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1. Introduction

The purpose of this paper is to summarize and expand upon the
known properties of the distribution of the sample covariance from a
bivariate normal distribution.

Section 2 contains various representations of the density for arbitrary
sample sizes and presents a new form for even sample sizes. In sec-
tion 3 the cdf. is given for even sample sizes and is tabulated for the
null case of independent components. In section 4 some properties of
the distribution are developed in terms of a new representation. The
asymptotic distribution is given in section 5 while some aspects of in-
ference associated with the distribution are discussed in section 6.

The notation (X, Y)=N(g, ¥) denotes that X, Y are joint normally
distributed with mean vector g, and positive definite covariance matrix
X=(o:;), where o,,=d%, g,;,=poig; for i#j, and ¢,j=1,2. Define

(1) v=S@—8)U—7),

where (&1, 4., * *, (%, ¥y) denotes a sample of independent observations
from N(g, %), %,y are the sample means, and n=N—1. v is called the
sample covariance with n degrees of freedom (d.f.). The notation a, b,
« will be used to designated the 1-1, 2-2, and 1-2 elements of 377,
respectively, and f=ab. Then, a=[a(1—p)]7 b=[a(1—-p)]", ==
—plaa(1—p))] 7' = —pB.

2. Density

The earliest reporting of an explicit form for the density of v ap-
pears to be that of Pearson, Jeffery and Elderton [6], in 1929. They
obtained the density by carrying out a sequence of transformations on
the joint distribution of the elements of the sample covariance matrix.
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The final expression for the density is given in terms of a Bessel func-
tion, and one factor in the density expression is extensively tabulated.
The authors also attempt to fit the Bessel function density expression
to one of the Pearson type curves.

In 1932, Wishart and Bartlett [8] obtained the same density result
by inverting the appropriate characteristic function. Mahalanobis, Bose,
and Roy [5] in 1937 found the Bessel function density by a geometrical
approach using rectangular coordinates.

Let f(x) denote the density function for v with n d.f., defined in
(1). Then, using the elements of Y~! for the parameterization, it may
be found that for —cc<z <00,

(ﬁz — TZ)n/z I T I(n—l)/ze—r:c
II'*(28) "~ I"(n[2)

(2) (@)= Ka-vi(Blz])

where K,(z) denotes the modified Bessel function of the second kind.
The distribution is thus indexed by two parameters (8,7), and, of
course, 7.
Alternative representations in terms of other special functions are
F@)=(8 =" I (n)2)¥ (n[2, n; 2| x| B)e™11*,
and
F(@)=(8 =7y I'(n[2)(28) " |2 |"* e~ Wy, n1y(2B| 2]) .
In these representations,

1
I'(f)

is the associated confluent hypergeometric function of Kummer (see
Erdélyi [3]) which has the advantage over the customary, ,F, function
in that it remains finite for all z,

U(fi, fos )=

S” et Y1+ £y himdt
[}

2002 g=2/2

W= ie—a

Sm e—zxxv—a—llﬁ(l + x)v+a—l/2dx
0

for Re(v+1/2—a)>0, |argz|<II,
is the Whittaker function, and

o - BZ__TZ
A )

with sgn(x)=+1,0, —1 as >0, =0, and x<0. These equivalent
forms may be found from the basic relations

V(S fos )=z W, (2),
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where k=(fy/2)—fi, a=(f/2)—1/2, and W, .(x)= v/l K(x/2), for Re(x)
>—1/2, Re(x)>0 (see Erdélyi [3], p. 265).
Even number of degrees of freedom

When the number of degrees of freedom is even, it is possible to
express the density of v in terms of elementary functions. The final
result is that if n=2m, m=1,2,.-.., the density of v is expressible,
for —co<x< 00, as

(3) F@)="3 C,lalie=o,

where

_ (1) L@m—j—1) (5 —<"
o= (" e

This result may be obtained from the fact that (see Abramowitz and
Stegun [1], p. 444) for n=2m,

7§ _ I, 20 m—1+4k)!
V"z?K’"“”(z)”zz ¢ ,§,[ KT (m—Fk) ]

The result given in (3) can be understood directly, without resort-
ing to the special properties of Bessel functions, by examining the char-
acteristic function of v (see [8]) given by

(4) E () =(1—2itpa,+12| I )" .

For arbitrary =, inversion cannot be effected in terms of elementary
functions. However, for even n, the function is meromorphic and there-
fore its Fourier integral is readily obtained by the residue theorem as
the exponentially damped polynomial (3).

3. Cumulative distribution function

This section provides formulas and tables for computing the exact
cumulative distribution function of the sample covariance for the case
of an even number of d.f. For the null distribution (0=0), some exact
percentage points are presented in table 1. The results of section 5 are
used for large sample sizes.

For arbitrary sample sizes the cdf. of v is a complicated expression
which is difficult to evaluate. However, for even sample sizes it is pos-
sible to develop an exact expression.
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Let G(t) denote the cdf. of v. Then, for n=2m, m=1,2,---, it can
be found that '

Git)="S\ CFte=®,  t<0
j=0

1— G(t)— C*t’e““(" t>0

where

I C.k!
= = Teor

A straightforward method of proving this result is to differentiate
G(t) and show that the resulting equations may be combined and ex-
pressed as the density f(x), as given in (8). There are no troublesome
difficulties and the calculations are direct, though tedious.

Numerical percentage points of the v distribution were computed,
for the case of n=2m, and p=0.

Note that when m is fixed and p=0, G(t) becomes a function of
(Bt), rather than B and t separately. Hence percentage points were
computed as a function of (5t).

Inspection of the numerical values shows that when n is as large
as 30, the distribution is already approximately normal. Thus, for larger
numbers of degrees of freedom, the standard normal tables can be ap-
plied by using the results of section 5. The numerical results are pre-
sented in table 1, correct to four decimal places.

Table 1
a

x .90 .95 .99

4 2.3972 3.2718 5.1918

6 2.9934 4.0104 6.1768

8 3.4930 4.6329 7.0135

10 3.9313 5.1816 7.7555

20 5.6400 7.3369 10.7025

30 6.9073 8.9855 13.1074

100 12.6107 16.4048 23.9302

Cumulative distribution function of the sample covariance
for n degrees of freedom and p=0. The entries are values
of At such that G(f)=a.
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4. Properties

(a) Use the notation .L(u)=7]¢, d] to denote that # is a gamma
variate with density

uc—le—u/d

p(u; ¢, d)=d—c[,(:5‘_ ’

u,c,d>0.

Define the parameters
=(B+7)71, 0, =(8—1)".

Then, if v denotes the sample covariance with n d.f. from N(g, 2), the
distribution of v has the representation

L)=LU—-U),

where U, and U, are independent gamma variates following the laws

.f(Ug:r[L, al], £ Ug:r[i, az].

2 2

This property may be established by noting from (4) that the charac-
teristic function of v factors into

E (") =(1—itd,) (1 +3td,) ™"

The case of independence (p=0) requires that =0, or that §,=4,.
Hence, for X, Y independent, v is distributed as the difference of two
independent and identically distributed gamma variates.

(b) By setting v=U,— U, where U,, U, are defined in (a), the mo-
ments of v become available in terms of moments of gamma variates.
Thus, for example,

E(’U)= ’n31 _ ’n52 . nr

2 2 g’

and

Var(e)= 1054 10 +0)

Wishart and Bartlett [8] give the rth semi-invariant of (v/n), ob-
tained from the characteristic function of », as

%(r—1)!ara;n*-f[<p+1)'+(p——1)'1 :

(¢) When p=0, a check of the density expression shows that the
distribution of v is symmetric and unimodal with the mean and mode
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coinciding at the origin. For p+#0, the distribution is skewed.

(d) Finally the covariance distribution has the reproductive property.
That is, if v and w are independent sample covariances with r, s, d.f.,
respectively, from non-singular bivariate normal populations with equal
covariance elements, the density of (v+w) is given by f(x) with n=r+s.
This property holds for the full sample covariance matrices, and hence
must also hold for the marginals.

5. Asymptotic distribution

The asymptotic distribution of v is readily obtained by applying
theorem 4.2.4 of Anderson ([2], p.75) to the off diagonal element of the
sample covariance matrix. The result is that

. (F—tw+nr | _
lim £ | =N

In the special case of independence,

6. Inferential considerations

Use of v for inference purposes was suggested by Wishart [7] for
a factor analysis application. His recommendation was that covariance
tetrads be used in the two factor problem, instead of correlation coeffi-
cient tetrads. The distribution of v may be helpful in making such
inferences. Gates [4] has pointed out that the sample covariance (pheno-
typic covariance) is often used in statistical genetics.

Expanding the density of the full sample covariance matrix, it
may be checked that if @ and b are known, v is sufficient for . Recall
that

Var (X|Y)=a™", Var (Y| X)=b"".

Then, if both conditional variances are known, since r=—p+ab , v is
sufficient for p.

Now we refer back to (2). Clearly, if 8 is known, the distribution
of v is a member of the exponential family (in p) and therefore, has
monotone likelihood ratio. Thus, for example, a UMP level « test of
H:{p=Zp, ab=pg} vs. H' : {p>p),, ab=p} is to reject H if v>constant.

Substitution of 7=—pgp in (2) and differentiating with respect to p
generates the maximum likelihood estimator of p,
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~ n n 271/2
=——" +4sgn(v)|1 <—>] .
b=t 8 |1+ e
It is easily checked that p is a monotone increasing and continuous func-
tion of v. The distribution of p is an immediate consequent of the dis-
tribution of », and from the large sample properties of M.L.E.’s,

lim .r{ W‘“fﬂ::(?’—f’) |=No,1).

n—c0
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