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1. Introduction

Let X=(X1, ---, X?) be a random vector with a probability density
function f(x;6)=f(", ---, 2" 6y, ---,8,), where 6=(6,, ---, 6,) is an un-
known parameter. Let X,=(X},-:-,XP),: -, X,=(X3}, .-+, X?) be a sam-
ple of size n.

Wald [1] considered a tolerance region of a rectangular type [¢!, ¢']
X+ X[¢?, ¢*] for X (at asymptotic confidence level 8 when n — co, with
content y), where ¢* and ¢ (¢=1, ---, p) are functions of the sample.
Though rectangular regions are fairly natural when p=1, they are not
so in general. For instance an ellipsoidal one will be more natural when
the population is normal.

The purpose of the present paper is to give tolerance regions of a
general type at asymptotic confidence level 8 as n — oo, with content 7.
Main theorems are stated in section 3, and the proof is given in section
4. In advance of deriving the results, we shall state the theorem of
Stokes briefly in section 2 which we use as a mathematical tool. In
the final section we shall give two examples; the first is the case of a
rectangular type (the result, of course, coincides with Wald [1]), and
the second is that of an ellipsoidal type for a normal population.

2. The theorem of Stokes

By S*=(ay, ay, - - -, a,) we denote a p-dimensional oriented simplex in
R? whose vertices are ay, a,, ---,a,. That a simplex is oriented means
that its vertices are ordered. The orientation of (@, @, --, aip) is
the same as that of S?=(a,, a, ---, a,) (in this case we regard the sim-
plices as identical) when the permutation z: (0,1, -+, ) = (%, %1, * * *, Tp)
is even, while it is opposite to that of S? when ¢ is odd. In the latter
case we denote —S?=(a,, a;, -, a,). For convenience we say that the
orientation of S? is positive or negative according as the determinant
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is positive or negative, where a] is the jth coordinate of a;.

Let = be a differentiable mapping from some open set in R? con-
taining S? (as a set) into R?, and let ¢°=(S?, z) be the image of S? by
x, which is called an oriented singular simplex. The formal sum of a
finite number of singular simplices with integer coefficients ¢=3" k;o7 is
called a p-singular chain, where ¢7=(S?, z,) and (—1)e?=(—S?, z;). An
oriented singular simplex itself is also a p-singular chain.

3
The (p—1)-dimensional oriented simplex S?~'=(—1)¥(a,, a,, - Y., a,) (we
mean by ! that a, is omitted, and we shall use the similar symbol
throughout the paper) is called a (p—1)-dimensional oriented face of S?
=(ay, a4, - -, a,) whose orientation is determined in accordance with that

of S®. The boundary operator o is defined by, for a p-singular chain
a?=(8?, r), &r":i (SF, x), and for c=>k;0%, oc=>)k,(347). We call dc
i=0
the boundary of c.
In R? we consider a signed volume element dxi1 A - - - Adx’e of degree
g. This product of dx™, ..., da’e with respect to A is assumed to be
g-linear and antisymmetric. For a,,... (%) which are functions of z=
(x*, - -+, ") we define a g-differential form « by

Qi (@) AT - - Ad'e,
154;,<<igSPp
(a precise definition of a differential form is given, for example, in [3],
[4]). We define the exterior derivative do of o by

dail """ iq(x)/\dwil/\ NN L

1S1)< e <igsp

where da(x)=> (da(x)/ox’)dx’. Hence do is a (g+1)-differential form.

In particular, if ¢g=p—1, and if f=3>ax) dz'A-¥- Ada?, then df=
{33 (—1)"**(0ax)/ox")} dai A - - - Ada?.

For the g-differential form o defined on R? whose exterior derivative
is zero, there exists a (¢—1)-differential form y on R? such that dy=w
(Poincaré’s lemma).

Let o=Xa,,...(¥)de A --- Adw'e be a g-differential form, and =
be a differentiable mapping from some open set UcC R? into R?. For
u=w', ---,u% € U, and z(u)=r(u)=(x'(u), - -, °(u)), we define =*w by
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@.1) Eail,...,iq(x(u)){é 0z dun} Ao A {z" d's dufq} .
=1 ouh ig=1 ou’e

Then z*w is a g-differential form on U, and therefore can be written as
b(u)du'A - - - Adu® with some function b(u) of u=(ul, ---,u?. Now let
U be an open set containing a positively oriented g-simplex S (as a set)
in R? and ¢'=(S?% 7). We define an integral of » on ¢? by

2.2) S,a“’: Ssqn*a,:Squ(u) dut - - dut

where the integral of the last term is the usual one. Moreover, for
c=>ko?, we define

2.3) Scw=zki Saqm .

i

THEOREM OF STOKES. Let ¢ be a p-singular chain and let B be a
(p—1)-differential form. Then

\.do=1.5.

The proof of this theorem is found in, for example, [5].

3. Theorems
Let f(x; O)=f(x', -+, 2%; 0,, -+ -, 6,) be the probability density func-
tion of X=(X!, ..., X?), where the domain @ of the unknown parameter

6 is an open set in R*. Let 6= ((31, ce, @k) be an estimator, with range
in O, of 6=(6,, - - -, 6;) based on a sample (X, ---, X,).

Suppose that a region ¢(4, &) is defined for every (0, &), 6 € 0, 0<£E<1,
and satisfies

(3.1) S f(@; 0)dw=¢ ,
c(0,§)
where dx stands for dx!---da?. Let
3.2) 16,0, e)=§  fw; 0)dx .
(6,8

Then it is clear that I(d, 9, &)=¢.
We set the following regularity assumptions.
ASSUMPTION 1. The limiting joint distribution of 7 (91—0,), cee,

J%(ék—ﬁk), when 7 — oo, is the k-variate normal distribution with zero
means and non-singular covariance matrix |e;,(0)| (¢, j=1,.--,%k) for
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any 0=(4,, ---,6,) in some neighborhood of a point #=(#, ---,6%) in 6,
where o;;(6) are continuous functions of 4, ---, 6, in a neighborhood of
.

ASSUMPTION 2. [6[(5, 4, 5)/351]3# (t=1, ---, k) are continuous func-
tions of (4, £) in some neighborhood of (&°, 7).

AssumpTION 3. For at least one 1, [aI(é, &, r)/aéi]sﬂo is not zero.

Define %0, &) by

NG
Consider the region c(d, £) by substituting § and € into c(8, &), but

let c(é, &) represent the empty set when £<0, and the whole space R”

when £=1. Then we obtain the following lemma which is essentially
based on a result of Wald [1].

LeEmMMA. If
(i) é:(él, oo, 5,,) satisfies assumption 1, and if
(ii) I8, 90, &) defined by (3.2) satisfies assumptions 2 and 3, then the re-
gion (6, &) satisfies

& & I6,0,8)| I@,0,8)
3.3 4 0; 6 —'2 2 A A j 0 ]
(33) o0, ¢) i=1 j=1 00, s 00, L_BGU( )
and 2; by

Tl gng—

(3.4) Sa,, e 8.
Furthermore, set
(3.5) E=E(, 1, 0)=y—2,201) |

Pr {Sc@?)f(x; ) dw;r‘a"} B (no> ),

that 1s, c(é, &) is a tolerance region at asymptotic confidence level B with
content 7.

Suppose that f(x; d)=f(", ---, 2" 6, ---, 6, is continuously differ-
entiable with respect to «!,---,2?. We consider a p-differential form
)= f(x; O)dax A\ --- Adx®. Then it is trivial that da(d)=0. Hence, by
Poincaré’s lemma, there exist p functions a,(x; 9), - - -, a,(x; §) such that

J
the (p—1)-differential form A(6)=3(—1)* a,(x; 6)da'A-* - Ada? satisfies
dp@)=a(0). It is clear that 3>} {da(x; 6)/ox’} = f(x; 0).
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We assume the following on a p-singular chain ¢(4, &)=3]62(9, &)
which satisfies

(3.6) Scma(o)=e .

ASSUMPTION 4. ¢7(6, &) is expressed as o?(f, £)=(S?, (0, £)) with
an oriented p-simplex S? and a differentiable one-to-one mapping =,(4, &)
from some open set containing S? (as a set) into R®.

ASSUMPTION 5. By |6?(4, §)] we represent o?(f, ¢) as a set in R?.
Then [c(8, §)|=U|s?(8, )| is connected. If |o2(8, &)|N|o%(8, &) (t#7) is
not empty, it is a singular (p—1)-simplex (considered as a set) which is
a common face of ¢7(4, ) and o2(0, &), with the orientations correspond-
ing to them being opposite to each other.

By assumption 5, we can denote the boundary dc(d, &) of c(4, &) by

a (p—1)-singular chain i 770, £), and each of a (p—1)-singular simplices
i=1

o170, &), -+, a7Y(6, &) is a face of exactly one p-simplex. Moreover, we
can clearly denote o37%(6, £)=(S?7?, p;(0, £)) with an oriented (p—1)-simplex
S in R*7', and a differentiable one-to-one mapping p,(f, £) from an
open set U, in R** containing S?~* into R?. We further assume the
following on p;(4, &) (therefore on =0, £)).

AsSUMPTION 6. For u=(u!,---,u* ) e U, let =z,(u)=p,0, &) (u)=
(@j(w), -+, 2%(u)). Then, for every 14, o%}/ou'du’ and dwx}/d00u° (s+t,
l=1, ---, k) are continuous functions of (u!, ---, u*™; 6y, ---, ;) for u e U,
and ¢ in some neighborhood 4 of #".

Since z(6, §) is a one-to-one mapping for any #, dx}/d6, can be con-
sidered as a function of x=(a!, -, x?) for any 6, instead of a function
of u=(u!, -, u?™).

ASSUMPTION 7. 0dx}/d6, is a continuous function of (x', ---, 2?; 6,,
<+, 0 on a57Y(0, §), and its value is independent of j at points z com-
mon to some j’s.

Then we obtain the following theorem.
THEOREM 1. If the p-singular chain c(0, &) satisfies (3.6) and as-
sumptions 4-7, then I (é, 8, &) defined by

3.7 16,0,9={ , a0)

is continuously differentiable with respect to 6y, -, 6, for 6 in 4, and
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01(6,0,8) _ <& S ANy 0@@), e, 7) . -
3.8 —A—E x u,0,0 = 7 du/\---/\du" .
(3.8) P S;,_lf( 1(u; 6); 6) P A

The proof will be given in the next section.

COROLLARY. Under the same conditions as in theorem 1, we have,
for 6 in 4,

31(6,6,8) | _ . a0t LV
3.9 —_— >/ = 3 0 —1)* = dat A Ada? .
(3.9) > ’ S fl 0) 3 (-1 o da

9¢(0,€)

The lemma and theorem 1 imply the following.

THEOREM 2. Suppose that the estimator 5=(0Al, e, 67,¢) satisfies as-
sumption 1, c(4,&) satisfies (3.6) and assumptions 4-7, and that
al(é, a9, E)/aé, given by (3.8) satisfies assumptions 2 and 3. Then the p-
singular chain c(é, &), which is constructed from the sample by using é

and & in (8.5), gives a r-content tolerance region at asymptotic level B as
n — oo, when & is the true value of the parameter.

4. Proof of theorem 1

Since a(f)=dp(f), we can apply the theorem of Stokes to (3.7) and
obtain

@y 16,0.9=], 0= s0=%1 . w0
Put
. Av. 0%} (u; (5) ox}(u; é)
ay(ws(u; 0); 0)—5 = -+ P
(4.2) Ayu; 6,6, 6)= )
L AN 022 (u; 6 o3 (u; 6
ap(wf(u! 9); 6) a(u‘ ) e 5751,_1 )

Then, by means of (2.1) and (2.2), (4.1) is rewritten as
@3 2| .60 9180
j=1 Sj

= Ssl;-lé aix(u; 0); 0){ ) a’”_ffdufl}/\ 2 /\{ L du/p}

i=1 j1=1 ou’1 ip=1 w’p

=5 S Aj(u; é, 6, & dul A+ Adur? .
J=1 sg"l
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From assumption 6, it is clear that dA(u; 6, 6, 5)/66;, is continuous. Hence
I (5, 8, &) is continuously differentiable with respect to 6, -, 0,, and

@y ACLD [ D0 gup... ndu.
aﬂl J=1 S?_ aﬁl

Suppose in general, that «!, ..., 2? are differentiable functions of
t=(t, ---,t?), and that a x), ---,a,(x) are differentiable functions of
x=(x!, -+, 2%). Let J=0d(z!, ---, 2")/a(t, - - -, t?) and let D,(¢) be the (i, k)-
cofactor of J. Then

y4 ¥ »
CONSS BUS D EICOUNCTEDpapa i WD I VRS
The first term of the right-hand side becomes
2y aai 2 ax aai
22 ™ El PRl 2 e J,

because Zp(ax‘/at")D-k=5i,-J, where §; is the Kronecker symbol. It is

easily seen that the second term vanishes if o%x'/at*ot’=ao%x*/at'ot* (v, k,
=1, -..,p). Therefore (4.5) becomes

>0 ? aai
(4.6) 5 2B amoDan ] =5 LT

Apply (4.6) to our problem with 6,=t', u'=¢, ..., u*-'=¢?. Since
S alx(u; 3); ND,= A(u; 6,0, &), we obtain

8A(u,00$) AN /).
@n  HELLD . 52 = {zalpt } Fa(u; 6); 6)-J .

Hence, (4.4) becomes

(4.8) M’—Q=$S F@, (w3 6);0)—2FL T gupa . Adur

06, s 8(0:, u', -+ -, ™)
8 p—1 a b4
2 S p-1 { EaiDi k+‘} durA - - - Adu?™ .
=1 Jsh = au

The second term of the right-hand side, by applying the theorem of
Stokes again, proves to be

(4.9) \j”‘ls ”j{zap,w}du/\ AduP
j=ii=o JsPPti=1 L=t
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where 8772, ...,S8%72, are faces of S?' (the orientation of S’ corre-
sponds to that of S?~'). By assumptions 5 and 7 we can find a con-

tinuous (p—2)-differential form w(@, 6) which satisfies

10) (6,9 0b,0=3 | aDisnl dun Y- Aduw

and express w(é, 9) as

? ox* "‘
D1 D emiln(; 0) —— dx' A /\dw”
m=1k#m aa

4

with ¢,.=1 or —1. The integral in (4.9) is expressed as

6,0),
Sig_ ({pg) ( )

and hence (4.9) is equal to

...

(4.11) 353 S (b, 0)=S . w®,6).
j=1i=0 .”‘2(0 aac(8,6)

Since ac(é, &) is a closed surface, it is clear that a(ac(é, £))=0. Therefore
(4.11), hence the second term of the right-hand side of (4.8) vanishes.
Thus the proof of theorem 1 is completed.

5. Examples

I. The case of rectangular regions of Wald

In this case the region determined by @, &) is [¢!, ¢'1X -+ X [¢?, ¢7]
where goi=go‘(0A, &) and ¢‘=¢‘(é, &) (i=1, ---, p). Clearly we can partition
c(é, ¢) into a finite number of simplices, and express c(é, e?)=§r1 aé’(@, &),
where each ¢? ((; E) is a positively oriented (not singular) p-simplex. We
write ac(d, &)= Z} 026, &). Then it is clear that a,“(@ £) is positively
oriented. On a,“(ﬂ &), x?7=¢"* or=¢? for some q¢ (1=<¢=<p). We denote
by 80(0, HN{x?=¢?} the sum >;g%" 1(0, §) of all a,"(ﬂ, &)Y’s on which
27=¢% The symbol dc(6, &N {x"—gb"} is defined similarly.

t
It is easily seen that da'A-Y - Adx?= qt( 1)dax' - - - da? on ac(d, &) N
{2'=¢"}, and da'A-" - Ade?=d,(— 1)+1dxt - Y- da? on ae(8, &) N {z?=¢"},
and in each case 9x%df, is constant (equals agw/ao, or aw/aal). Hence,
using the Wald’s notation
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¢(1+1 S¢'l—l

16,0.6,29=,--- '\ N [ r@ondet - dwmrdoen o

g1

we have

S ae8, )N (2=

z oxt Y
Sf(z; 6) tzl (—1)“’1—6-0?— dzi A - Adx?
= i

q
(=1)f(z; 6)dat -V - dar= — qu 106,02, 67 .

4

_ 9¢? S
06, Jad.onel=61

Similarly, we have

9" 1(6,0,¢, ¢
ao"l Q(’ ’e,sb)

t
F@; 03 (—1) 2% gun V. Adar=
= a6,

S ac(d,0)n (29=¢%

Hence (3.9) becomes

M :p%‘[oa q—P—aEiIIoo \
65, L=p Elaol 4(! ’5’¢) qz=}160[ q(, ,é,go),

which coincides with Wald’s results.

II. The case of ellipsoidal regions for a normal population

Let X=(X}, ..., X?) have a nondegenerate normal density function with
an unknown parameter 6=(g;, - - -, g 0:;, 1SI<F<Dp):

£(x5 0)=(@a) " 21 exp | L (x— ) T (x— o)

where p=(p, - -+, ;) and Y=|loylls,so1,....0, 056=03;.

Siotani [7} and John [8] treated tolerance regions for a normal popu-
lation independently. Each of their methods is based on a sampling
distribution of sufficient statistics.

Now we consider the region ¢(4, &) with the smallest volume under
the condition

(.1) SM fx; 0)dx=¢ .

Such ¢(9, €) is clearly expressed as
(5.2) (6, §)={x: (x—p)27(x—p) <k}

where k is a constant determined by ¢ and &.
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Since X-! is symmetric and positive definite, there exists a non-
singular matrix A such that ¥-'=AA’. The condition (X— )2 (X —p)
<k is equivalent to ZZ'<k with Z=(X—pu)A. Since the distribution
ZZ' has the chi-square distribution with p degrees of freedom, the
value of k in (5.2) is determined by Pr(x2 <k)=¢. We denote this &
by x(1—4).

Consider the transformation x=pg+2A4"'. When z moves in the
sphere S(x,(1—¢)) with radius %,(1—¢§), x moves in ¢(4, &), and z on
9S(x(1—¢)) corresponds to x on dc(d,£). Now, take A so that A is
continuously differentiable with respect to every g;; (for instance, take
A as a triangular matrix with positive diagonal elements). Then, since
S(x(1—¢)) is obviously partitioned into a finite number of p-singular
simplices, c¢(f, &) satisfies assumptions 4-7 in section 3, with the above
transformation.

Hence, since f(x;60)=(2x)" 2|2 exp (—x2(1—£)/2) on dc(4, &), (3.9)
becomes

(5.3) aI(oyAe’ E)
/]

— (zn_)—p/z e-z;(l—é)/z
L A

6=0

q
xS D (=11 9% s g n Y Ada?
ae(6,8) 4=1 a0,

By the theorem of Stokes, the integral in the right-hand side is equal to

2,0 ox°
. ____Z'—l/2d1 e dp’
(5.4) Sc(o,e) qz=]1 ox? 00, 121 SEAN AL

where (0/029)(027/36,) should be interpreted as differentiating 0dx’(z; 6)/a6,
(with respect to x?), considering it as the function of x and ¢ by sub-
stituting z=(x—g)A. Since (3/02%)(3x?/oy;)=0 (g, j=1, - - -, p), it follows
from (5.3) and (5.4) that

al(6, 8, &)

= =0 (j=1""’p)~
Opty

A
6=0

On the other hand, since dx/ds,;=2(0A'/d0:;)=(x— p)A(GA™/ds;;),

$ 0 O (g A7) Ly (5 82

¢=1 9x? 0oy 00, 2 003;
3 =)
a* (t<7),

where ¢ is the (i, j)-element of Z-'. Hence (5.4) turns out to be
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<1—-l5”>a”g IS daiA - A da?
2 6,8
Because of the fact

_ 1y(1—&)
S A - - d”=§ dAA - Adep =T 18
Sc(ﬂ,e)l | SEANAL S(pa-9) KA I'(p/24+1)

(5.3) proves to be

(5.5) o1(9, 9, &)

= <l—l5ij>2—p/2 e Tp1-9/2 2L —§)a" .
06, | 2

I'(p/2+1)

When we take the maximum likelihood estimate (g, 3) of (g, 2), n3 is
distributed as the Wishart distribution W(Z, n—1), and therefore the
limiting distribution of /7 (ﬁ' —2J) is the normal with zero means and
the covariance matrix having o¢.,0;,,+0.0;, as the (ij, kl)-element (see,
for instance, [6]). Hence assumptions 1-8 in section 3 are satisfied and
(8.8) is explicitly expressed as

ol

isikst 06y,

ol

020: = Ar
@,¢) ann

(O'iko'jz‘l‘o'izojk)
9:0

_ e A—8))
2T (p/2)}*

When p=1 it coincides with Wald’s result.

UNIVERSITY OF OSAKA PREFECTURE, OSAKA UNIVERSITY

REFERENCES

[1] A. Wald, “Setting of tolerance limits when the sample is large,” Ann. Math. Statist.,
13 (1942), 389-399.

[2] A. Wald, “Tests of statistical hypotheses concerning several parameters when the
number of observations is large,” Trans. Amer. Math. Soc., 54 (1943), 426-482.

[3] Y. Matsushima, Tayotai Nyumon (in Japanese), Shokabo, 1965.

[4] S. Chern, Differentiable Manifolds, Chicago Univ., 1959.

[5] G. de Rham, Variétés Differentiables, Nancago Univ., 1960.

[6]1 T. W. Anderson, An Introduction to Multivariate Statistical Analysis, John Wiley, 1958.

[7]1 M. Siotani, “Tolerance regions for a multivariate normal populations,” Ann. Inst.
Statist. Math., 16 (1964), 135-153.

[8] S. John, “A tolerance region multivariate for normal distributions,” Sankhya, 23 (1961),
363-368.



