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Summary

The purpose of this paper is to develop a theory of linear estima-
tion under various multivariate linear models, which are more general
than the usual model to which the standard techniques of multivariate
analysis of variance are applicable. In particular, necessary and suffi-
cient conditions under which (unique) best linear unbiased estimates of
linear functions of (location) parameters exist are obtained. An exten-
sion of the Gauss-Markov theorem to the standard multivariate model
was first made by the author in [13]. In this paper, further generaliza-
tions of the result to multiresponse designs where the standard techni-
que is inapplicable are considered.

1. Introduction

Multivariate linear models more general than the standard one have
been considered in various earlier communications. See, for example,
Trawinski [18], Trawinski and Bargmann [19] and Srivastava [14], [15],
[17]. However, it will be necessary here to recall them explicitly, and
the physical situations where they arise.

We shall assume throughout that (i) there are m experimental units
in all, (ii) p responses (or characteristics or variables) Vi, V;, ---, V,
under study, and (iii) any pair of observations arising on distinct ex-
perimental units are statistically independent. The standard multivari-
ate (SM) model becomes applicable when each response is measured on
each unit, resulting in an (nXp) observation matrix Y (whose rth col-
umn y, (nx1) corresponds to observations on response V), with means
and variances given by

(1.1a) E(Y)=A¢,
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(1.1b) Var(Y)=L® 7%,

where A (nXm) is the usual design-model matrix, ¢ (m X p) is a matrix
of unknown parameters, the rth column &, of which corresponds to V,,
I, is the (nXxn) identity matrix, and X(pXxp) is an unknown dispersion
matrix. Also, the symbol & denotes Kronecker product, I, X2 being
an (npXmp) matrix partitioned into (pXp) submatrices, such that each
diagonal submatrix is X, and each off diagonal one is zero. Let y*'x
(pX1), the ath row of Y, be the vector of the p measurements on the
ath unit. Then the above can be re-expressed as

(1.2a) E(y.)=A¢, ,
(1.2b) Var (y¥)=2, Cov(y¥,yH)=0y,
(1'20) Var (yr)-_—'o'rrIn ’ Cov (yrs ys):arsIn ’

where O,, is the (pXgq) zero-matrix, and o,, is the (r, s)th element of 3.

Coming next to the general incomplete multivariate (GIM) model,
let the set S of the »n experimental units be divided into u disjoint
subsets S;, S, -++, S., the set S; having m; units. Furthermore, we
suppose that there are some units in S on which all the p responses
are not measured, the set of responses studied on each of the m,; units
in S; being V, , V,,, -+, Vi, » where 1=¢;<p, and [;; are integers be-
tween 1 and p such that [,;<l;;,, if 5<j. (As an example, the set of
characteristics observed on each unit may be V;, V, and V; for S;, and
Vi, Vi, Vs and V; for S;, and so on.) Let B, (¢=1,2,---,u) be a (pXq,)
matrix with unity in the cells (;, 7), (/=1,2,---,¢,), and zero else-
where. Notice that the model SM is applicable to each S;. Let Y, (n,
X ¢;) be the observation matrix from S;, and y} (p;x1), the ath row of
Y., be the observations from the ath unit in S;. Under the model
GIM, we then suppose:

(1.3a) E(Y))=A«£B:,
(1‘3b) Var(y?y)thlth ’ a:'l’ RPN (] i=1’ e, U,

where § and X are as before, and A, is the design-model matrix for S,.

In the above model, let U, (r=1,2, ---, p) denote the subset of S,
such that on each unit in U,, the variable V, is observed. Notice that
if r#s, we do not necessarily require U, to be a subset of U, or vice
versa. However, suppose there exists a grading of the p responses, say
in the order (V,, Vi, ---, Vi,) where (k;, -+, k,) is a permutation of
1,2, ---,p), and that we require that

{(1.4) Ukl 2 Ukz =_.:-? M 2 Ukp .
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In this situation, we get a special case of the GIM model, called the
hierarchical multivariate (HM) model. Under this model, the response
Vi, is measured on any unit in S on which Vkm is observed, and there-
fore a kind of hierarchy exists.

Finally, we consider the multiple design multivariate (MDM) linear
model. This is not a special case of the above models. The physical
situation where this model arises is such that although each response is
measured on each experimental unit, the SM model is still inapplicable.
Analytically, the MDM model assumes :

(1.5a) E@y.)=A4.¢:,

(1'5b) Var (yr)zarrIn ’ Cov (y'ry ys)zarsIn ’
r+s; r,8=1,2,.---,p,

where A, (nXm) is the design-model matrix for the rth response V.,
and the other symbols have the same meaning as in equations (1.2).
Clearly, the only difference between the SM and MDM models is that
under the latter, the design-model matrices A,, ---, A, are not necessarily
equal. This justifies the name ‘ multiple-design.’

Examples illustrating the above models will be found in many papers
referred to at the end. The standard model, for example, is deseribed
in Roy [9] and Anderson [1], and an application in Smith, Gnanadesikan
and Hughes [12]. Examples of the GIM will be found in Trawinski [18]
and Trawinski and Bargmann [19], where maximum likelihood estimation
and likelihood ratio tests based on the assumption of normality are con-
sidered. In [15], Srivastava developed a class of designs under GIM,
where SM would be applicable after a linear transformation of the data,
illustrating the method by an example worked out in [17]. The HM
model was introduced by Roy and Srivastava in [10], where a generali-
zation of the step-down procedure was suggested for testing linear
hypotheses. In [14], the author considered certain features of the above
models and the designs under them, and gave an example where the
MDM model arises.

In view of the above papers and for the sake of brevity, further
examples will be omitted here. However, it may be appropriate to re-
mark that in general, the GIM model arises whenever it is physically
impossible (for example, when measuring a certain response involves
destruction of the experimental unit), uneconomic (because of the un-
equal measuring costs), or inadvisable (because of unequal importance
of the different responses, or because of fast changing experimental
conditions), to observe each of them on each experimental unit. The
special case of the HM model would arise when, because of these con-
siderations, it is possible to decide for each pair of responses as to which
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should be measured on a larger number of units. Finally, the MDM
model can arise, for example, in a block-treatment set-up, where some
responses are known, a priori, to be insensitive to certain treatments,
or to be affected differentially by different treatments.

For an introduction to linear estimation and Gauss-Markov theorem
in the univariate case, the reader is referred, for example, to Scheffe
[11], Bose [2] and Kempthorne [5]. The generalization of this theorem
to the multivariate case under the SM model was considered by the
author in [13]. In this paper, the theory is extended to the other models.

2. The hierarchical multivariate model

Although this model is a special case of the GIM model, to be con-
sidered in the next section, its discussion first may aid in the clarity of
presentation.

Consider equations (1.3) and (1.4) and the definition of the HM
model. It clearly implies that u=p. Without loss of generality, and

for each of presentation, we take (ki ---, k,) to be identical with (1, 2,
<+, p). Then q,=r; Y, (n,Xr) is the observation matrix for S, (r=1,
<+, p); and y,, (n,X1), the sth column (s=1,.--,7) or Y,, represents

the set of observations on the sth response from the 7, units in S,.
Then (1.3) specializes to

(2-13) E( Yr)=E(yrly Yrzy ** ) yrr):'Ar(el, 52, ) er) ’
(2.1b) Var (Y,)=0¢,.I, ® 2.,
where
Gy *** Oy
2.2) 3=
Or*°° Oy

Consider the problem of estimating a linear function of the unknown
parameters £

(2.3) O=cleitelit - +ei6=3cl6

where ¢, (mXx1), (r=1, ---, p) is a given vector of coefficients. Through-
out this paper, we shall restrict ourselves to unbiased linear estimates,
and call a linear function & estimable if there exists an unbiased linear
estimate of 4. Let

r

(2'4) = > bisyr:

r=138=1
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be any unbiased estimate of ¢, where b,, (n,x1), r=1, -+, p; s=1,---,r
are vectors of constants. Since E(y,,)=A4,&,, we get

(2.5) E(l)= : AL

I

M'ﬁ I M'e
ITM'S ||M~:

res E 03’53 .

8

I
-

To avoid triviality, we assume throughout that the space of the
parameters & contains a subset of mp linearly independent points. Then
(2.5) gives, after equating coefficients of & on both sides:

(2.6) c“:é A:br,, S:]_, ...’p_
Define B, (m;xm) by

@.7 B!/=[Al|AL,] -+ |AL], s=1,---,p,
where m,=n,+n,,,+ -+ +n,. Then (2.6) implies

THEOREM 2.1. A mnecessary and sufficient condition (n.&s.c.) that 6
18 estimable is that ¢, belongs to the row space of B,, for all permissible s.

We next consider best (i.e., minimum variance) unbiased estimates.
Define z; (1Xm,) by

(2‘8) xs’=[y:s; y§+1,s, tt II;'n] .

Then z, is the vector of the total of m, observations on V, from all
units in S, and it can be verified that

(2.9&) E(xs) =Bse:
(2.9b) Var (x,)=0,l,, , s=1,--,p
(2.9C) Cov (x{ , x;)zo'rs[omr,ms—m, I Imr] ’

r>s; r,s=1,.-+,p.

The set-wise and response-wise representations of the HM model by
equations (2.1) and (2.9) respectively are clearly equivalent. Consider
(2.9) and suppose we ignore all responses except V,. Then (2.9a,b)
gives us the univariate model (M, say) for V,. Assume now that for
s=1, .-, p, the (unique) best linear unbiased estimate (BLUE) of ¢/&,
exists under M, and equals g/x,, where g, (m,x1) is a vector of con-
stants. From Scheffe [11] or Bose [2], we then recall (without proof):

THEOREM 2.2. A necessary and sufficient condition that c!&, is esti-
mable under M, is:
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(2.10) Rank (B/)=Rank (B! | ¢,) .

Furthermore, if g!x, is the BLUE for clc,, then g, belongs to the esti-
mation space; in other words,

Rank (B,)=Rank (B, g,) .
Let

(2.11) lo=é gix; ,
8=1

be the sum of the individual estimates. We proceed to compare the
variances of [, and . Rewrite [ in the form

2.12) 1= d!x. ,
8=1
where
(2.13) d/=[bs, bissys, -+ 0, bl -
Then

(2.14) Var (I)=Var (i d,'x,>

Il

d/[Var (x,)]d,+2 > d} Cov (x], x;) d,
r>8

yd
>
s=1
> (dd)0u+2 S (! [On,m,m, | In, ] du}ars
A similar expression holds for Var(l,). Also

y4 Y4
0= E(l) =§ ds’ Ret': E(lo) = xzﬂ gs,Bsen .

Hence
(2.15) (ds,_gs,)Bs:Olm y S=1, 2’ cre, D

Let W, be the column space of B,, and W, the space orthogonal to W,.
Then (38.15) implies that (d,—g.) belongs to W,. Let

(2.16) Rank (B,)=p; .
Hence
(2.17) Dim (W,)=p; , Dim (W,)=m,—p,=p, , say.

Let 65, 60,, -+, 6,,, be an orthogonal basis of W.. Then there exist
constants hg, - -, h,,,,s such that
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(2-18) da_'gs:halan'l' e +hlp‘ol/“ ] S=1, e,

From theorem 2.2, g,¢ W,, and hence g, is orthogonal to each 6,,.
Thus we get, for r>s,

(2.19) (did)=(g9/9)+his+ R+ -+ +hi, ,
and
(2.20) d/[On, my-m, | I, 1d;
=[g! +hbut -+ 410y, 0 O omm, | I ]
X[Gethabut « - +hyB,,]
=[0,m;-n, | g/ +hbpu+ -+ +h,,0,,]
X[gthnbu+t -+ +h,,0,,]
=lg; +h.0,+ -+ +h,, 0., [g:°+hab+ - - - +h,, 0571,
where (r) in the superscripts in the vectors in the second bracket de-

notes that the first part of the corresponding original vector, involving
(m;—m;) coordinates, has been omitted. But

2.21) Var ()= Var () =3 0u0u+2 5 0, ,
8=1 r>8

where, using (2.19) and (2.20)

(2.22) o,=d/d,— g/g,= jzz ks
(2-23) Wy 3= [dr, (Om,,ma—mr l Imr) dc—g; (Omr, mg—m, l Im,)yt]

Hg Py
=0!(2 10 )+057( S 16,
+( 2 hs0) (S a0%) -
J=1 i=1

Let 2 be the (pXp) matrix (o,). Then the Schur’s product (2*2)
of 2 and 3¥=(s,,) is the (pXp) matrix whose (r, s) cell has the element
o,0,. Let J,, be the (pXxq) matrix having unity everywhere. Then
the above results can be noted in

LEMMA 2.1. We have
(2.24) Var (I)—Var (l))=J,[2*Q] ], =u ,
where the elements of 2 are given by (2.22) and (2.23).

Next, we investigate the conditions under which the difference u,
between the variances of ! and [, remains non-negative under the vari-
ation of X, subject to the condition that X be positive definite. The
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last requirement is obviously necessary, for non-triviality. We prove

LEMMA 3.2. A n. & s.c. that u=0, for all values of X (subject to 3
being positive definite (p.d.)) is that 2 be positive semi-definite (p.s.d.).

Proor. (i) Sufficiency. The Schur’s product (2*3) is a principal
(pX p) submatrix of the Kronecker product (2 X Z%). Since the Kronecker
product of a p.d. matrix with a p.s.d. matrix is a p.s.d. matrix, and
since a principal submatrix of a p.s.d. matrix is also p.s.d., it follows
that (2*2) is p.s.d. Since % is a quadratic form in (2*3), we have
therefore u=0.

(ii) Necessity. Suppose £ is not p.s.d. Let v be a vector (with ith
element v;) such that vQuv<0. Let X=(vv'+el,). Then clearly, I is
p.d. for all values of ¢>0, howsoever small. But then,

(‘Q*Z) =((7rs)) »

where
V, V0,5 , if r+#s
Tps= .
v v, tew,, , if r=s.
Hence
y4
U= > T
7,8=1
Y4 ¥4
= > 0,00+ > e,
r,8=1 r=1

M

=&<,

Since (v'2v)<0, we find that <0, for sufficiently small values of e.
This completes the proof.

If I, and [, are two estimates of 6, we shall say, in accordance with
the usual convention, that [, is as good as I, if Var(l,)—Var(l,)=0, for
all values of ¥, subject to the condition of being p.d. If in addition to
this, strict inequality holds for some value of X, then [, is said to be
better than I,. _

Comparing I, and [, the last lemma shows that [, is better than [,
provided 2 is p.s.d. If 2 is indefinite, then I, will have less or more
variance compared to I, depending upon the value of 3. However, since
2’ is unknown, one cannot decide whether I, or [ should be used. Hence
in order that we can choose between [, and I, 2 should be a definite
matrix. Now, 2 can’t be negative definite, since the diagonal elements
of 2 (see (2.22)) are all non-negative. Thus in order to choose among
l, and [, 2 must be p.s.d., in which case the choice will fall on [,. On
the other hand, ! itself depends upon the chosen value of the constants

a),r> +('2v) .

1
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h;, (see (2.17) and (2.18)), and becomes identical with [, when all h,,
equal zero. For any given X, optimal values of k,; (say ﬂu) can be found
(by differentiating Var(l) and equating to zero), such that Var(l) is

minimized. However, it can be easily checked that boo; depends upon X
(which is unknown), and therefore cannot be used. The above facts,
together with the last two lemmas, lead us to

THEOREM 2.3. A n. & s.c. that a best linear unbiased estimate
(BLUE) of 0 may exist (given 2 1is unknown) is that 2 possesses the
property P,, namely that 2 be p.s.d., for all values of the constants h
(=1, -, ps; s=1,2, ---, p). Furthermore, if this is the case, then a
BLUE is given by l,.

We next prove

LEMMA 2.8. Suppose, for mnontriviality, that 2 is p.d. Also, let 1
and hence the corresponding h,; be such that 2 is p.s.d. and Var ()=
Var(l,). Then 2 has to be a zero matriz, and the h,; must all be zero.

Proor. Let y=Rank(2), and let d,, ---, d, be the latent roots of 2.
Then there exists an orthogonal matrix P such that P'QP=D, where
D=diag(d,, d,, ---,d,; 0,0,---,0). Let D, (¢=1,---,7) be a diagonal
matrix which contains d; in the cell (¢, %) and zero elsewhere. Then D

=31Di. Let 2=PDF’. Then
(2.25) 2=PDP'= ; Q..
=1

Now £, is clearly of rank 1 since D, is so. Hence there exist non-zero
(pX1) vectors # (i=1,---,7) such that 2,=Fff/. Let (2*Q2)=II, and
(2*Q,)=1I;, where * denotes Schur’s product. Clearly, we have from
(2.25), I =$ II,. Let z;,, be the element in the cell (r,s) of II;. Then

Tirs= firfis0,s Where f;, is the rth element in f;. From (2.24),
u=Var )= Var () =Jl1Jn =33 [Ji,11J;]
:é [ré:l.firfiso'rsjl =§ [filzfi] .

Since X is p.d., f/2f,;=0 for all 7. Hence u=0 implies that for all 1, f;
is the zero vector and hence 2, is the zero matrix. This completes the
proof.

THEOREM 2.4. If 1 is such that 2 is p.s.d., then Var (l)>Var ({,).
Furthermore, if 2 has the property P,, thenm l, is the unique BLUE for
4.
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The proof follows directly from the last lemma, since Var (I)=Var ()
implies £ is a zero matrix, which means all the h,; are zero so that
1=l,.

The development in this section shows that the whole matter of the
existence and uniqueness of a BLUE estimate hinge on 2 having the
property P,. We now proceed to examine the conditions under which
this happens.

THEOREM 2.5. A n. & s.c. that 2 has the property P, is that for
i=1, o, pe; §=1, -+, pt,, and all r>s, with r,s=1,---,p; we have

(2.26) (a) g. 1s orthogonal to 657,
2.27) (b) g 1is orthogonal to 6,; .

PROOF. (i) Necessity. Consider first the case p=2. We have

! #g
(2.28) Wy =j2=1 hi;=a10, , Wy = gl hi=a:8,
(2'29) wzx=gz’¢’12+yl(2),az+(a;au) ’
where
By #1 #1
(2.30) 02 _—'El hziozi ’ 012 = El hljog? ’ al = §1 h1/01j .

If either of the conditions (a) and (b) is violated, there will exist a
value of the constant hy (say hu=h}%) such that z=g/d,+8{"8.+0.
Also then, let the values of w,, etc. be: 0y=2, 0x=Y, oy=2+2. Now
consider taking h,=ch%, where ¢>0. Then the new values of o, will
be: o =¢%, wy=¢%y, w,=cz+¢e%, so that

12| = 0ywn— oy =cry —(z+ez,)
=[xy’ —(2+ez)] .

Since 2z is fixed and non-zero, the last expression will clearly become
negative for sufficiently small values of e.

This proves for p=2, 2 has the property P, only if conditions (a)
and (b) hold. The case for general p follows from this by considering
the top left-hand (2Xx2) submatrix of 2, and recalling that all principal
submatrices of a p.s.d. matrix must be p.s.d.

(ii) Swufficiency. We consider here only the case p=2. This is to build
up a background for the proof of theorem 3.1 (to be proved later), of
which this is a special case.

For p=2 we have under conditions (a) and (b),
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= [(6{31)(642312) - (agau)z] + [(l’{ol) { (0502) - (afzou) } ] .

That the first bracket is always non-negative follows from Cauchy-
Schwartz inequality. The same property for the second bracket is im-
plied by the fact that 9/3,=0 always, and that 8,, is obtained from &,
by deleting a certain portion. This completes the proof for p=2.

We shall return to the hierarchical case after completing the theory
under the GIM model.

3. General incomplete multivariate model
., 8,

Consider the sets S, S;,+ -+, S.. Out of these, let S, , S, ,,- ru

be the sets belonging to the class U, of sets on which V. is measured.
Here we assume that the integers t¢,, satisfy 1=t.<t.<---<t,, =Su.
Thus U, contains u, sets. Let x,;,, (n.X1), (r=1,---, q,) be the vector of
observations on the set S; corresponding to the response V, _, such that

(3.1) -Yiz[x”il’ xuiz, ey, x”ipi] ’ ’i:l’ sy, U .

Let y,(m,Xx1) be the vector of all observations on V,, such that

(3.2) yi=lxl x| xl, ]
(3.3) O T e r=1,...,p.
Define B,(m,Xm) by
3.4) B =[A, Al |-+ A1,
Then
(3.5a) E(y,)=B.¢,,
(3.5b) Var@)=o,L. , r=1--,p.
Also,
X, .,
(8.5¢) Var(y,, y) = Var oy [xle e, iy, 61
Z';l;(:)tr.urr. 2;';?0
S R

)
SHO . E

where
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if t.#t;,

n >
tra’"tsp

(3.6) ZHrD =
n, if tra=tsﬁ ’

a=1,---,u,, ﬂ:]_,...,u“ r+8, r,s_—_-]_’z,...,p.

Notice that the model (3.5) is a generalization of the one in (2.9).
As in the hierarchical case, we consider the problem of estimating 6=

$re’e,. As before, let gly, be the BLUE of ¢/, from the model (3.5)

r=1

when all responses except V, are ignored. Let lo=§} gly., and l=
r=1

é d!y, be another unbiased estimate. Write

r=1

(3.7 gl =gl 19/, 19,1,
and similarly for d,. Then, as before,

(3.8) u="Var (I)—Var (l))=J,,(2*2)J, ,

where 2=(w,,) and

(3.9) o= 3 dl, dn, .~ 9l 9n,. ],
(3.10) 0= 3 3 (@, 2D due, ) — (00, TG0, Gt )] -
a=1 =1

Let U,, be the intersection of U, and U,, so that if S;€ U,,, then
both responses V, and V, are measured on each unit in S;. Let the
sets in U,; be S, .-, S‘rwn’ where

.
781’

(3.11) lét"1<t"5< e <trsu =u.

Analogous to the HM model, and with the same notation, we intro-

duce the spaces W, and W,, and an orthogonal basis 6, (=1, .-+, p,)
for W,; and there exist constants k,; such that

Hr
(3.12) Wrr = 2 hij ’
i
(3'13) Wy = é [d’{‘np d‘"r:u_g’{‘nvy“rsv] .

Consider the (m,x1) vector 8,, in W,. In view of (8.4), any vector
in the column space of B, can be partitioned into %, components belong-
ing respectively to the column spaces of A, ,---, ALW. Let the com-
ponent of 8,; corresponding to A,m be denoted by 0.5, Then
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(3'14) d, Tt nv+ Z h"jo'jtrsv Ttrsy + g"rxp ’ say.
Hence

Frs
(3' 15) 2 [ g“nu y”tr:» + g"rsu e“rav +y"r:u y‘”nv ] *

As in the case of HM model, one can establish that a necessary and
sufficient condition for the existence of a (unique) BLUE for # is that
2 has the property P,. We now characterize this property in

THEOREM 3.1. Under the GIM model, a n. & s.c. that Q has the
property P, is the condition C*: g{” be orthogonal to 85, for j=1,---,
t-; r+s; r,s=1,-.-,p. Here

(3.16) 97 =Gy 0 Gy, ]

(3.17) 677 =107, + 1 O0pryy, 1,

1.e., g and 0% are obtained from g, and 8,; respectively by retaining
that part which corresponds to both variables V, and V,, and discarding
the rest.

PROOF. (i) Necessity. This part can be proved on the lines of
theorem 2.5 and will be omitted.

oy
(ii) Swufficiency. Let T,=§1 h,8,.. Let T, ... (1=8,=p, 1=5<8<

... <8, <p, the integers s, s, -+, s, are all distinct) be that part of the
vector T,, which corresponds to the sets in which the responses V,, V,,
-, Vi, are measured on each experimental unit, while responses other
than these may or may not be measured. Similarly, let ¢, ..., be the
part of the vector T which corresponds to the sets on which the re-
sponses V,, V,---, V. , and only these responses, are measured on each
unit.
Let 2’=(4,---,4,) be any real vector, and consider the quadratic
form Q=224. In order to prove that 2 is p.s.d., it is sufficient to show
that @=0, whatever 2 may be. Under the condition C*, we have from

(3.12) and (3.15),

oy sy
(3'18) Wy = [ 21 hrjolji| [j21 hrjorj:l = T; Tr y
j= =
(3.19) 0= 3 (g%, 0%, 1= T/ T., .
=1

Hence
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(3:20) Q=3 Z(TIT)+3 2 MTLT. ) .

Next, we consider the equality:

»
(3.21) g 2(tlt,)+ TZI ’; Z*D, g s s
where * denotes summation over all positive integral values of s, - - -, s;
such that r<s;< --. <s,<p, and where

(3.22) CES U1 { R SO
22, [ sy B JE 8 sy B ]

(3'23) t::sl,cu,sk':281t:l,r,sz,-u,sk+lszt32,r,sl,32,-u,:k+ M +Z’kt‘k"”1""’k-l .

Before proving (8.21) we show that its truth implies the statement
of the theorem. For this purpose, one can easily show (in a manner
analogous to the one in theorem 2.5) that @, ..., =0. Since ¢/¢,20,
(3.21) therefore implies Q@=0.

To complete the proof of the theorem, we therefore show that the
coefficient of A2 and 2.4, (¢#8; a, f=1, - - -, p) respectively on the r.h.s.
of (8.21) are the same as on the r.h.s. of (3.20). Consider 4. Its coef-
ficient in (3.21) is

-1
COORDIP CH—— B

It is clear that this expression equals the total sum of squares of the
elements from all the vectors ¢, which have the suffix 1 in them (with
or without further suffixes). It therefore equals (77T;), the coefficient
of 2} in (3.20).

Next take 2t, a>1. In view of (3.28), its coefficient in (3.21) is

(3.24) [t/t]+ 2 D AN A
a-1 P—% " ,
+802-—1 kZ}lZ *[ta Sp 8t aso 8y, Sk] ’

where ** indicates summation over all s;’s such that s <s;< --- <s,
and all s;’s are distinct from a. A scrutiny of (3.24) shows that it
involves all the vectors ¢ which have a« as one of the suffixes. The
result regarding 2% is therefore proved.

Consider now the coefficient of (22.4;) (a<B, say) in (3.21), which
equals



COMPLEX MULTIVARIATE LINEAR MODELS 431

P—a a—1P—3%,
(B.25) X I brrin D 5 Ity by ]

= s
where (i) in the first term a<s;< --- <s., and the set (s, :--,s,) in-
cludes the integer B, (ii) * in the suffix of ¢ indicates the set of s,’s
excluding B, (iii) *+ means the set (s, -- -, s,) excluding a, and (iv) Z**
indicates summation over 1<s,<s,< --- <s,<p, where the set (s, - - -, )
includes both the integers « and 8.

Consider the term inside the first bracket in (3.25). This is a scalar
product of two vectors ¢, whose suffixes (which include both « and B
are the same except for a permutation, and which are such that « oc-
curs as the first suffix in one of them, and 8 as the first suffix in the
other. The same situation prevails with the term in the second square
bracket. Also, an examination of the ranges of the summation sign
shows that all such products are included, and therefore (3.25) equals
T. :T;.. This completes the proof.

The above theorem implies

THEOREM 3.2. A n. & s.c. for the existence of a (umique) BLU
estimate for 6 is “condition C*,” that g be orthogonal to 6% for all
permissible j, r and s.

Further reduction of the condition C* in terms of the matrices A,
and the coefficient vectors ¢, will be considered later.

4. Multiple-design multivariate model

A development analogous to the earlier models exists here. Define
6, | and [, as under the GIM model, by considering one response at a
time, and adding. Then Var(l)—Var(l,) equals J,(3*2)J,,, where as
before w,,=(d;/d,)—(g/g,), for r,s=1,...,p. Let W, be the column
space of A, (occurring in (2.5)), W, the space orthogonal to W,, and
6,; (j=1,---, p.; p,=dim (W,)) an orthogonal basis for W,. As before,
we then have d,—g,=7,, where

By
(4.1) T,=j5‘_, BB, , © r=1,---,p.
=1
Thus
(4.2) 0, =T/ T, a)”:gr' Ta+y;Tr+ T’{ T, .

We then have

THEOREM 4.1. A n. & s.c. that a (unique) BLUE for 8 exists under
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the MDM model is condition C**: g, be orthogonal to 8,; , for all permis-
sible r, s and j.

PrROOF. Necessity follows on the lines of theorem 2.5. To prove
sufficiency, we observe that under the condition C**, we get 0,=T! T
(r,s=1,2,+-+,p). Thus, 2=T'T where T=[T,, Ty, -+, T,], and hence
Rank (2)=1 and @2 is at least p.s.d. Hence, as in the proof of lemma
2.3, it follows that (2*2) is p.d. and hence J,(2*2)J,>0. This com-
pletes the proof.

Note that condition C** is equivalent to “g, € W,, for all permis-
sible  and s”.

5. Further discussion of existence conditions

(a) MDM model. We discuss this model first because of its simplicity.
The BLU estimate (if C** holds) of 8=2¢/&, is l;=2gly,, where g,€ W,.
Under C**, we require g,€ W, for all », s. This can happen only if
the intersection W=W,N W,N---N W, is non-empty, and g,€ W for all
s. Thus for the existence of the BLUE for a given 6, it is not neces-
sary that the W, be all identical.

Consider any fixed multivariate linear model, and let 4 be called
“ piece-wise estimable ” under that model if each component ¢;§; of 6
has a BLUE g/y. under the univariate model obtained by considering
the response V, alone, and ignoring the rest. Let © be the set of all
piece-wise estimable functions 4. Then a given design is called an
orthogonal multiresponse design (OMD), if it is such that there exists
a BLUE of 6, for all ¢ 6. We prove:

THEOREM 5.1. Under the MDM model, a n. & s.c. that a design is
OMD s that A,,---, A, be such that their column spaces W,,-- -, W, are
tdentical.

PrROOF. Suppose W, W. Then there exists a vector g*¢ W,, such
that g* ¢ W, , for some r. Let E(g*y)=c*§,. Consider the estimation
of 6=c*& +cl&+ -+ +¢c,8,, where ¢; (j>1) are chosen so that the
BLUE for c}&, exists. Then clearly ¢ 6. But since gX¢ W,, condition
C** is not satisfied, and a BLUE for # does not exist. This completes
the proof of ‘necessity’. Sufficiency (proved earlier in [14]) follows in
an obvious manner.

The above points out the important fact that even if we are inter-
ested in all 8 €6, the need for being identical is for the column spaces
of A,, not A, themselves. It seems to the author that by choosing the
design carefully, one could achieve this condition in a majority of cases.
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Indeed, the condition is satisfied in the example of MDM model given
in [14].

(b) GIM and HM models. For clarity’s sake, we first consider the
case p=2. For full generality, we then take w=3. Let V, be measured
on S, V; on S,, and both V; and V, on S;,. We have the GIM model
if each on n,, n, and 7, is non-zero, the HM if either =, or m, is zero,
but n;#0, and the trivial case when n;=0. Also then,

(5.1) B/=[A] : Ai], B/=[A;: Ai]
(5.2) m1=n1+n3 , m2=n2+’n3
(5.3) m=m—p, Py =My—p;

Define the set @ as in subsection (a). We prove:

LEMMA 5.1. A n. & s.c. that a design be OMD wunder the given GIM
model 1s that there exist matrices Ky(nyX ), Kp(nsXp), Ku(n,Xw),
I{gg(nsxﬂz) suCh that

(5.4) (a) AlK,, AlK,,, AlKy and ALK, are zero matrices,
6.5 (b) KK=I,, KK-=I,,

where

(5.6) K{=[K\|K:, K/=[Ki|Kz].

ProOF. (i) Sufficiency. Using (5.2), (5.4) and (5.5), it follows

that the columns of K, form an orthogonal basis of W,, and therefore
may be taken to be the vectors @y, ---, 8, . Now §=c/§+c/§. Since
0€0, [, exists, and l;=g/y,+gly,. Recall that g, belongs to the column
space of B,. Hence g belongs to the column space of (4;). Also the
vectors 6, ---, 62 are (from (5.6)) the columns of K;. Since A{K, is
zero, the condition C* (of theorem 3.1) is satisfied for g&. Similarly
for g, and the proof is completed.

(ii) Necessity. If C* holds for all g, W, and g,¢ W; (i.e., for all
0 € ©), then clearly

-K;.z[alls ] 01;:1] ’ Ifz'—‘[ozu ] 02;:2] ’

will satisfy (5.4)-(5.6). Hence the lemma.
‘ The next natural question is: ‘When do K, and K; exist?’. This
is answered in

THEOREM 5.2. A mn. & s.c. that (for p=2) a design under GIM
model be orthogonal s
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(6.7 R(B))=R(A)+R(4s) ,
(5.8) R(B,)=R(A,)+R(A;)
where R denotes rank.
PROOF. (i) Necessity. Let
(5.9) n=R(A), n=RA), n=R4).

Let C, (5=1,2,8) be a matrix of size n;X(n;—7r;) such that R(C))=
n;—rs, C}Ci=IL;s,;, and AJC;=0Op,n,—,. Clearly, such matrices do exist.
Now consider the matrices K;; of the last lemma. If they exist and
satisfy (5.4), then there exist H, (=1, 3) of size (n;—7;)X# such that
K,=C.H,, and K;,=C;H,. But R(CiH))<n,—7, R(C;Hy)<n;—7;. Hence

(5.10) R(K,) < R(Ky)+R(Kp) < (ny—71)+(ns—73) -

But in (5.5) we want R(K;)=p,. Hence g, <(m—7)+(n3—7s). On the
other hand, p=(n;+n;)—p,. Hence p;=7,+7;. But

0= R(B,) éR(Al)'i‘R(As) =rn+n.

Hence py=7,+7;. Similarly p;=7;+7;, then the result is proved.
(ii) Swufficiency. To show this simply take

I{II = [Cl I 0"1'”3—1’3] ’ 1(12 = [On

31T

|Gl .

In view of (5.7), K;; and Kj; each has p columns, and R(K;)=R(C)=
M—71, R(Klz)-:'ns-rg . Also

AK,y= [A{CI | Om,n3—73] =0my#1 .
Similarly A{K;;=O,,, . Also, clearly

C
R(K))=R [——-
o

0
Fil = R(Cl) +R(Cs) =t

so that K, is full rank. Thus the properties required for K; in lemma
5.1 are satisfied. Similarly for K,. This completes the proof.
It may appear at first sight that it is necessary for (5.7) to hold

that B, is of the form
A¥ O
B =|—1—]|.
Af

0
However this is not true; for example, consider the case where
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B_[i]_[cllC1iczlczlc1+czl 2¢ Icz—cl:}
Tla) ldalaldld 4 |drdld—d]’

where ¢;’s and d,’s are vectors such that
R[CI, Cz]=2 ’ R[dl, dz, d3]=3 .

Here it may be checked that R(A,)=2, R(A;)=8, and R(B,)=5 so that
(5.7) is satisfied.
We next treat the case of general p in

THEOREM 5.3. Under GIM model, with p responses, a m. & s.c. for
the orthogomality of the design 1s:

(5.10) R(B,):R(B”)—{-R(Bﬁ; , r#s; r,8=1,---,p,

where B, is obtained by taking those rows of B, which correspond to sets
in which both variables V, and V, are measured, and B} by putting
together the remaining rows of B,. (Thus, for example, when p=2,
r=1 and r=2, we have B,,=A, and BX=A;.)

PROOF. (i) Necessity. This follows from the case p=2 by con-
sidering the estimation problem for the set 6,, (say) of all piece-wise
estimable functions # which involve only two fixed responses, say V,
and V,.

(ii) Sufficiency. Recall the condition C* in theorem 3.1. We notice
that it relates to a statement concerning a pair of variables (V, and V,
say) at a time. Now, for any fixed (r,s), C* is satisfied as in the case
p=2. Hence C* is satisfied as a whole. This completes the proof.

Under the HM model, the conditions in the above theorem simplify
to a single one, as indicated in

THEOREM 5.4. The condition for a design to be OMD under the HM
model s

(5.11) R(AI| A3] -+ [AD)=R(A)+ --- +R(A4,) .
The proof is left to the reader.

6. Multivariate block-treatment designs

It can be shown that many situations which apparently look more
general can be brought under the scope of the above models by suitable
devices. For example, let there be two responses V; and V,, and three
sets S;, S,;, S;, and let the expectation equations be
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oo meal®], wes]?].
T T
Bs B ]

Tt Ty

E(ys | yn)=AF [

This will arise, for example, when there is a block design over the
units in each set, such that (i) A, is the design matrix for S;, i=1, 2,
3, (ii) the vectors B; are parameter vectors corresponding to blocks,
and therefore correspond to nuisance parameters, (iii) z, and z, are re-
spectively the vectors of treatment effects for responses V; and V,. Let
the dimensions of the different vectors be as shown below :

(6'2) Tl('v X 1) , 1'2('0 X 1) ,
Bib;x1),  Bib:X1), Bibyx1), Bubix1),

where we suppose b,’s are not all equal. Therefore, as it stands now,
. the model (6.1) is not a special case of GIM model. However, let

(6.3) SICA-AVAELAR S AAVARAE
(6.4) Af =[Ay l A12] ’ Ax =[A21 | Azz] ’ Af =[A31 I Azl ,

(6-5) A1=[01A11|01sz] ’ A2=[O|A21lO|A22] ’
Aa=[O|O|A31|Aaz] ’

where (i) 3 and 7, are new nuisance parameters of sizes such that the
sizes of & and &, are equal, (ii) the partitioning of AFf in (6.4) is in-
duced by the vectors 8, and =z, in (6.1), and (iii) O in (6.5) denotes zero
matrices of appropriate sizes such that the products in the following
equations are conformable :

(6.6) E@y)=A4:, E(y.)=A4:%: , E(y: |yn)=A48.18:) .

Thus the device of introducing the nuisance parameters ; brings it
under GIM model.

Interest may lie here in the estimation of functions ¢ of the form
¢!z, +elr;. Conditions for this can be obtained from theorem 4.1. How-
ever, for lack of space here, the theory of multivariate designs satisfy-
ing condition C* is deferred to later communications, where the appli-
cations of the theory to areas like multivariate response surfaces, time
series, etc., will also be considered. Included in particular will be the
theory of multivariate block designs, where the concepts of relationship
algebras of designs (see, for example [4] and [7]) are gainfully employed.
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