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1. Introduction and definitions

Since C. Shannon first introduced the notion of information, various
definitions were presented about the amount of information of random
variables in probability theory. Among them, however, A. N. Kolmo-
gorov’s definition seems efficient for analysis of stochastic processes.

Let X and Y be random variables on the probability space (2, B,
P), taking values in X and @/, respectively. The amount of information
contained in Y with respect to X is then

Pyy(dzdy)

(L.1) 1X, V)= || Purdody)log P.(dx)Py(dy)

XxqYy

where Px( ) and Py( ) are the probability distributions of X and Y, re-
spectively, and Pry( ) is the joint distribution of X and Y. The above
integral is to be understood in the Lebesgue-Stieltjes sense. I(X,Y)
has the basic properties that we want to require for the definition of
the “amount of information”. When we put X=Y, we call I(X, X)
entropy of X and denote with H(X).

(1.2) H(X)=I(X, X)=— Sx Px(d%) log Px(da)

Hereafter we assume that X’=4 and it is a metric space with dis-
tance function p.

When we calculate the amount of information I(X, Y) or entropy
H(X), we often get infinite values. (In order that I(X,Y) be finite, it
is necessary that Py, is absolutely continuous with respect to PyX Py.)
A. N. Kolmogorov gave a further definition of “c-entropy of a
random variable X” from a viewpoint of transmission of information,
that is,

(1.8) He(X)=inf I(X, Y),

where the infimum is taken over all Y’s satisfying

479
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(1.4 E|o(X,Y)['= Sg |o(X(w), Y(w)) [ P(do)=¢".

It is the least amount of information contained in Y with respect to X
when we use Y in place of X under the condition that the mean square
error is less than ¢%. It is related to C. Shannon’s “rate of generating
of messages”. Kolmogorov stressed the importance of evaluating the
asymptotic order of the quantity #¢(X) when ¢ is close to 0.

When X’=R" (n-dimensional Euclidean space with the ordinary dis-
tance), J((X) is calculated as:

(L5) Ie(X)=n log ++[h(X)—n log ¥ Zze ] +0(¢)

where

MX)=—| 5@ log p&)ds
p(x): probability density function of X in R*

for sufficiently smooth p(x).
The s-entropy of the real-valued stochastic process {X(¢); 0=t=T}
defined in the time interval [0, T'] is

1.3y He({XOH=mf I{XD)}, {Y®)]),

where the infimum is taken over all the processes {Y(¢); 0<t<T} that
satisfy the condition

1.4y E ST | X(t)— Y () [dt<e .

The e-entropy of Gaussian random variables is calculated in exact
form [7] and the e-entropy of a Gaussian process can be evaluated rather
easily. In [4] the following fact is noted without proof: let X(¢) be such
a process that satisfies the differential equation in the symbolic sense:

(1.6) XD+, X¥D(E)+ - - - +ay X (E)=aB'(t) ,

where a;, a,, --+,ay, a#0 are real constants and B'(f) is the formal
derivative of the Brownian motion B(t), then the ¢-entropy of {X(¢);
0<t< T} is given asymptotically by

1.7 j{'e({X(t)})=C5—2/(2N—1)+O(€—2/(2N—1))

as e—0. C is a positive constant depending on 7, N and a; a,---,
ay, . The Gaussian process X(t) satisfying (1.6) is an N-ple Markov
process in Doob’s sense.

In this paper we shall show a similar evaluation of the c¢-entropy
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for such an N-ple Markov Gaussian process that is represented in the
form :

(1.8) xt)=| 3 fOodBw)  (O=t=T)

under certain conditions. As to the general consideration of such a
Gaussian process see T. Hida [5].

2. Some known results

Let {X(t); 0<t<T} be a real-valued Gaussian process with mean
E{X(t)}=0 whose correlation function

K(t, s)=E{X(t) X(s)} 0=t, s<T
is continuous in 0<t¢, s<T. Since K(t, s) is symmetric:
K(t,s)=K(s, t)

and positive semi-definite :
T(CT
S S K(t, s)p(s)p(t)dsdt =0 for every continuous function ¢(%),
0Jo

the integral operator K with the kernel K(¢, s)

(Ke)O={ K(t, s)p(o)ds

is a self-adjoint completely continuous operator, so there are a countable
number of eigenvalues of the integral equation

2.1) Ko=12p

and they are all non-negative, and can be arranged so that 4, =2,=---
=2,—0 as m increases. It is verified that K is a trace operator, i.e.
> 2,<+ o, because of continuity of K(t, s).

The e-entropy of {X(f); 0<t<T} is then calculated exactly as fol-
lows:

2.2) ﬂ[e({X@)}):% 5 1og(

An *
V1)

where ¢° is a constant determined by the equation:
ST NF)=E*,

Especially, if the eigenvalues of the integral equation (2.1) are evaluated

* aVb=max/{a, b} aAb=min {a, b}
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asymptotically as

(2.3) L=Cn"*+o(n™*),

then we calculate #<({X(¢)}) on the basis of (2.2):

(2‘4) ﬂs({X(t) } ) e % CYV&-1 Jpr/ k-1 (k — 1)—1/(k—1) g~ 2/k=1 + o(e—zl(k—l))

as e—>0.
When we take the Brownian motion B(t) 0<t<T),

K(t, s)=tAs,

and

Applying (2.3) and (2.4), we have

2
He((BON=2T Lo L)
T & &

as e—0.

The above results are due to Pinsker [7].

Thus, in order to calculate the e-entropy of a Gaussian process with
a continuous correlation function, we need to know the asymptotic order
of the mth largest eigenvalue 2, of the integral equation (2.1). Relying
on (2.3) and (2.4), we shall evaluate eigenvalues about such a Gaussian
process’as (1.8).

3. Evaluation of the e-entropy

We shall start with a process X(tf) which is expressed in the form:
t N
(3.1) xt)=\ = fowiBw)  0st=T.

Following [5]*, we assume

ASSUMPTION 1. f;, g; (1=1,2,..., N) are differentiable in [0, T'] as
many times as necessary for the following argument; f; and the Wron-
skian W(g,, g, - -, g:) never vanish in [0, T'] for every <.

* The original assumptions 1 and 2 in [5] do not contain #=0. See section 4 about
the situation that we here include {=0 in assumptions 1 and 2.
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ASSUMPTION 2.

(3.2) S} APO0)=0  (k=0,1,---, N—2)
and
(3.3) 5 AN (B0

for any te|0, T].

Under these assumptions X(t) is differentiable with respect to L*)

norm up to N—1 times and satisfies the stochastic differential equation

of the type (1.6) where a,, a;,---, ay, a are functions of ¢ in this case.

X(?) is an N-ple Markov Gaussian process in the restricted Lévy sense.
The correlation function K(t, s) of X(t) is written:

(3.4) K(t, 9=31fOhs)  tzs,
where
(3.5) h(s)= j%, £(s) So g wdu  (i=1,2,---, N).

This correlation function is continuous in 0<s, t<T. Putting A;(s)=

Ssgi(u)g,(u)du and using relations (3.2), we get
0

(3.6) k()= j% OO ALs)  G=1,2---,N; k=0,1,---, N—1).

From the assumption 1, we know g,, gs,+ -, gy are linearly independent
functions. We note that f}, f;,-+ -, fv are also linearly independent from
the assumption 2, because we obtain

Whi fore o ) W@ gu- -+ 90)={ 2 1 6) 0] #0

by writing down relations (3.2) and (8.3) in the product form of matri-

ces and taking determinants of both sides. Taking account of non-

singularity of the Gram’s matrix {A;;(s)},s:<v, We obtain from (3.6)
1sjsSN

W(hlr h2" ) hN)=det {Ai.f} W(.fl! fZ!' ) fN)#‘-O

and hence Ay, hy,---, hy are also linearly independent. Moreover, 2N
functions f,, fi,- -+, fws hy, hyyo++, by are also linearly independent since
we get
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(3'7) W(ﬁ;ﬂf"'nys hlth,"°’hN)
= {3 7O | WFa Fure - SO (G G0 03)

¥ w
=[5 fe@a@ | #0
according to (3.6). From (8.6) it also follows that
(3.8) é{ﬂ(’"(s)h?’(s)— FOEREE)}=0  for 0=k+I<2N-2.
For later use we compute especially the case k=2N—1, =0 in (3.8):
SHAP )~ £ ()

% ,E: { £V 2(8)hi(s)— fils)h ()}

— ﬁ} { JeN-D(s)h{P(s) — FO(s)h§ N-2(g))
— ? [ fON-DR® — fFOREN-D}
+ S { fO¥PhP — fORETD}

—— e e e s e e s e e e s

Il

by using (3.8) repeatedly for k+1=2N—2, we obtain
=(_1)N—1 2 {ﬂ(N)th—l)_ﬂ(N—l)h%N)}
i

and from (3.6),
=(=D)" S B AT TS (fP A+ 17 0:95)}
= (1" SU=DAS g0}
=(=D)"{S fTE)94)) -

Thus we have

2

69 B~ OO} =(-D" (5 £ 000 |

Now we want to study the eigenvalue problem of the integral
equation corresponding to (2.1) with the continuous kernel (3.4):

(3.10) Y= (AL +hOBO)
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where

A@®=\ n@pe)ds,  BO=| flspleds.

This eigenvalue problem (3.10) is turned into that of the classical Sturm-
Liouville type of 2Nth order differential equation in the following way.
Differentiating both sides of (3.10) and using the equalities (3.8) repeat-
edly, we get

()= { () A) +hi(2) Bi(2)}
Ap0(t) =S SCR) A + P Bt}

3.11)

PN =3 { FETO () Adt) +hEY () Bi))
2pPW(t) = zi} {FEN(E)At) +hE(t) Bi(t)}
+2i FEVDR)hAE) — FUOREY (D) }o(t) -

From these 2N 41 equalities we eliminate A;(f), Ai(t),- .-, Ax(t); Bi(t),
By(t),- - -, By(t) and obtain a differential equation:

© fl cee fN h1 e hN
SD(l) fl(l) e flsl) hfl) c e hg)
3.12) | . I S : =0.
SD(mr-l) ‘fl(zN-l). .. fz(va-U hEzN—l). . hgzv-x)
@ — LSV FONDR,— fREV-DY FE0 L fON REN L g
A

Expanding the linear ordinary equation (3.12) by elements of the first
column, we see that the coefficient of @ is W(fi,- - <, fa, bar+ « + +, hy) #0,
as was already pointed out by (38.7), and therefore (8.12) is in fact a
differential equation of 2Nth order. (3.9) allows us to write (3.12) in
the following form:

(3.12) Le=3} m(t)so"‘)(t)=%,

where
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pk(t)z-—Wk(-fl""th, h1y"',h1v) . 1
W(fie ey fas byy e+, hy) ? {f&-Vh,— fiRE¥-D}

(*k=0,1,2,---,2N—1)

1

P(t)= ; {(F & Dh,— f;heD)

and Wi(fy, -+, fw, by,- -+, hy) is obtained from W(fy,---, fu, by, -, hy)
by replacing the (k+1)th row by f&,..., f&M @YV, ... K™, Note that
since fi,- -, fy, by, ++, hy are linearly independent functions, they con-
stitute a system of the fundamental solutions of the homogeneous
equation :

Le=0.
As to the boundary conditions: since
A(0)=B(T)=0  (i=1,2,---,N)
h{P(0)=0 (¢=1,2,---,N; k=0,1,.--, N-1),

which is obvious from (3.6) and (3.10), ¢ should satisfy (38.11) at ¢=0
and T:

P(0)=¢®(0)="- - =¢*(0)=0
Ag(0) =31 hi(0)By(0)
1 2N (0)=33 RT(0) BA0)

----------

AP D(0)=3] A" ~(0) B;(0)
and

Ao(T)= 4?_. JAT)ALT)
p(T)= > F(T)ALT)

At (T) =3 FEAT)A(T) .

From the above relations we have boundary conditions at ¢=0 and ¢t=T
of the equation (3.12) or (3.12)":
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( 4D=¢PO)=0  (k=0,1,---,N—1),
GO(T)  fOT) -+ F(T)
GV(T)  fED(T)- - £(T)
313  { aw=| - I - =0,
oN(T)  FOT) - FT)
o(T) AT - fuD)
(k=N, N+1,---,2N—1)

As is well known, the eigenvalue problem of the integral equation
(8.10) is equivalent to that of the Sturm-Liouville type of differential
equation (3.12)" under the boundary conditions (3.13). Hence we evalu-
ate the eigenvalues of (3.12)' under (3.13) instead of (3.10). The eigen-
values of this system are the roots of the following equation with
variable 2:

4(x1) d(xe) -+ A(xey)

A1(X1) Al(Xz) vt AI(XZN)
(3.14) . . .

AzN-x(Xl) AZN—I(X2)° ° AzN—1(XzN)

where y=x:(¢; 2), 2=xt;2),"+, taw=2n(t; 2) are the fundamental solu-
tions of the equation (3.12).

Apart from the general formulation of the problem we consider
here a rather easy case.

Example 1. (N-ple Markov Gaussian process in Doob’s sense)
Consider a stochastic differential equation (1.6):
X)) +a, XY D)+ -« - +ay . XPt)+ay X ({t)=aB'(t)

and suppose that the equation:

(3.15) UN+a1VN—l+ o +aN_1”+aN=O
has simple roots v, vs,+++,vy. Then the solution of (1.6) which satisfies
the initial condition :

X(0)=X®0)=---=X¥D0)=0

is



488 KIMIO KAZI

(3.16) xH=2 S Sy Od Bu) *,

t N
=1

01

where 8y, is the cofactor of v¥~! in the determinant:

1 1 ... 1

’Jl Uz CECE) VN
o=

TR S Y o

Although X(t) is in fact a real-valued process in spite of its apparent
form (3.16), we make use of its complex-valued expression for conveni-
ence of calculation. Put

fi(t)=%5me”i‘ ,  g®=er*  (i=1,2,---, N).

They satisfy the assumptions 1 and 2.

h(t)=2% % Oy (e’ —e™").
0 i=1 y;4uy;

ST ORO - OO} =(-1" 2 £ 000 |

=(—1)%a’.
If we substitute them in the equation (3.12), an easy matrix calculation
shows that the fundamental solutions of Lp=0 are %, e, ., e, e71,
e, ... ¢¥ and the equation (3.12)' becomes
N
(3.17) CE D@ - (D —sio=L.,

where D is a differential operator: Dgo=‘;ll—9". The differential equation

(3.17) with constant coefficients is solved by the usual method. We are

interested in the case of large %, for we intend to treat the small

eigenvalues 2. Then for positive large -i— the algebraic equation :

* The stationary solution of (1.6) is
aft N -
X(t)=_6—g Z 8.1 dB(u).
—o0 =1
See Doob [3].
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(3.18) CO sy @) @=L
a A

has always just two pure imaginary roots whether N is even or odd.
Let 4, be the pure imaginary roots and =g, +p4,- -+, =py be other
roots of (3.18). (Choose gy, p,+ -+, py S0 that the imaginary part of g

and the real parts of p,---, uy may be positive.) For large %,

(3.19) VI D (47=1,2,---, N) *
Real part of p;=<a'¥ (7=2,8,---, N).
The fundamental solutions of (8.17) are
1es®)=e*"  (§=1,2,---, N).
In order to evaluate asymptotically the mth smallest eigenvalue —;— of

n

(3.17) under the boundary conditions (3.13), we solve the equation (3.14)
picking up terms of the highest order and ignoring terms of lower or-

der for large —1— under (3.19). We substitute in (3.14)

(£p)* (k=0,1,---, N—-1)
Do) =) W+, ) .-z (i#f)ke“ﬂ_l_o( 21\7}2—" exp{i 21&}7 }>
(k=N, N+1,---,2N—1)
(W(fy,+ -+, fx)|,_, does not vanish.)

and we have

1 1 o 0..-0 1 1 ... 1

l‘ll ——#1 0 0 e 0 --—l‘t2 —#3 LR _#N
(=) 0 0 -0 (=" (=)™ (=)™ _ 0
wen?  (—p)¥em” 1 1 ... 1 0 0O ... 0 )
pl et (—p)¥ et gy opy -e py 0 o --- 0

ﬂ.fzv—leplz' (__;tl)ZN—-le—-plT ;.l;v—l ;.lé\f—l. . ';‘xq 0 0 .. 0

* f()=<g(2) means f(2)=0(g(2) and g(A)=0(f()).
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After some manipulation we obtain the relation

(24 —#Z)Z(ﬂl —;la)2 e —p v )emT
+ (DY e+ p) (e + )’ - - (1 + pew)’e™1 7 =0

i.e.

gt 1y | ) et p) - - (et ) )
(8.20) ¢ =D {(ﬂx—#z)(#l—#a)“'(#l—#zv)} )

Taking account of (3.19), we see that argument of the right-hand side

is close to a constant for large -:—, and therefore g, should satisfy

2T | |=2nz+0Q1)

for sufficiently large n (integer). Since multiplicity of each eigenvalue
—dimension of the space of solutions corresponding to a eigenvalue —
of the equation (3.10) is at most 2N, we can conclude from the above
asymptotical equality and (3.19) that for sufficiently large n

(3.21) Ay X g Wy,
Hence, from (2.3) and (2.4), we obtain (1.7).

THEOREM 1. The c-entropy of an N-ple Markov Gaussian process
in Doob’s semse is given by (1.7).

Let us return to the previous formulation. We prepare two lem-
mas to evaluate eigenvalues of (3.12) or (3.12).

LEMMA 1. The differential operator L in (3.12) is written in the
Jorm

— 1y @° d*
(3.22) Le=% (-1 (qk(t) dt,c)

by taking appropriate functions qut), ¢,(t),- - -, qn(t).

Proor. From the equality:

2N quj _ N _ % dlc dk¢
Sa0Le=35 0L (a0l

we have
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—1)k<2k" )q“" o (i=0,1,---, N—1)

k=(i+1)/2

3.23) p={ ]
—1)* (2k—1) - .

k=2§1)/z( 1) <2k_ )q ("’ N’ N+1; ,2N).

In order that there exist gq,, ¢, -, ¢x that satisfy (3.23), it is necessary
and sufficient that (3.24) holds.

(3.24) pe= 3 (— 1 Elogn =01, 20).
k=1 l

It is obtained from (8.23) by eliminating ¢, ¢;,--+,qy. In that course
of calculation we must use the following relations of binomial coeffici-
ents:

I;i_‘»:(—l)"<1;><2 '_k)—o o<i<i—1)

kziz ("l)k( Ilc ><2ii—k)=<2ii—z> (=l<2i).

On the other hand, as the integral operator K in (2.1) is a self-adjoint
operator, the differential operator L in (3.12), the inverse operator of
K, is also a self-adjoint operator, and (3.24) is nothing but a relation
obtained from Leo=L*p:

x4
dt*

do _
Epk 7 Z}( 1) (N

Therefore it is possible to write L¢ in the form (3.22). ¢’s are deter-
mined from (3.23) successively. Especially we note

1
S 090))

It is well known in the theory of integral equation as to (2.1) that the
greatest eigenvalue 2; is given by

(3.25) ar(t)=(=1)"px(t)=

(3.26) % —min (K, ¢)=min S:ST K(t, 9)o(s)p(t)ds dt

1
where the minimum is taken over the class of functions ¢ that are
T T 2
continuous and || K¢|]2=S [S K{t, s)go(s)ds] dt=1. The -corresponding
0 0

normalized eigenfunction ¢, is the function that attains the minimum
of the right-hand side of (8.26). ' Then nth greatest eigenvalues 4, of
(2.1) is determined inductively by
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(3.27)

21 =min (Ko, ¢)
where the minimum is taken over the class of functions ¢ that are con-
tinuous and

T
IKplP=1 and (@, 0)=| oOp,@d=0 (=1,2,--,n—1).
(¢, is the jth normalized eigenfunction corresponding to 4;.)

The nth eigenfunction is the function that attains the minimum of the
right-hand side of (3.27).

Now we can translate the above remark about K into the expres-
sion about L; i.e.

(3.28) %: min (Lo, ¢) =min S: Li)pdt

1

where the minimum is taken over the class of functions that have con-
tinuous derivatives up to the 2Nth order and satisfy the boundary con-
dition (3.13) and ||¢|*=1. 2, is determined inductively by

; =min (Lg, ¢)

n

(3.29)

where the minimum is taken over the class of functions that have con-
tinuous derivatives up to the 2Nth order and satisfy the boundary con-
dition (3.13) and such that ||¢|[’=1 and (¢, ¢;)=0 for the jth eigen-
function ¢; (j=1,2,---,n—1).

It is inconvenient that we need to know the preceding eigenfunctions
in order to minimize the energy functional in (3.28) or (3.29):

3.30 Dlo]=(L " (— 1)k ( g, %0 g

(3.30) l=o.9)=| (1o (a2

under those conditions. But we have a fundamental method which
shows the basic property of eigenvalues that the eigenvalue is given an
extremal value.

LEMMA 2. (Courant) Let C* be the class of functions that have
continuous derivatives up to the 2Nth order in the interval [0,T]. For
arbitrary piecewise continuous functions ¢, ¢y, -+, ¢n, DUt

(90’ (/’j)ZO (j=1’ 2,---, n_l) }

A(gu, dure - +r duy=inf{- DL . e O satisfies the boundary

2 ?
el " conditions (3.13)
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Then the nth eigenvalue of the differential equation Lgo=—§—go under the
boundary conditions (3.13) is given by

1 { Dty Poyet vy Pua QTE piecewise}
=maxid yeeey Pay)y TLFD ¢
A (&1 92 $n-) continuous function

n

and the maximum of the right-hand side is attained by taking ¢i=¢y,
croy D=1 (P1y*, ouoy aTe the first n eigenfunctions.)

PrROOF. The proof is carried out just in the same way as found
in Courant and Hilbert [2] where the lemma is proved for the second
order differential equation.

(3.30) is calculated as
(3.31) Dlgl= 3 (—1* T (— 1O @O ) ior

T N dkga )2
+{ Sam (L2 )a
=(the term of the bilinear form of ¢*(T)
(k=0,1,-.., N—1))

+, Bao( )

where integration by parts is applied and the boundary conditions (3.13)
are taken into account. Since gy(t), qi(t), ---, qx(t) are continuous in
[0, T] and gu(t) is positive in [0, T'], we choose strictly positive con-
stants m and m such that

lg:) |=m  (k=0,1,---, N) and gy(t)=m in [0, T].
We define differential operator I, by replacing q:(t) in L by m:

d2k %)
de

(3.32) - e §} (—1)h

and the boundary conditions:
(3.33), e(0)=¢pP0)="-- - =¥ D(0)=0

(3.33), ¢P(T) = (T) 4+ Ao P(T) + - - + s 10" (T)
(k=N, N+1,..--,2N-1)

where a,;’s are constants chosen appropriately so that the first term of

(8.31) may coincide, as a bilinear form, with that obtained from ST fl(go)go dt
0

by integration by parts and by applying (3.33), and (3.33),.
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As is easily seen from lemma 2, for the nth eigenvalues 1 , }

A A
of the equation L(pz-;i under the boundary conditions (3.13) and the

equation Ego_—.% under the boundary conditions (3.33); and (3.33), re-

1 < } . On the other hand,

n zn

spectively, the following relation holds;

eigenvalues } ’s are evaluated for sufficiently large =» directly in the

same way as in example 1:

222, T®n .
We also get

WS WX T,
where 2, is the nth eigenvalue of the equation:

d2k ‘0

2N
dt* +(—=1)"m il

~ dtzN

Lo =3 (~1)(—in)

under the boundary conditions of the same type as (3.33); and (3.33),.
Hence we have the final evaluation for 4,.

A TWn~

THEOREM 2. Under the assumptions 1 and 2, the e-entropy of the
Gaussian process

x(0={ 3 700waBw ostsT

is given by (1.7).

Example 2. The coefficient of the term of principal order in (1.7)
is calculated easily for a Gaussian process that is expressed as

X(t)= So g(w)dBw) .

In this case we have by the same notation as in section 2,

o=\ sar )%

under the boundary condition:

¢(0)=0, eP(T)=0.
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If we introduce new variables x, ¥ by the Liouville transformation

_{ — ()
={' 1900 14u, el

the above problem is transformed into a boundary value problem in
[0,a]:

— 9V 4 ey =Y. g

d 2
y(0)=0, yP(@)=y*
T
where a=S lg(u) | du, z=+|g ldtza/lgl and y* is a constant. By the
L]
method of lemma 2, we obtain the asymptotic evaluation
1

n'r
=" 1
PR +0Q)

=w| o) 1du] " +ow,
that is,

‘"=%[S: lg(w) | du]z'n'2+o(n") .

Therefore we get an evaluation of the e-entropy from (2.3) and (2.4)

S(xOD=2- 19w |du] L+o(L)

as ¢—0.

4. e-entropy of M(#) process

It is not essential that we have included ¢=0 in the assumptions 1
and 2. If we rewrite the assumptions 1 and 2 excluding ¢=0, we have
generally an eigenvalue problem for the “singular” Sturm-Liouville
problem. But also in this case, we may be able to trace the argument
in section 2 with a slight modification taking notice of behaviors at
t=0 of f’s, h’s, ¢g’s and etc. and reexamining the boundary conditions
at t=0.

As an example of the singular Sturm-Liouville problem, we shall
take Lévy’s M(t) process. Y. Baba [1] evaluated the e-entropy of M;(t),

obtaining an exact solution of L¢=% and making use of properties of

the Bessel function.
Lévy’s My(t) process is defined for ¢ ¢ [0, T'] by
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@4.1) Ma(t)= st) X(A)do(A)

where X(A) is a “Brownian motion with a parameter space R**” and
Sy(t) is the sphere with center O and radius ¢, and d¢ is the uniform
measure on Sy(t) with total measure 1.

If N=2p+1 (odd number), M,,.,(t) is expressed as

4.2) Mot)=\ Prps(%)dB(w)

where

P2p+x(u)=72—fr— V| (1—ayids

=polynomial of degree 2p—1,

z/2 .
L,= S sin?6de .

0

M,..(t) is a (p+1)-ple Markov Gaussian process in Lévy’s restricted
sense. Its covariance function K,,..(t,8) (0<s<t<T) was calculated
by Lévy [6]. ’

» 21
Kop (2, 3)='%—% 2o S

i=1 tal—l ’

where

_ 1 k(2k—1)
4—1 w2 (k—1)Ql+2k—1) ~

a;

We shall sketch an outline of the calculation to evaluate the eigenvalues
of the integral equation (2.1) for K,.,, taking up the case p=2 as an
example. For brevity of notation, let the time interval considered be
[0,1].

2 4
4.3 Kt ,s)=> -5 4+ 5 _ 0<s<t<1).
4.3) i(t, 8) 5 5t+70t3 0=s=t=1)

It does not satisfy the assumptions 1 and 2 at the point ¢=0. But,
since it is continuous at 0 as t=s—0, there are countably many
eigenvalues 1 converging to zero for the integral equation (4.4) defined

* X(A, ) (A€RY) is called a “Brownian motion with a parameter space R¥”, if
i) X(A, ) is a Gaussian random variable,
ii) X(0)=0 for the origin O € R¥,
E{X(A)} =0, E| X(4)—X(B)|*=| A—B|, where | A—B]| is the Euclidean distance
between A and B in R¥,
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by the symmetric, positive semi-definite and completely continuous kernel
Kit, s):

t 9 4 1 9 .
4.4 <i_i J t_ .t ol
“4 S" 2 5t + 708 > ¢(s)ds + Sz( 2 bs + 708 >g0(s)ds 29()

Differentiating both sides of (4.4) in the same way as in section 3, we
obtain the differential equation

t (6} 3 (5 2 4
— Y O pp® _2p2p® 4 2t — L =0,
12 ¢ ¢ ¢ ¢ A

which is equivalent to

@t E & [, d d [odo\
@5 Le=—ja{ig g )+ ( a* >_W<2ﬁ)_'§"

The boundary conditions at t=1 are given quite similarly to (3.13):

e®()  fPQ) Q) FPQ)

p®(1) [P Q) FPQ) |

o) fOQ) fPQ) RO |
e) £ ) Sfi(D)

(4.6),  dlo)= 0 (k=3,4,5),

where fi(t)=1, fz<t)=%, fi)=-

As to the boundary conditions at t=0 we have from (4.4),

4i(p)=¢(0)=0
4e)=¢®(0) is finite  (k=1,2).

(4.6),

4
The equation (4.5) is in fact “singular”, for qs(t)=Tt2— vanishes at the

boundary t=0. The eigenvalues of (4.5) under the boundary conditions
(4.6); and (4.6), are evaluated from a variational method based on lem-

ma 2. The nth eigenvalue L of (4.5) is obtained from

1 D ¢ € C® and satisfies the boundary
4.7 2 = max inf{ [‘D]Z ; conditions (4.6); and (4.6),,

W fpednoy llell (o, )=0 (j=1,2,---,n—1)

where the maximum is taken over all piecewise continuous functions
1

&1y oy vy P and D[¢]=S L(p)pdt. Integrating by parts and substi-
0

tuting (4.6), and (4.6);, we have
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F(¢(1))+S:G(¢(t))dt . 9€C® and (o, ¢j)=0}

1 .
4.7 —= max mf{ ; .
A ]“‘7“2 (=1, 2,"',71«"1)

n 4’1:"':1/’”_1

from (4.7), where Fl(p(t)) is a bilinear form of ¢(t), ¢°(f), ¢®(t) and

coor=i5 () + () 23

from above

(i) Asymptotic evaluation of

n

(4.7)" is smaller than

(4.8) —%,.; ¢1T?é_linf{ﬁ?[ﬁv(¢(l))+g:{( Zatf >2+< ‘fii >2+2<%>2} dt]

;QDGCO and (QD, ¢.1)=0 (j=17 27""”—1)} .

As (4.8) is equivalent to the eigenvalue problem of the differential equa-
tion of type (8.32) under (8.33), and (3.33);, we easily obtain

1§}xm.

4.9
(4.9) L=

(ii) Asymptotic evaluation of from below

n

First we give a lemma which holds for usual variational eigenvalue
problems.

LEMMA 3. Fiz a certain t,€ (0,1) and consider the following varia-
tional eigenvalue problems :

|\ Glettnat
(4.10) ———,
|\ ottt
Fle)+ |, Glo()dt
(4.11) : ,

S oltydt

and denote by Vl(%) and V,(-}) the number of eigenvalues mot more

than % of (4.10) and (4.11) respectively. Then the number V(%) of
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eigenvalues less than —11— of the variational eigenvalue problem :

Few)+ | Gttt

(4.12) :
[, ettrat

b

which appears in (4.7), is not more than the sum of IG(%) and V2< 1 ) :

7
1 1 1
V3)=n(3)+(3)-
2 Vi 2 +V, 2
ProOOF. Put V1<%>=m, Vz(—;->=n Since each sequence of eigen-

values forms an increasing and divergent sequence, it is sufficient to
show

1

Zm+n+l

1
>7,

where -;— is the Ith eigenvalue of (4.12). We have

1

1 - max inf{(4.12) . ¢€C0,1] and (p, ¢,)=0}
2m+n+1 1,000, Pm, (_’]:1,2,...’m+n)
¢m+1y' ) ¢m+‘u

> . 12): 2€C0,1] and (p,£")=0 (j=1,...,m)}
—egl)'r,nf,xeg),mf{(‘i 12) ’ (¢’€§‘2))=O (k-:]., e, n)

fg”:' c 59)

where &0,--., £0 run through the class of piecewise continuous func-
tions that vanish outside [0, t,] and &®,---, £® run through the class of
piecewise continuous functions that vanish outside [t,, 1]. The above is

> max min[inf{(4.10); ¢ €0, &;] and 8009"55”“:0},

egl)’...,es)’ (j=1, 2,.." m)

59), ) 65;2)

inf{(4.11); ¢ € C°[t,, 1] and S: ¢g;3>dt=0H

(k=1,2,--+,n)
= max min{dPE®,- .-, ), dPED, -+, D)}
E(I) %y fg)
£ 6D

= max min{d(l)(egl)’ Y 55.{)), dm(sﬁf”, Tty Sor(zz))}
E(l),' M) GS':)
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=min{ ga)maxem dPED, -+, &D), AP, - - -, o)}
M ... eQ

=min{d®(g{®,- - -, L), dP(¢?,- - +, o)}

. 1 1 } 1
=min{———, ——t>—
o )

where dPE®,-- -, £P) and dP@E®,- -, £P) are the functionals defined in

lemma 2 to determine eigenvalues of (4.10) and (4.11), and ¢f°,---, ¢%’
are the first m eigenfunctions of (4.10) and ¢®,---, ¢? are the first n
eigenfunctions of (4.11).

Take an arbitrary large -1— and fix it. We choose a positive in-
1
2
of all, from the inequality

teger k such that <—i—k, where c=max{| K¢, s)|; 0=¢t,s<1}. First

S:ﬂk ¢(0) <S:ﬂk Ki(t, 8)¢(s) ds) dt |

<ol (1o 10t 55| o0 Pt

it can be concluded that the integral equation

(4.13) S:”k Ki(t, 9)p(s)ds=Ap(t) (0§t gzi)

has no eigenvalues larger than % Now we divide the time interval

[0,1] into k+1 subintervals I,= [0, —217] y L= [—;,,—, —2%_7] ooy L= ["éllTl‘!
3. \2 .
_;‘i_] yeen, L= [—;-, 1]. Since G(ga(t))_Z 12_214(L+1) < ZZ: ) in the subinterval

I, the conclusion of lemma 3 remains true if G(e(t)) is substituted by

3
3 214<L+1> (‘2; )z in some of those subintervals. If we translate each

variational problem into the eigenvalue problem of differential equation,
we have k+1 equations:

Differential equation Boundary conditions

(4.6), at t=0 and we substitute

1in (4.6), by -L at t=—L

2 2¢’
(This is equivalent to the problem (4.13).)

(eqa. k) L¢=%go on I,
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(eq. k—1) 1 do_1 o on Lt boundary conditions of type
' 12.2% dt° } 1
dt 2 (3.33), at tz% and SDan(?‘_:)
1 1
o)
1 d’ 1 1 1 1
b gy on b slge) e (5w) =" (gw)=
1 1 1
o(g)=e ()=o) =0
l'_—.l, 2, 3,. .., k__z
_1 dy 1 (_1_>_ u><l>_ <z><_1_>=
(eq. 0) 2.5 df =¥ on I ol =3 =93 0 and

boundary conditions of type
(8.833), at t=1.
Let Vl<—}-> be the number of eigenvalues less than -}— of (eq.l). Then,

according to lemma 3,

Vl<%-> ({=0,1,---,k—1) is evaluated from above after the example
1 by
2T | |=2nz+0Q1),

where

12.94+D Y1/8 1
= PEET and T

Thus we have

Vz(—l—)ﬁﬁ 1 {12.240“) }1/3
T

1 - 2l+1 yi
— 6 N 121/6 2_(”.1)/3 1
T P

taking into consideration the multiplicity of eigenvalues. On the other
hand Vk<%>=0, as is noted beforehand.
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Since

A

R ad® 1—277

V( 1 >< 612102714 "§ 913 — 6.122-14 127k

=< const.

A8 ’

1

n

we have an evaluation from below for the nth eigenvalue of (4.5)
under (4.6), and (4.6), whose order is n°® at most.
Combining (i) and (ii), we have
e M)} <™.

For M,(t) and M,(t) the following differential equations are obtained :

< 1’ go“’)m—(t—‘go“”)(a) + (E2p®)® — (2pP)P = @
360 10 2’

() ()= (o) ) - = £
20160 252 28 4

We can ascertain 2, <n"% and 1, <n"", respectively for them just like
as the above. Thus we have the following evaluations of e-entropy :

I Mi(t)} < e
AM ()} =< e

It is troublesome to write down the differential equation, corresponding
to an arbitrary M,,.,(t), in the general form of (4.5). But if we do not
get weary of those calculation, it seems that we can obtain an evaluation :

He{ Mopa(t)} < e,
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