(8.22) (# 0)} (p+1+9)(p+9)

Hence, from (3.21) and (3.22), for every 0<p<1,
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(3:23) B, ((+pFl )" =1 5 &T:;Eﬁi%) (72 )oro—1 .

Furthermore, for every 0<p<1,

0w nfote (is{z o 3]

Indeed,

(1ff;!f;,v3])2 - (1_ 1+p;’[u, V] >2~ <1_‘9<%+M’ %))2 '

Thus,
oF v, v]
(3.25) EP{ A+pF v, v]) }

_1 v+2M | 1 { (v+2M)(v+2+2M) }
- 1_ —Eun
P[ B TR (+M)v+1+M) ]

Combining (3.23) and (3.25), we obtain, for all 0<p<1,

14 pF*y, v] }:l[l p+1 & v42m
(3.26) EP{ (A+pF[v,]) o + 4 m2=0 v+m

(y+2+2m 4 )(—u/2> L2 __1,,,]
<u+1+m e+1/\ m o= | -

4. An example from linear models

Consider a model II in ANOVA, namely,

(4.1) - Xi=a+ei (i—_—l, ceey, 'n)
where ¢,~N(0,d%), for all i=1, ..., n, independently of a; and a~
N(a, 7).
For testing the hypotheses ;
(4.2) H,: a=0
versus
(4.3) H: a#0,

congider the test statistic ;

(4.3) F="X
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where X is the sample mean, 1 > X; and ¢ is the sample variance,

n i=1
n— Z (X;i—X). To exhibit identity (8.2) with v=1 and s=n—1 con-
sider the distribution of F, under H,. The conditional distribution law
of &%, given a, is

L@ a)=L ( rln— 1]) independently of a.

Hence, X and ¢* are independent. Moreover, _L(X| a)=ﬂl(a, -;9 Hence,

L(nX|a)y=L (02;(2 [1; %D . The conditional distribution of F, given «,

is therefore like that of the non-central F[1,n—1;21], where l—W.

2
According to the assumption of the model, 2~-gixz[1], where ¢= n:
g

Thus, since for a given A the conditional distribution of the non-central
¥[1; 4] is the mixture »[14+2M1], where M is a Poisson random variable
with parameter 2 (see Graybill [6] p. 76), one obtains

(4.4) P[M=m]= ;,S -lzmdp[ x[1]<z]
-
Jits 40 \I+g
— il wlTs)
It follows that, under H,,
2m
(4.5) P[Féx]=vli¢ > <$> '<1i¢)mF<1+2m ll+2m n— 1)

On the other hand, since Var{X}=1'+¢*n, the distribution of nX?
under H, is like that of (mc*+d?)y[1]=0*(1+¢)¥[1]. Hence, F=

_"£~(1+¢)F[1 n—1]. Therefore,

A2

).

The comparison of (4.5) with (4.6) yields the mixing identity (3.7) with

(4.6) P[ng]:F( 1f-¢
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the special values of v=1 and s=n—1.
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