BAN LINEAR ESTIMATES OF THE PARAMETERS OF
THE NORMAL DISTRIBUTION FROM
CENSORED SAMPLES*

MIR. M. ALl AND L. K. CHAN

(Received June 22, 1966)

1. Introduction

The present paper is concerned with the linear estimation of the
parameters of the normal distribution on the basis of a complete or a
Type II (singly or doubly) censored sample whose observations are order
statistics. The exact maximum likelihood estimates are difficult to com-
pute and usually biased. For this reason some authors, for example
Gupta [7], have suggested methods to simplify the computations and
others, like Saw [16], have succeeded in reducing the bias. Lloyd (1952)
has proposed best linear estimates, but their coefficients involve heavy
computations. Approximation of such estimates based on a complete
sample has been considered by Jung [11] and Blom [3].

The linear estimates obtained by us belong to the class of the re-
stricted Best Asymptotically Normal (BAN) estimates (Neyman, [13])
based on the corresponding complete or censored sample. The technique
we use is to linearize the partial derivatives (with respect to the para-
meters) of the likelihood function based on the complete or censored
sample. The coefficients of the estimates are explicit functions of either
(i) the expected values of the order statistics (section 2.2, the estimates
are strictly unbiased for any sample size) or (ii) population quantiles
(section 2.3, asymptotically unbiased) from the standard normal distribu-
tion. The generalization of the above estimates to multiple censoring
is indicated (section 2.4). The expressions of our estimates in (i) are
the same as those of Plackett [14] where he considered double censoring
only. However we do not agree his derivation on grounds discussed in
section 3. Using different techniques, asymptotically unbiased estimates
analogous to our estimates in (ii) have been studied by Weiss [18] for
double censoring and by Chernoff, Gastwirth and Johns [4] for complete
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samples or multiple censoring. A simple estimate of the population
mean proposed by Dixon [6] is also investigated (section 4).

2. The estimates

2.1. Notations and definitions
Let an ordered random sample of size n from the normal distri-

bution with unknown true mean g, and unknown true standard deviation
o, be denoted by

2.1) L, <Ly v e KBy

For the estimation of g, and ¢,, the following uncensored portion of
(2.1) is available.

(2'2) xu<xu+1< A <xv ’

where % and v are determined by two fixed numbers a and 8 satisfying
0<a<B=1 such that u=[na]+1, v=[np]+1; [g] denotes the greatest
integer <q (when g=1, we let v=n). (2.2) will be called a relevant
sample under Type II censoring. It may be a complete sample (a=0,
B=1), a singly censored sample (a=0, 8<1 or a>0, f=1), or a doubly
censored sample (>0, f<1).

Let F and f denote the distribution function and density function
of N(0,1) and y,=(x;—m)/o,. Then y, is the ith order statistic from
N(0,1). The likelihood function of (2.2) is

Lr(eze)
g

L@y, « - ) To, pt, 6)= (u——l)?!“(n—v)! [F< xua—/z )]u—x Jju :

g
where g and ¢ are values in some neighborhoods of #, and o,, respec-
tively. Now let us define L, and L, as follows

(2.3a) LW+, Yo)= [a dlog L(xy, -« -, % 1, a)]
aﬂ U=py,0=0,
=—u—Dr#)+ 3 v+ (n—o)r(—v.) ,
and
(2.30) Ly - ) Yo)= [a dlog L(%a, -+ +, %o 2, 0) ]
ao' u=p0,a=¢0

=—u—Dpr(p)—@—u+1)+ S yi—(n—v)r—9.) ,
where 7,(y)=f(y)/F(y) and 7(y)=yr(y). Throughout this paper, the
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notation 33, without any affix means that the summation is from i=wu
to .

For 0=a<p<1, let 5 and ¢ be the numbers satisfying F(y)=a and
F(&)=8 (p=—o0 when a=0 and £€=c when $=1). The matrix of the
asymptotic Cramér-Rao lower bound for the relevant sample (2.2) is
lne*K,(a, B)| 7}, r,t=1, 2, where

Kia, ﬁ)=(ﬁ—a>+[nf(v)—ef<e)1+%f2(v)+ ﬁfﬂ(&) :

Ky, B)=Ku(e, ))=Lf () — F O+ 1 ()~ ézf(é)]+ Wi+ ﬁ §f* ),

Knl(a, B)=2(8—a)+[nf () —ESOI+ [ f () —E (O] + % 7. (7)
1 2 £2
+ ﬁ& FHE) -

If two estimates T, and T;, based on (2.2) are such that (v 7 (Ti,— ),
V1 (Ts%—ay)) converges in distribution to N((0,0), ¢i||K,(a, f)||~%), then
they are said to belong to the restricted class of BAN estimates based
on the corresponding relevant sample.

2.2. The estimates

Let p#;=E(y;) be the expected values of y; and 7i(s)=I[dr.(y)/dyl,-. ,
t=1,2. Also let

Su=1—(w—1)r{() , Si=1-(n—v)i(—p),
Su=2p,— (-1 ,  Se=2pts+(n—V)i(— ),
Si;=1 and S,=2y, i=u+1,--.,v-1.

We first state our theorem 1 and then prove several lemmas.

THEOREM 1. Let g and & be the estimates obtained by solving the
equations

E(ﬂ—ﬂt >S1i=0 ’ E(u_ﬂi >S2i=0

o ag
which are based on the relevant sample (2.2), then p and 6 are strictly
unbiased linear estimates of p, and a,, respectively, and they belong to
the restricted class of BAN estimates.

LEMMA 1. Let & be the number satisfying F(¢)=1/(n+1) and
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R.()= é (yi—&:n’, then lim E (R.(2))=0.

PROOF. The authors [2] have shown that &=E(y) if i=(n+1)/2
and &>E(y,) if i<(n+1)/2. So

@24) 0=ER.Q)=no[1—(S &/m)= nS v dF — [S"""“’yzdm £
1/(n+1) n+1

F=0n]

Lon=1l @)
12(n+1)¢ dF?

<2n Sl Yy dF ,
n/(n+1)
where 4,=1—2, 1/(n+1)<8,<m/(n+1). The equality in (2.4) follows
from the trapezoidal rule, and the last inequality follows from the fact
that [y(F))* is convex and & >0. Since n=F(,)/(1—F()) and
lim F'(¢,)=1, by applying L’Hopital’s rule to the last term of (2.4) we

n—oo

have
@5 oslm&l-FE)asln || v dF@)| /a=0
LEMMA 2. (Sen [17]) lim nE(y,,—i;‘,,Y:fo}%;‘), lim nE(y,—&,)'=
n—oco n n—oo
BL—p)
JUE)

LEMMA 3. lim L/(g,, -+, p)/¥/ 7 =0, t=1,2.

ProoOF. Take the Taylor’s expansions of the left-hand terms in
(2.3a,b) about g, «--, p:

@68) LW s 0= e Ll oo 1)
+— i 5 (= )Su+ Bt B,
(26) L -1 U)= e Ll - 1)

+——‘/l S (¢i— 12)Su+ Rin+ RE + R,
n
where

— 2,11
Rln 2~/— (yu Fu) Tl uy Rm 2\/—17 (yv F‘v) 71,0 »
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_u—1 e x _ N—0 2!
Ry, = oJn Y /“u) T2.u s Rf, _‘m(y” #”) T20 5

n = 7%—2 (?It'“#t)z ’

and 7i/y, 7/y, t=1, 2, are the second derivatives of 7, evaluated at some
intermediate values. Here we note that for singly censored cases (u=1
and v<m, or u>1 and v=n) either R,,=0 or R} =0. For the complete
sample case both R,,=0 and RX =0.

It can be seen that 7/ are bounded. Therefore by lemma 2

2.7) IimE(R,)=0 and limE(R%)=0.

n—oco

Since E(y,— 1) <E(y;—&.)%, R,<R(1/2). Then by lemma 1 we have
2.8) lim E(R,)=0.

An immediate extension to two parameter case of the expression
(3.31) in Halperin’s paper [8] shows that for censored cases
2.9) E(L(yy -+, 4,))=0, t=1,2.

For the complete sample case let ¥, y¥, ---,yF be the independent
observations corresponding to ;<< --- <y,. From (2.3a,b) we have

(2.10) Li=3y=3yf, L=X(-14+y)=3(-1+¢¥).
So
(2'11) E(Lt(yh Ct yn))=0 .

Then the lemma follows from taking expectations on both sides of
(2.6a,b) and then applying (2.9), (2.7) and (2.8) for censored cases, or
lemma 1 and (2.11) for complete sample case.

LEMMA 4. (2 (Wi—w)Su/lvn, X (i—p)Sulv ) converges in distri-
bution to N((0,0), | K. (a, B)]), 0Sa<p<1.

PROOF. For the censored cases, Halperin [8] has indicated that
(Ll(yu! Tty yv)/\/_"7 s L2(yus Sty yv)/\/_"T)
converges in distribution to
(2.12a) N((0, 0), | K, e, B)I]) .

For the complete sample case we have by (2.10) and the two dimen-
sional central limit theorem that
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(2.12b)  (L/¥®, L,/4/n) converges in distribution to N((0, 0),
1 K0, 1))

From (2.7) and (2.8) we see that R,,, R%, and R, converge in probability
to zero. These convergences and lemma 3 enable us to apply the con-
vergence theorem, which is an obvious extension of ‘a convergence
theorem’ by Cramér ([5], p. 254) to a sequence of two dimensional ran-
dom variables, to (2.12a or b). Then the lemma is proved.

LEMMA 5. For 0<a<g=1,

lim >} S,i/n=Ku(a, 8) » 1}_{2 > ¢ u/n=K12(a, 8,

n—oo

lim M SZi/nan(a, ,B) , }BE > #iszi/’YL:I{izz(a, ﬁ) .

n—oo

ProOF. The lemma follows from the theorem 1 and lemmas 5 and
8 given by Hoeffding [10].

PrROOF OF THEOREM 1. The explicit expressions of the solutions of
the equations in this theorem are

(2.132) p= (X pSau)(3 wisli);(z £:81:) (X5 %:S5:)

(2.13b) o= (E 8 2:8:) — (X Su)(X #:S1)
' ]

where 4=(3 S:)(2 #:8x) — (2 Se)(X 1:S1:).  Since x=py+owy:, it can be
readily verified that /2 and ¢ are strictly unbiased.
In matrix notation we have

2=t _ S Wi—p)Sulvn “
VI o T7% | 5 (g ) el |
where
p =\ (3 pSulm) [ (4/m?)  — (3 pSuln) [ (4/n?)
PET| —(2 Sufn) [ (4]n?) (= Sy/n) [ (dn?)

From lemma 5 we have

1131'5 szz-: “Krt(ai ﬁ)”-l .

Then it follows from lemma 4 that (v 7 (z—p), ¥ % (6—a,)) converges in
distribution to N((0, 0), a3|| K., Al 7).
An immediate consequence of theorem 1 is that the best linear es-
timates based on the relevant sample (2.2) are asymptotically efficient.
The values of yz, have been computed by Harter [9] for all + when
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7=2(1)100(25)250(50)400. So z and ¢ may be useful when the coefficients
of the best linear estimates are not available.

Table 1 gives the coefficients of £ and ¢ for some (u, v) when n=15.
The coefficients of the corresponding best linear estimates (Sarhan and
Greenberg, [15]), denoted by g* and o*, are also given for references.
Table 2 gives the efficiences of £ and ¢ relative to g* and ¢* for some
(u, v) when n=15. For the case u=1, v=n when n=2(1)8, 10, 12, &
has the efficiency never falling below .9989 relative to ¢* (while 2 is the

Table 1
(, ) Zy Ty T3 Ty s Zs Ty Ty Ty Ty
(1,5) | o | —.3044 —.1578 —.0675 .0025 1.5273
é —.5229 —.3329 —.2159 —.1252 1.1969
#*| —.3217 —.1364 —.0560 .0043 1.5097

g* | —.5459 —.3054 —.2002 —.1211 1.1722

(1,10)] 2 .0071  .0276 .0403 .0501 .0585  .0661 .0733 .0803 .0872 1.5094

& | —.2271 —.1573 —.1143 —.0810 —.0525 —.0267 —.0023 .0213 .0450 .5948
g*|  .0030  .0305 .0425 .0516 .0593  .0663 .0727 .0789 .0849 .5104
o* | —.2414 —.1481 —.1071 —.0760 —.0496 —.0258 —.0035 .0180 .0393 .5940

2,5 | 2 —.6126 —.1362 —.0416 1.7904
8 —1.1157 —.3318 —.1994 1.6469
u* —.6260 —.1163 —.0356 1.7779
a* —1.1359 —.3024 —.1890 1.6273

(6,10)| 2 .3754 .0831 .0831 .0831 .3754
é —1.4571 —.0692 .0000 .0692 1.4571
u* .3769  .0820 .0821 .0820 .3769
a* —1.4613 —.0604 .0000 .0604 1.4614

Coefficients of 2, & (2.15a, b) and the best linear estimates yx*, ¢* when n=15.

Table 2
(u, v) (1,5) (1,10) (1,15) (2,5) 4,9) (6,10)
’:f(‘:;) .9995 .9988 1.0000 .9996 .9989 .9995
v(a™®)
) .9994 .9955 .9990 .9996 .9972 .9997
JE .9988 .9939 .9990 .9992 .9966 1.0000

Efficiencies of the linear estimates 2 and & relative to the best linear estimates g*
and ¢* from a normal distribution when #=15.
JE=2) ()~ Cov (%, o¥)
#(2)v(6)—Cov (8, 8)
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well-known sample mean é x;/n, Ali and Chan, [1]).
i=1

2.3. Alternative estimates
Let &; be the number satisfying F(§,)=1%/(n+1). Also let

Su=l—@—1pE),  Su=1—m—v)(—&),

Su=28—(u—1y4e),  Sw=26+m—v)i—5),
Su=1 and S,=2¢, i=u+tl,.---,v—1.

Now we state theorem 2 and prove the following lemmas.

THEOREM 2. Let p and ¢ be the estimates obtained by solving the
equations

Z<—xi—;*,i—5t )glizo ; 2( Li—p —§&; )§2i=0

g

which are based on the relevant sample (2.2), then p and ¢ are asymp-
totically unbiased and belong to the restricted class of BAN estimates.

LEMMA 6. lim L&, ---, &)V =0, t=1,2,

PrROOF. Let us consider the case u=1, v<n and t=2 (when t=1,
the consideration is similar). Since

L2(511 ) Ev) — _l’_ EEE (n—’l)) . Evf(év)
v ﬁ[ n+ n + n l—F(E,,)] ’

it is sufficient to prove that

i v [ var- 2

n—sc0

o = [ e v (=) | &F(E)
lim v || o~ 24 (0 1—F(ev)]“0'

The first limit can be proved by Euler-MacLaurin’s sum formula (cf.

Cramér, [5], p. 124) and the second limit by noting that Sﬂyz dF =p—
0

£f(8).

The cases u>1, v=n, t=1,2 and the cases u>1, v<n, t=1,2 can
be similarly proved.
For the case =1, v=n, we have by the symmetry of N(0, 1)

L&, -+, &)Vn=2&/vn =0
and from (2.4) and (2.5) that
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lm Ly, -+, &)vn =lim /7 (1_ Znez )=o .

LEMMA 7. For 0<a<p<l,
lim 33 Sy/n=Ku(, p),  lim S3&Su/n=Ku(a, f) ,

lim 53 Sy/n=Ku(w, p),  lim 53¢Su/n=Ku(a, §) .

PrOOF. This lemma can be proved by using Euler-MacLaurin’s sum
formula.

PROOF OF THEOREM 2. First we expand (2.3a,b) in Taylor’s ex-
pansion around &;, ¢=u, ---,v. Then following the similar procedure as
given in theorem 1 we apply lemmas 1, 2, 4, 6 and 7.

Since &; can always be obtained from the normal distribution table,
2 and ¢ may be useful when the g’s are not available.

It is of interest to notice that if the 2 S, and ¢S, in 2 and ¢
are replaced by the corresponding limits nK,(a, ) and the additional
discrete weights given to the sample quantiles x, and z, by the corre-
sponding limits, 2 and ¢ become the estimates studied by Weiss [18] and
Chernoft, ete., [4].

2.4. The generalization to multiple censoring

We see that following the similar arguments, theorems 1 and 2 can
be generalized to the case where only the order statistics lying between
(and including) the sample quantiles Ttnag1 ADA Tpp94; are available,
where

1§a1<‘31<a2<‘32< ce <ak<19k§1 .

3. A discussion on Plackett’s derivation

In his exploratory paper [14] Plackett has shown that under mild
conditions the asymptotically linearized maximum likelihood estimates of
¢ and g, are asymptotically normal and asymptotically efficient for the
double censoring «>0, f<1. The forms of his estimates are the same
as the zand 6 in (2.13a,b). However, the present authors do not agree
with the following important step in his proof.

We feel that he has used sample quantile theory on all the order
statistics with ranks lying between (and including) u=[na] and v=[ngl.
For example, the following statement has been given in his paper (».
138), “Typically, i=[np], and as n—oco0, (V7 /2)((y;—p)/o—1t) is asymp-
totically normal.... According to (9), (t,—t) is O(m™")....” Since in
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the quantile theory the proportions p should be fixed in advance, the
number of the p’s, say k, is a fixed number independent of n. Usually
we only know the k z’s with ¢=[np], i.e., the sample quantiles with
orders p, are asymptotically normal. But in his derivation (cf. inequal-
ity (52), p. 138) it appears to us that he has considered all the =z,’s
with #<i<v as sample quantiles (or at least each z; is asymptotically
normal). But this is impossible because the number of z,’s with u<:=Zv
tends to oo with =.

4. A remark on Dixon’s estimate

For the symmetric censoring a=1-—p8, g,=—pg,. Then the p in
(2.13a) becomes

p= 2 @/ (v—u+1)+[(S1, —D/(v—u+ D@+ 2.)
14+2[(Sp,—1)/(v—u+1)]

e i <_ I > . . . .
where S,,—1=(n—v) T F y+—1_F y—u, (if g, is a known quantity,

the estimate of p, obtained by solving the first equation of theorem 1
has the same form as the g if the censoring is symmetric.) Since

o= Lpl-reclp)

=¥ {_yu{F)J“ [yufp)ﬁ - [1—1;5:5;;8/)12 ’

where |R(y)|<y~® (cf. Kendall and Stuart, [12], p. 137), we have lim T'(y)
Yy—oo

=1. This implies that (S;,—1)/(v—u+1) is approximately equal to
(n—v)/(v—u+1) if p, is sufficiently large. In such case g reduces to
Dixon’s simple estimate p,=u,+0u+ -+ +2,_1+ux,)/n, u=n—v+1,
which has an efficiency never falling below 99.9129; relative to the cor-
responding best linear estimate for all © when n<20. It is of interest
to note that T'(y) is still close to 1 even for moderate values of vy, e.g.,
T(0.6)=0.747, T'(0.9)=.789, T'(2.0)=0.886, T'(5.0)=.967.
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