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Summary

This paper is concerned with the nonparametric generalizations of
the well-known likelihood ratio tests, proposed and studied by S. S.
Wilks [12] (also see Votaw [11]), for testing the hypothesis of compound
symmetry, i.e., equality of means (H,), equality of variances (H;), and
equality of covariances (H,) of a multinormal distribution. In this part
of the paper, some nonparametric rank order tests are offered for test-
ing the hypothesis Hy of equality of location parameters of a multivariate
distribution of unspecified form. In the second part, the general problem
of nonparametric tests for the hypotheses H,, and H,,, will be con-
sidered.

1. Introduction

Let X,=(X.., -+, Xp), a=1, ---, n be n independent and identically
distributed (vector valued) random variables (i.i.d.r.v.), having a p (=2)
variate continuous cumulative distribution function (cdf) F(x), where
x=(xy, - ++, ;). When F(x) is a multinormal cdf, it is completely speci-
fied by its mean vector &=(¢, :---,£&,) and the dispersion matrix 3=
(6:))i,5=1,...,p. 1t is also well-known that ¢, (¢=1, ..., p) are measures
of dispersion of the p variates, and p;;=0;/Vo,0,, (i#j=1,---, p) are
measures of their association. The hypothesis of compound symmetry
(Hyvc) as sketched by Wilks [12], relates to

(1-1) HMVUZHMnHVC' ’
where
(1.2) HM: $=E(1, cee, 1) assuming S=0’2(5¢j+(1—51j)p) ’
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(6;; being the Kronecker delta, —1/(p—1)<p<1), and
(1.3) Hyo: X=d"0:;+01—4,)p) .

Thus, Hy is really the hypothesis of equality of means assuming H,.
to be true. Wilks [12] has proposed and studied the likelihood ratio
tests Ly, Lyc and L,y for testing the hypotheses H,, Hyc and Hyyc
respectively. Votaw [11] has extended these tests in the presence of
an external criterion variable. The object of the present investigation
is to propose and study some nonparametric generalizations of these
tests. By analogy with the parametric case, let us define, in any con-
venient way, the location and scale parameters of x, in F(x) by g and
6; (1=1, - --, p), respectively. We then rewrite F(x) as

(1.4) F(x)=F([a,—ml/oy, - -, (s —1£,]/8,) -
We also denote by &, the class of all p-variate continuous cdf’s {F(u)},
where F(u) is a symmetric function of its arguments u=(u, - -, ).

Now, in the nonparametric generalizations of Hyye, Hy and Hye, we
proceed as follows:

(1.5) Hy: p=---p,, assuming 6= --- =45, and F,eF,,
1.6) Hy,.: 6,=-:---=0, and Fye,,
(1.7) HMVC'_"HMOHVC i.e., FG E-FO .

In this paper, we shall specifically consider nonparametric tests for the
hypothesis H, in (1.5), while in the second part, tests for the hypotheses
in (1.6) and (1.7) will be considered.

2. Nonparametric generalizations of Lu test for Hm

Let us pool the m vector valued observations X,, a=1,---,n into
a combined set of N (=mnp) variables. We denote these N variables by
(2.1) ZN=(Z1, "',ZN) 5

where we adopt the convention that
(22) Z(a—l)PH‘:XJa a=1’ e, N, .7=1’ e, D

We then arrange the N observations in (2.1) in order of magnitude, and
denote them by

(2.3) Zya< oo <Zynw,

by virtue of the assumed continuity of F'(x), the possibility of ties in
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(2.3) may be ignored in probability. Now, for any positive integer =,
we define a sequence of rank functions (which depends on N (=np) in
an explicit manner) by

(2-4) EN=(EN,1’ ] EN,N) ’
where we adopt the Chernoff-Savage [2] convention, and define
(2.5) Ey,.=Jxa/(N+1)) 1=a=<N.

The function Jy need be defined only at a/(N+1) for a=1, ..., N, but
may have its domain of definition extended to (0,1) by the convention
in [2], [8]. For the ith variate, we define an indicator function

1 if ZN’,, is an Xiﬂ (‘B—:l, tt n))

2.6 O =
(2.6) i 0 otherwise,

for «a=1, -+, N and 2=1, ---, p. Thus, we have
N N
(2'7) 2 CI\(ft,)a=n s E Cﬁflczefl:m;w 'iy j=1, e, D,
a=1
where §,; is the usual Kronecker delta, and finally
» N
(2.8) 3 S C=N.

Now, we consider a p-vector

(2‘9) TN=(TN,1, ct TN,p) ’
12 .
(2‘10) TN,i‘_:’Ir_L 2 Cl(\;,)aEN,a ’L:l, ce, P
a=1

It may be noted that by virtue of (2.8), we have

» 1 X _
Zj TN,iz_' b EN,a_—'EN

1
(2.11) -2 ~ 3

where E, is a non-stochastic constant depending only on Ey. Thus,
T, can contain at most (p—1) linearly independent quantities. Our
proposed test is based on the stochastic vector Ty. It may be noted
that the null hypothesis Hy in (1.5) implies that F(x) is a symmetric
function of its arguments. Thus, the problem reduces to testing the
interchangeability of the p variates =, -+, «, in F(x). In Hy, we shall
be particularly interested in the set of alternatives that sy, ---, g, in
(1.4) are not all equal. To develop a strictly distribution-free test, we
shall extend the idea of bivariate interchangeability, derived by the
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author in an earlier paper [9], to the p (=2) variate case, and consider
an analogous permutation procedure.

3. Permutationally distribution-free test for Hy

With reference to the order statistic (2.3), let us denote the rank
of X;, by R, for i=1,..-,p, a=1,---,n. Then, the rank p-tuplet
corresponding to the vector X, is denoted by

(3'1) Raz(Rlay ct Rpa) y a=1, -~-,’I’L .
We now consider the collection (rank) matriz, which we define as

R, R, - R,
Ry Ry --- R,
(3.2) Ry"=(R;,---, R})= :21 :zz 1?2
R, R, --- R,

The N elements of R, are the N natural integers (1, ---, N), permuted
in some way. The matrix Ry consists of n random rank p-tuplets which
constitute the » columns of it; naturally, Ry is a stochastic matrix. Two
such collection matrices, say, Ry and R}, are said to be equivalent when
it is possible to arrive at R, from R¥ by a number of inversions of
the columns of the latter. This implies that if instead of taking the
observations X, in natural order (a=1,---,n), we take in any other
order, say, X, - --, X.,, where (i, - -+, %,) is a permutation of (1, ---, n),
the two collection matrices will be equivalent. Thus, the total number
of non-equivalent realizations that Ry may have is equal to (np)!/n!.
The set of all these realizations of Ry is denoted by Ry. so that Ry ¢ Ry.
Now, there are p elements in each column of R,. These p elements
can be permuted among them in p! ways. Thus, any given Ry may be
used to derive a set of (p!)* realizations of such collection matrices,
simply by permuting the elements within each column of it. This set
of (p!)* realizations corresponding to the given Ry is denoted by S(R,),
and is termed the permutation set of Ry. Thus, S(Ry) is a subset of
Ry, and the total number of non-equivalent subsets S(Ry) in Ry is
evidently (np)!/{n!(p!)*}. Consequently, for any Z, in (2.1),

(3.3) Ry e S(Ry)CRy .

The probability distribution of Ry, over R, (defined on an additive
class of subsets Ay of Ry), will evidently depend on the cdf F, even
when H, holds. However, if Hy in (1.5) holds, then given X,, all pos-
sible permutations of (X, ---,X,.) in the p places of the vector, will
be conditionally equally likely, each having the permutational probability
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1/p!. Thus, conditionally on R, in (8.1), under Hy in (1.5), the p! pos-
sible permutations of the p rank elements (R, :--, R,.) among them-
selves, will be equally likely, each having the same conditional probability
1/p!. Since {X,, a=1, ---,n} are mutually stochastically independent,
this implies that given R, in (3.2), we may have (p!)" possible reali-
zations derived from it, and under H,, these (p!)* realizations are equally
(conditionally) likely. Now, this set of (p!)* realizations of Ry is nothing
but S(Ry). Hence, we may put the same statement in an alternative
way. Corresponding to the permutation set S(Ry) being held fixed,
there will be a set of (p!)* possible realizations {Ry}, which are con-
ditionally equally likely, viz.,

(3-4) P{Ry|S(Ry), Hy}=(p})™",

for any S(Ry). Thus, if we now correspond the rank function E, ., to
the rank a for a=1, ---, N, it follows that for each R, there will be a
matrix whose elements will be Ej ., instead of «, in (3.2). Thus, for
each R, we will have a value of Ty defined in (2.9) and (2.10). Hence,
corresponding to the set S(Ry), we will have a set of (p!)* values of
Ty, which we denote by T,[S(Ry)]. Consequently, from (3.4) we get
that conditionally on the set Ty[S(Ry)], the permutation distribution of
Tx (over the (p!)* equally likely realizations) would be uniform under
Hy in (1.5). Let us denote this permutational probability measure by
P., and consider a test function ¢(Zy), which with each observed Zj
(in (2.1)) associates a probability of rejecting Hy in (1.5) with the aid
of the completely specified probability measure &,. Thus, we can always
select ¢(Zy), in such a manner that

(3.5) E{¢(Zy)| P.}=¢ 0<e<1,

where ¢ is the preassigned level of significance of the test. (3.5) implies
that E{¢(Zy)| Hy}=¢, hence, ¢(Zy) is a distribution-free similar test of
size «.

Now, for the convenience in actual practice, we would prefer to
use a single valued test statistic (say Wj), which may be used to
specify the test function ¢(Zy) in a precise way. We shall see in the
next section that the permutation distribution of Ty (under the proba-
bility measure &,) has asymptotically a multinormal form. This suggests
that an appropriate (though may not be optimum) way of arriving at a
suitable test statistic may be to consider the quadratic form associated
with this multinormal (permutation) distribution. It is easily shown
that

(3.6) E(Ty.:| P.)=Exy i=1,---,p,
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where Ey is defined in (2.11). Also, it can be easily shown that

8.7 Cov(Ty,, TN,jIQN)=—1—Ma?V(RN) i,j=1,+--,p,
n (p—1)
where §;; is the usual Kronecker delta, and
n P
(3.8) ARy =2 313 (B p,.—Enn )
N a=1i=1

with Ey r_ being defined as

(3.9) Eyn,=— 3 Eys, a=1,---,n.

Thus, o4(Ry) depends upon the collection matrix, but remains invariant
under S(Ry). Thus, if we work with the inverse of the (permutational)
covariance matrix of Ty, 4=1,---,p—1, and consider the associated
quadratic form then by using (2.11), the same is shown to reduce to
the following simple form

D —
(3.10) Wy=nl(p—1)/p] 2 (T~ Ex)/oi(Ry) .
Now, under H,, Ty will have the location vector Eu(1, ---, 1) (permu-

tationally) and hence, it can be shown that if ¢%(Ry) is finite and non-
zero, then under the permutational probability measure P,, W, will
have (p!)* possible realizations, which are equally likely. On the other-
hand, if Hy does not hold and the p variates have locations, not all

equal, then at least one of Ty, will be stochastically different from E,
(this will be made clear in a later section), and hence Wy, being a posi-
tive semi-definite quadratic form in 7T, will be stochastically larger.
Thus, it appears reasonable to base our permutation test on the follow-
ing rejection rule:

1 if Wy> Wy, (Ry)
(3.11) NZy)=1 rv(Ry) if Wy=Wy.(Ry)
0 if Wy<Wy.(Ry),

where Wy (Ry) and yy(Ry) are so chosen that
(3.12) E{¢(Zy) | Pu}=¢ .

Thus, if in actual practice n is not large, we can consider the set
Tx[S(Ry)] of (p!)* values of Ty (and hence, of W), which will provide
us with the permutational distribution function of Wy, and the same
may be used to find out Wy . (Ry) and ry(Ry). This test will naturally
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be a strictly distribution free similar size ¢ test. However, if n is not
very small, the labor involved in this procedure increases tremendously.
To obviate this drawback, we shall now consider the asymptotic permu-
tation test and also show how the same is asymptotically equivalent to
some unconditional test for H, which may be based on the same rank
order statistic (vector) Ty .

4. Asymptotic permutation distribution of Wy

As in the case of the study of the asymptotic theory of rank order
tests for various other problems of statistical inference ([2], [3], [7], [8],
[9], [10]), we shall impose certain regularity conditions on E, in (2.4)
as well as on F(x). Let us define

(4.1) FN[i](x)Z% [Number of X, <=x] i=1,---,p,
(4.2) HN(Q’)=% g Fyyx) ,

(4.3) Fyp (o, y)=%[Number of (X X,)<(@,9)]  i#j=1,---,p,

(4.4) t@0=(2)" 3 Fuude,9).

1si<j=sp

Again, let F(x) and Fy, ;(x, y) be respectively the marginal cdf of X,
and (X, X,.), for i#j=1, ..., p, and we define

(45) Hz)=—- 33 Fiofs)
D -1
(4.6) @, 9)=(2)" 5 R ).

Then, we define Jy as in (2.5) and assume that

4.7) (c.1) limJy(H)=J(H) exists for all 0<H<1 and is not a constant,
N=oo

(4.8) (c.2) % p3 [JN< i )_J< n ﬂ:o(N-m) ,

w9 (B~ (s H@) | dF et =0V )

7::_1’ e,
(c.3) J(H) is absolutely continuous in H: 0<H<1, and
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(4.10) |J(H) = I%J(H)l <K[H(1—H)]"-v+s

for »r=0, 1, and some 6>0, where K is a constant.

For the permutation distribution theory, we require two more mild
regularity conditions for the existence and convergence of o%(Ry) in (3.8).
These, we state below.

a=1

(4.11) (c.4) %é [J”< Nt >_J2< N+1 )] o) ,

(4.12) S:Sf [ N( NJL HN(w))JN< Nlil HN(y))

Hy(w)) | dF e @, ) =041)

i#j=1, 0, p

J( N+1 H”(“)> < NJYH

Finally, we define
@13) =\ [T JHEIH@ sz ) i i=1

(4.14) D(F)z(yij(F))i,j=1,u-’p
(4.15) (c.5) Rank of »(F)=2.

It may be noted that for testing the hypothesis H, we shall con-
sider the class of rank order tests for which J(H) is monotonic in H:
0<H<1 (this point will be made clear at a later stage) and hence, it
can be shown that if the scatter of x in F(x) is not confined to any
one-dimensional space on the p-dimensional Euclidean space, then (c.5)
holds.

LEMMA 4.1. Let us define

(4.16) Ar= S:JZ(u) du
and
- p -
(4.17) »_( 2) LSl

Then, if (c.5) holds,
(4.18) A*—y>0.
Proor. It follows from (4.13) that

(419) SouP)=3 " FHE@) IFo@=p| JHE@)IHE@)=p4* .
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Thus, we get from (4.16), (4.17) and (4.19) that

1 yd
4.20 A'—v==1u(F)— vi(F
(4.20) —p 2 —1) v
=_p—1 g}_l Vii(F)_p(p ) g_“z:‘zl vi,(F')
:L[—l_ é uii(F)—-l2 i é ”lj(F)] .
p—1 p =2 pri=ii=
Now,

FRpEGIEES MR
p*isii= b=

459

the equality sign holds only when v, (F)=[vi(F)-v;,(F)]'?, for all 4, j=
1,---,p. Then, the condition (c.5) implies that there is at least one

(¢, ) (i#5=1, .-+, p) for which
l”ij(F)l<[”it(F)ij(F)]l/2 .

Thus, under (c.5), we have

(4.21) _1_2_

» 7 1 4 v 2
5B < (3 S
Again, by elementary inequality relating to moments, we have

(4.22) (% é [y”(p)]m)gé% é v F) |

where the equality sign holds only when vwi(F)=--- =y,(F). Thus, from
(4.20), (4.21) and (4.22), we get that under (c.5), the right-hand side

of (4.20) will be strictly positive. Hence, the lemma.

LEMMA 4.2. Under conditions (c.1) through (c.5), ov(Ry) defined in
(3.8), converges in probability to [(p—1)/p][A*—5]>0, where A and

are defined in (4.16) and (4.17), respectively.

PROOF. We may rewrite ¢%(Ry) in (3.8) as

(4.23) —;]‘—lEEM oL

N a1 plizi=1 E By, PBia Ey, Ria

n a=1 }

Now, by virtue of condition (c.4), it can be easily shown that

13 ' _ a2
(4.24) + EEN,R—>SOJ (u) du=A? .
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é Ey g, Exz,;, may also be written (after using (4.12)) as

a=1

Again, 1
n

’(4.25) SLS” J(——]—V——-HN(x)>J<

o\ N+1 HN(ﬂ)) AF vy, (%, y)+0,1) ,

N
N+1
for i#5=1,---,p. It may be noted now that Fy, (i=1,---, p) are

the sample empirical cdf’s based on 7 i.i.d.r.v. Hence, on using the
well-known result on Kolmogorov-Smirnov statistic, we have

(4.26) n'2[Sup |Fyr(x)— Fri(2)|]] bounded in probability , =1, ..., p.

Consequently on using (4.2) and (4.5), we get that

4.27) Sl;:lp N2 Hy(x)—H (x)

+1

gp—lﬂ é {Sgp nl/2

pnpj-l Fyo(@)— Fri() } }
is also bounded in probability (by Poincare’s theorem on total proba-
bility.). Again, by elementary algebra, we have

(4.28)  0=dFya(@)=pdHx(x), 0=d[l—Fy(x)|=pd[1—Hy(2)},
i:l, cee, P

Hence, proceeding precisely on the same line as the proof of theorem
4.2 of Puri and Sen [8], and omitting the details of the derivation, we
will arrive at the stochastic convergence of (4.25) to v;;, defined in
(4.13), for all 4, j=1,.--,p. Consequently, from (4.23) and (4.24) and
the convergence of (4.25) to v;;, we arrive at the following

(4.29) a}(RN)—LijlAz—l 3wy

plizi=1

— p—1 Ar— p—1 o= p—1 [42—5]>0,
p p p

where v is defined in (4.17) and where by lemma 4.1, A*—v>0.
Hence, the theorem.

THEOREM 4.3. If conditions (c.1) through (c.5) hold then under the
permutational probability measure P,, the statistic Wy, in (3.10), has
asymptotically, in probability, a chi-square distribution with (p—1) de-
grees of freedom.

(It may be noted that the permutation distribution of Wy is es-
sentially a conditional distribution, depending on Zy in (2.1). Hence,
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the implication of the above theorem is that it holds, in probability, i.e.,
for almost all Z.)

PrROOF. Let us first prove that under P,, {n'YTy.—Ey), i=1,
.-+, p} has asymptotically, in probability, a multinormal distribution of

rank (p—1). As in (2.11), we have shown that ﬁ(TN,i—E'N):O, it fol-
i=1
lows that the rank of Ty may be at most equal to p—1. So, if we can
show that for any non-null real 3=(, ---, §,_,), I;V—_‘,I(Sm”z(TN_i—E'N) has
i=1

a non-degenerate and asymptotically normal (permutation) distribution,
our desired result will follow. Now, using (2.11), we can also write

(4.30) n S 8Ty, — By)=n 3) 3Ty,
i=1 i=1
where
(4.31) é =0 and at least one of (5, ---,0d,)#0 .

Thus, it is sufficient to show that n'? times any arbitrary contrast in
Ty , has asymptotically a normal (permutation) distribution. Now, using
(2.9), (2.10) and condition (c.2), we may write (4.30) as

By RSR / ( R
(4.32) I N+1>+°”(1)'

Let us then define

(4.33) Vi Ba)=31 0 (Aﬁl_«l) a=1,--,n.

It thus follows from (4.32) and (4.33) that we are only to show that
n-2 i Yy, (Ry) has asymptotically (under &,) a non-degenerate normal
a=1

distribution, in probability. Now, under &,, there are p! equally likely
permutations of (R, :--, R,) among themselves, and hence, Yy .(Ry)
can have only p! equally likely permuted values, each with probability
1/p!. Thus,

(4.34) B3R P} = 3= 337 () ) =0,

(4.35) E{Y}.(Ry) | Pu}= 2(5')2{ é[ (zﬁﬁ)_%g']( 1\172'1 m

for a=1, -+, n. Since,for each «, the p! permutations have nothing to
do with the permutations for other o' (a#a'=1,---,n), { Yy (Ry), a=1,
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.-+, n} are (under &,) stochastically independent. To prove the central
limit theorem for {Yy .(Ry), a=1, ---,n} (under &,), we shall now use
the Berry-Esseen theorem (cf. Loeve [6], p. 288), which may be stated
as follows :

Let {W.} be any sequence of independent random variables with
means {g;}, variances {¢?} and absolute third order moments {5;}; let
then

n

S,f=27:0§, 0= 6: .

1

Also, let G,(x) be the cdf of Z:L (W,—w)/S., and @(x) be the standardized

normal cdf. Then there exists a finite constant ¢ (<o), such that for
all z

(4.36) |Go(2) —D(x)| <o, S;? c<oo

(It may be noted that instead of a single sequence of stochastic vari-
ables, we may have a double sequence {W,.} with means {g,:}, vari-
ances {¢2,} etc., and the theorem also applies to this situation.). Now,
from (4.35) we get, following precisely on the same line as in theorem
4.2, that

@37 Ls:=1 35 V(Y, Ry P
n n

2
-

s S @ [A-7]>0,
i=1
by lemma 4.1. Again,

(4.38) —"1;,0,.= L SRVl R)P| Pu)

a=1

A

(5 o[ Max g (2| 2 S BV (RO 22)

<(31191)KN"-2-S2n, by condition (¢.3) .
Consequently, from (4.37) and (4.38), we get that

(4.39) pSP=KN-S 101 /(L8 )‘” =0, (N~ .
i=1 n

Hence, from (4.6), we may conclude that n‘/ziﬁ} &, Ty,; has asymptotically,
=1
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in probability, a normal (permutation) distribution, for any (4}, ---, d5)
satisfying (4.31). This proves that n'2[(Ty.—Ey), i=1,---,p—1] has
asymptotically, in probability, a p—1 variate normal distribution (under
%.). Now by considering the exponent of this asymptotic multinormal
distribution and using some well-known results on the limiting distri-
bution of continuous functions of random variables, it can be shown by
some routine analysis that under the permutational probability measure
., the statistic Wy, in (8.10), has asymptotically, in probability, a x*
distribution with (p—1) d.f.

Let us now denote by x3_,. the upper 100¢%; point of the chi-square
distribution with p—1 d.f. Then from (3.11), (3.12) and theorem 4.3,
we readily arrive at the following theorem.

THEOREM 4.4. Under the permutational probability measure &P,

Wy — or. and  75(Ry) — 0.

By virtue of theorem 4.4, the exact permutation test in (3.11) re-
duces asymptotically to

if Wyzxp-s.

1
4.4 =
(4.40) #Zx) 0 otherwise .

In the sequal, (4.40) will be termed the large sample permutation test
while (3.11) as the exact permutation test. For the study of the asymp-
totic properties of the proposed permutation tests, it appears that we
may use (4.40) instead of (3.11). Now, the study of the asymptotic
properties will require the knowledge of the asymptotic form of the
unconditional distribution of Wy, which we shall proceed to consider in
the next section.

5. Asymptotic multinormality of the standardized form of Ty

We adopt here precisely the same notations as in the beginning of
section 4, and with the help of (2.5), (4.1) and (4.2), we rewrite Ty ; as

(5.1) TN,i=S°_°wJN<NLHHN(x)) AFy(@), i=1,---,p.

Apparently, (5.1) has the same form as that of Chernoff-Savage [2]
type of rank order statistics related to the multisample case, considered
by Puri [7] (also [8]). However, in their case, all the samples are
stochastically independent, while in our case, it is a p-variate sample.
Let us then introduce the following definitions.
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(5.3)

(5.4)
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#N’izg_wJ(H(w))dF'[il(x) ’ i=1y P,

Bis.u= SS Fro(@)[1— Fro())J ' (H (@) "(H () dF () dF )

—00<xLY<®

+ (| Rl @) H@W H) dFul) dFul),

—00<E<Y<o

b=\ | [Fuse,v)
— Fi@) Fes )l (H@) (HW) dFo@) o)

for i#+j=1,---,p, k,1=1, .-+, p. Finally, let

(5.5)

and

(5.6)

x —
i —

p ..
{ Z_n‘l Z.‘{ [.Bkl.ij+A8U.kl—,3kj.tl_ﬁil.kj]1 , 1, 3=1,--+, D,

SR

.3* = ((.33'} Nij=t,eenp +

THEOREM 5.1. If the conditions (c.1), (c.2) and (c.3) of section 4

hold, then the ramdom wvector NY[(Ty,:—px:), =1,

“++,p] has asymp-

totically a multinormal distribution with a null mean vector and a dis-
persion matriz B*.

(It may be mnoted that by virtue of (2.11), the above multinormal
distribution will be essentially singular having a rank less than or equal
to p—1.)

PROOF. We proceed precisely on the same line as in the proof of
theorem 5.1 of [8] and write

(6.7
where

(5.8)

(5.9)

(5.10)

(5.11)

4
TN,izﬂN,i+Bl(,i1%'+Bz(,igr+l§;‘lCL(,?, , i=1,.--+,p,

B

l

|76 dlFsoa) = Feof]

B{%

(o)~ H@)T (H @) dFiofo)

CHh= ;,11 | H @) (H @) dF )

Ci= S[HN(x) — H(@))J'(H(x)) d[ Fyr ) — Fran )]
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(5.12) C;,?V=S[J< Nli ; HN(x)>—J(H(x))

- e @) —H@)T (H@) | dFef X)
and
(5.13) c={[7( Nlj’;l Hy(a))—J NJL Hy(@)) | dFucofa)

in all expressions the range of integration is over —oo to c0. Now, by
condition (c.2), (5.13) will be o0,(n"?), and precisely on the same line as
in the treatment of C.y of Chernoff and Savage ([2], p. 988) it is easily
seen that C% is also o, (n~?), uniformly in i=1, --., p. Further, it has
been shown by the present author [9] that in the case of p=2, C{% and

Cs% (for ¢=1) are both o,(n~"?). Essentially, the same argument holds
for the general case of p=2, and hence, avoiding the details of these,
we may write

(5.14) N Ty, i—pn,)— (BG4 BR)=041) ,
for all 1=1,.-.,p. Consequently, it is sufficient to prove that {N"(BS
B{?), i=1, - - -, p} has asymptotically a multinormal distribution. Now,

by partial integration of (5.8), we readily arrive at the following ex-
pression, through a few simple steps.

615 BR+BR=L 3 [ S B - (X))

where

(.16)  BefXe)=|__[F)— ko)l (H@) dFfz) ,
e if <X,

1) R@E=) g IR

for k,q=1,---,p; a=1, ---, n.
We shall now show that for any non-null real p-vector d=(3,, - - -, 4,),
the random variable

(5.18) N2 iZ: 3[B{+B{%

has asymptotically a normal distribution. Now, we may also rewrite
(5.18) as

S EAESSEWe A
k= n ==1

1¢=1
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where 3*=(3%, - - -, 8%) is also non-null and real. Now, if we write
(5.19) B(X.; )= 3 S ohBudX) . a=1,--um,
=1¢q=

it follows from the discussion above that (5.18) may also be written as
(5.20) N1 S B o),
a=1

which aparts from the factor N2 is the average of » independent and
identically distributed random variables { B(X,: 8*), a=1, - -+, n}. Hence,
to apply the classical central limit theorem under Lindeberg condition,
it is sufficient to show that B(X,, 8*) has finite first and second order
moments. We shall prove a slightly stronger result that for any 7:
0<7<é (defined in (4.10),), E{|B(X., 6*)[**"} <oco, uniformly in Fpy, -+,
F,;. Now, using (5.19) and some well-known inequalities, we have

(5.21) E|B(X,, 6%t < ppa+n 13 357 B | Beo Xea) ™
k=1¢=1

and proceeding precisely on the same line as in the case of univariate
several sample observations (for instance, see [7], section 5) we can easily
prove that for all 0<» <3,

(622 BB (X sK || wa—o)7e) /@)l dudv<o,

0Su<vs1

by condition (c.3) in (4.10). Thus, from (5.21) and (5.22), we conclude
that B(X,; 8*) has a finite moment of the order 2-+7, >0, and this in
turn, implies that the first two moments of the same are finite. Hence,
we arrive at the asymptotic normality of the variable in (5.18), and
this implies the asymptotic normality of the joint distribution of
NYTy:—py:), 9=1,---,p. Again, from (5.16), we get by an appli-
cation of Fubini’s theorem that

0 if a#p
Bix.sa if a=8,

(where B, is defined in (5.3) and (5.4),) for 4, j, k,q=1,---,p; @, =
1,---,n. From (5.15), (5.16) and (5.23), we readily arrive at

(5.23) COV (Bi:j(Xta)r Bk:q(Xkﬁ)):

(5'24) llvize {NCOV (TN,‘l! TN,I)} =ﬁ?} ’ 'iv j=1’ e D,

where g*=(pg};) is defined in (5.6).
Hence, the theorem.
It has already been pointed out earlier that the asymptotic multi-
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normal distribution, derived in theorem 5.1, is singular and is of rank
at most equal to p—1. If the null hypothesis (1.5) holds, and we define
H(x), H*(x, y), A’ and v as in (4.5), (4.6), (4.16) and (4.17), respectively,
then it will readily follow from (5.24), (5.3) and (5.4) (though a few
simple steps) that

lim {N Cov (Ty,q, Ty | Hy in (L5)}=(,p—1)(A'~5),

for ¢, j=1,-.-, p, where §;; is the usual Kronecker delta. Consequently,
with the help of lemma 4.1, we readily arrive at the following.

COROLLARY 5.1.1. If Hy in (1.5) holds and the conditions of theorem
5.1 holds, then under (c.5) in (4.5), [NV Ty .—p), 1=1,---,p] has a

1
singular multinormal distribution of rank p—1, (whe're p=SoJ (u) du) .
We shall now consider the usual type of Pitman’s translation al-
ternatives, and for this, we replace the parent edf F(x) by a sequence

of cdf’s Fiy(x), such that the marginal cdf’s of {Fiy(x)} satisfy the
sequence of alternatives {Hy}, where

(5.25) Hy: Foam@=H@+N-"9), i=1,---,p,

where H(x) is assumed to be an absolutely continuous (univariate) cdf
having a continuous density function h(x), and where the assumption of
equality of scales and symmetry in (1.5) are also assumed to hold for
the sequence of cdf’s {Fy(x)}. Let us then define

(5.26) C(H)=S:%J(H(x)) dH() .

Then, it is easy to verify that

(5.27) zlvlfi [IN*E{(Ty,.—p) | Hy}]=0.L(H) , i=1,---, p,
(5.28)  1im [Cov(Ty.,, T, | Hl=(@up—1)(A-5),  i,4=1,---,p.

Consequently, it follows from theorem 5.1, that under {Hy}, {NYX(Ty.,

—p), 1=1, ---, p—1} has asymptotically a (p—1) variate normal distri-
bution with a mean vector ((H)@,, ---, 6,) and a dispersion matrix
(5.29) (0:p—1)(A'—D) .

Hence, it readily follows that under {Hy}

(5.30) W= " 2 (Ty —E_VN)z

Al—yp i
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has asymptotically a non-central y* distribution with (p—1) d.f. and the
noncentrality parameter
E (0t'—0—)2} ’

D
i=1

(5.31) 4y =[{L(H)P)(A—7)] {%

1.
p i=1

Now, from (3.10), theorem 4.2 and (5.30), we readily get that under
{Hy}, WvaW;l‘, where ~ means asymptotically equivalent, in probabil-
ity. Hence, we arrive at the following.

where 6=

THEOREM 5.2. Under the sequence of alternative hypotheses { Hy} in
(5.25), the statistic Wy in (3.10), has asymptotically a mon-central y* dis-
tribution with (p—1) d.f. and the moncentrality parameter 4y defined
in (5.31).

At this stage, we may consider also some asymptotically distribution
free tests for Hy in (1.5). This may be formulated as follows. Let St
be some consistent estimator of A*—v, in the sense that

(5.82) -2, A5  forall F,eS,, in (1.4).

Then, it follows from (5.30) and a well-known limit theorem on the
distribution of rational function of random variables that under {Hy}
in (5.25)

(5.33) WF% iﬁ: (Tyi— By <~ Wi .

Hence, the test based on Wy will be asymptotically a distribution-free
test for Hy in (1.5). It further follows from theorem 5.2, that the test
based on Wy in (3.10) will be asymptotically power equivalent to the

one based on Wy, for any sequence of alternatives of the type {Hy}
in (5.25).

Thus, the permutation test based on Wy in (3.10) also appears to
be power equivalent (asymptotically) to unconditional tests based on
stochastically equivalent statistics. Since, we have shown that the
permutation test has the advantage of being exactly distribution-free
even for small sample sizes, we may advocate the unrestricted use of
the same for all sample sizes.

6. Asymptotic efficiency of rank order tests

We shall now consider the asymptotic relative efficiency (A.R.E.) of
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our proposed rank order tests with respect to the likelihood ratio (Ly-)
test, considered by Wilks [12]. It is easily seen that under the sequence
of alternatives {Hy} in (5.25), Wilks’ L, statistic has asymptotically
(actually, —2log,Ly) a noncentral chi-square distribution with (p—1)
d.f. and the noncentrality parameter

6.1) L= i |y DO

where p is the average (over the (g) possible pairs) correlation coefficient

between X, and X, ¢#j5=1, ---, p, and ¢°, the common variance.

Let us now write A*~v (in (5.31)) in the form A%1—p,), where
p.=v[A? is the average score-correlation of the p-variates. Then from
theorem 5.2 and (6.1), we get that the A.R.E. of the W-test with re-
spect to the Ly,-test is given by

(6.2) e(W, Ly)=[L(H)I’ i*(1—p)/A*(1—p,)

g lit=o]

The first factor on the right-hand side of (6.2) is solely dependent on
the marginal distribution H(x) in (4.5), while the second factor depends
on the joint distribution F(x), through the bivariate marginal cdf H*(x, y)
in (4.6). Various bounds for the first factor are available in the litera-
ture for various common types of J(u): 0<u<1, and for an excellent
account of these the reader is referred to Hodges and Lehmann [4], [5],
and Chernoff and Savage [2]. The bounds for the second factor will
depend in a quite involved manner on the parent cdf F'(x). Before we
take up this discussion, we like to consider specifically two important
rank order tests, namely, the rank-sum test and the normal score test.
For the rank-sum test the scores Ey;, 1=1, ..., N are the N natural
numbers, i.e., Ey =%, 1=1,---, N. In this case, the first factor on the
right-hand side of (6.2) reduces to

(6.3) 12¢|(” fi@)da] |

and it is well-known (ef. [4]) that (6.3) has (i) the value 3/z for normal
cdf, and (ii) for any continuous cdf this can not be less than 108/125=
0.864. The second factor on the right-hand side of (6.2) reduces to

(6.4) (1—p)(A—p,) ,

where p, is the grade correlation. For normal cdf, p,=(6/r)sin™'(o/2),
and hence, for normal cdf, (6.2) reduces to
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(6.5) B/m)(1—(6/x) sin™" (p/2)) [ 1—p)]™" .

This is a sole function of the correlation coefficient p, and its bounds
can easily be found. Since, these efficiency-bounds are already studied
by Bickel [1], (in connection with multivariate one sample location prob-
lem), we shall not enter into the detailed discussion of them. The
author is not aware of any distribution-free bound for (6.4), and hence,
nothing can be said about the bounds for the A.R.E. in (6.2) for rank-
sum test and arbitrary cdf F(x). For the normal score test, Ey,; is
the expected value of the ith smallest observation in a random sample
of size N drawn from a standard normal cdf, for i=1, ..., N. In this
case, it follows from the results of Chernoff and Savage [2] (see also
[5]) that the first factor on the right-hand side of (6.2) is always
greater than or equal to unity; it becomes equal to unity only when
the parent cdf is normal. But the second factor is again unknown,
and its bounds are quite involved. In fact, if the parent cdf is multi-
normal, this factor becomes equal to unity, as a result, the A.R.E. also
becomes equal to one. On the otherhand, for arbitrary cdf, the A.R.E.
may not be proved to be greater than or equal to unity. If, however,
the cdf F(x) is singular (i.e., p=—1/(p—1)) then it can be easily shown
that the second factor on the right-hand side of (6.2) is always at least
as large as unity, and hence, (6.2) is also greater than or equal to unity.
In actual practice, often (cf. [10]) the singularity of F(x) (in the above
sense) can be shown to be true, and in such cases, the normal score
test can be justified to be asymptotically at least as efficient as the L,
test. For the details of this, the reader is referred to [10].
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