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0. Summary and Introduction

In a previous paper [1], it has been shown that for a partially
balanced incomplete block design with two associate classes the null-
distribution of the F'-statistic under the ‘total’ null-hypothesis (i.e.,
treatment-effects being all equal to zero) can be approximated by the
familiar central F-distribution even under the Neyman model (i.e., an
intra-block analysis model with both the unit errors and the technical
errors), if it is randomized. As was announced in that paper, the ap-
proximate distributions of the F-statistic under the ‘partial’ null-hypo-
thesis have been left to further discussion. In the present article, the
authors are concerned with this problem.

They set forth the problem for a partially balanced incomplete
block design with m associate classes and consider the null-distribution
of the F-statistic for testing a ‘partial’ null-hypothesis, so that it in-
cludes the ‘total’ null-hypothesis as a special case and they reached the
conclusion that the null-distribution of the F-statistic can be approxi-
mated, after the randomization, by a certain central F-distribution with
appropriate degrees of freedom, if certain uniformity conditions are
imposed on the unit errors and the number b of the blocks is suffi-
ciently large.

In section 1 the spectral decomposition of the matrix NN’, where
N being the incidence matrix of the design under consideration, is given
and this is useful for the later discussions.

The null-distribution of the F-statistic for testing a partial null-
hypothesis before the randomization under the Neyman model is pre-
sented in section 2, and this turns out to be a non-central F-distribution

whose non-centrality parameter depends upon the quantities # and 8 both
being the quadratic forms of the unit errors.
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In section 3, the means, variances and the covariance of & and 6
with respect to the permutation due to the randomization are calculated,
and in section 4, it is shown that the permutation distribution of (8, 8)
can be approximated by a certain two-dimensional continuous distribu-
tion, if the number of the blocks is sufficiently large and certain uni-
formity conditions on the within-block variances of the unit errors are
satisfied.

Finally in section 5, it is shown that the null-distribution of the
F-statistic after the randomization can be approximated by a central
F-distribution with appropriate degrees of freedom, provided the two
conditions mentioned above are satisfied.

1. Spectral decomposition of the matrix NN’

We shall be concerned with a partially balanced incomplete block
design with m associate classes which has v treatments with the asso-
ciation, b blocks of size k each, r replications of each treatment, and
the number of incidence of any pair of treatments 2, if they are u th
associates.

As for the definition of a partially balanced incomplete block design
with m associate classes and related notations, references should be
made to [2] and [3].

Let the association matrices be A,=1,, A;,---, A,, and let their reg-
ular representations be P,=1I,, L,,- -, P, respectively, where

0 a1
Dou Dou *** Dou

.............

Let the characteristic roots of P, be zw="mn., 21, -, Zmu, then there ex-
ists a non-singular matrix

Coo Cot *** Com

CnoCm1 *** Cmm

such that
Zou 0
21

(1.1) CP.C'= T ,  u=0,1,---,m

0 Zmu
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simultaneously. It should be noted that
N> Zins 1=1,---,m; u=1l,---,m,
and by the relations
Ve DiweRix=Zuuins »
one may put
1.2) Cui =Rui iy 1, u=0,1,---, m.

m+1 orthogonal idempotents of the association algebra generated

by the associatior matrices over the field of all real numbers are given
by

(1.3) Ai=(2:n=o cuizui)-1 E:’L:o cuiAi ’ u=0; 11 e, M

with respective ranks oy=1, ;- -, a,. By taking the trace of the matrix
AtAY, we get the relations

Zuily v ’ :
(1'4) 2?=0i’u:i_=5uu’_’ u, u":O’ 1; tre,M,
T oy

where 0., denotes the Kronecker delta. It is also noted that

(1.5) Aﬁ‘:%a,, and S, Al=1,.

If we denote the incidence matrix of the design under consideration
by N, then the spectral decomposition of the matrix NN’ is given by

1.6) NN'=37, 0,48,

where py=7k, py,- -, pn are the characteristic roots of NN’ with multi-
plicities aq, ai,+ - -, a,, Tespectively and are given by

(1-7) Pu=22"=olizuu u=0’ 17"'! m,

where we have put 2,=7.

2. The null-distribution of the F-statistic before the randomization
for testing a partial null-hypothesis under the Neyman model

As for the notations being used in this section, references should
be made to [2] and [3].

Let the incidence matrices of treatments and blocks be @ and ¥
respectively, then the Neyman model assuming no interaction between
the treatment and the block is given by
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2.1) x=yI+Pc+¥p+xn+e,

where x'=(x,,---, x,) is the observation vector, z'=(z;,---,7,) and B’
=(By,: -+, B») are treatment-effects and block-effects being subjected to the
restrictions

fi - +7,=0 and Bi+---+B=0

respectively, and n’=(n,---, n,) stands for the unit errors being sub-
jected to the restriction

¥'z=0.
Finally, €¢'=(e;,- -+, ¢,) is the technical error vector being distributed as
N0, ¢*).
Sums of squares due to treatments adjusted and errors are given
by

Si=x'(Vi+---+Vix,

2.2) 1
S:=x’<I—7c-B— Vie = Vi),
respectively, where
(2.3) VJ=0u<I—_I];‘B)Tu’<I—"lc;B>7 u=11"'rm
with
Ti=0AlD, B=7¥¢'

and
@2.4) a=—Fr | u=1,.-.,m.

rk—p.

Now, we are interested in testing a partial null-hypothesis that
some of the hypotheses Alzr=0, u=1,-.-., m are true. We can take,
without any loss of generality, the null-hypothesis
(2.5) Hyy: Alr=0, u=1,---,h,

where h is a positive integer not greater than m. Clearly, this hypo-
thesis is equivalent to 3*_, A}z=0, and when h=m this reduces to the
total null-hypothesis H,: ==0.

To test the null-hypothesis H,,, we consider the partial sum of
squares

(26) Sf(n)=x'( I’l‘"" R V;f)x
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instead of S} given by (2.2). Then it follows from (1.5), (2.1) and (2.3),
that

@.7) - n’([——llc—B>¢(clA{+ . +c,,A,‘,)¢’<I——Ilc—B>1r
+ 2n'(1-%3)¢(c1,4§+ e +chA{)¢’<I—%B>e
+e’<I—%B>¢(c1AH— . +chAz)¢'(1—%B)e,

provided the null-hypothesis Hy, is true.
Hence the null-distribution of the variate
Xf:Sf(h)/oz

before the randomization is the non-central chi-square distribution of
the degrees of freedom

(2.8) a=a+ - +a
with the non-centrality parameter

(2.9) K =ra'®0(cAl+ - - +c, AP x/o".
Whence its probability element is given by

e ew(-B)3 foy P exp(—2)a ().

The sum of squares due to error, S?, given by (2.2), becomes

@11) Si= n’(I—%B)[I—¢(clA¥+ . +c,,.A£,,)¢’]<I—%B)1:

(-1 ) — ... Ho(7—1
+2n (1 LB )lI-0(cAl+ - +0,AL)0 ](1 : B)e
+ e’(I—%B)[I—¢(01A§+ s +cmAsn)¢'](1—%B)e
independently of the null-hypothesis.
The distribution of the variate
X:=S?/q*

before the randomization is the non-central chi-square distribution of
degrees of freedom n—b—v+1 with the non-centrality parameter

(2.12) K,=n[I—®(c,A}+ - - - + ¢, AL)D |x /s’
= A/Uz—Kl—I—{l y
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where d=zn'z and
(2.13) K=r'0(cr AL+ - - 40, AL)Ox/o*.

The probability element of the variate X is given by

G0 ()G E)u().

Since ¥} and X are mutually independent in the stochastic sense,
the null-distribution of the F-statistic

(2.15) F=n=0"v+1 Si
a .S?

before the randomization is the non-central F-distribution, whose prob-
ability element is given by

(R & (K2Y(Kf2) - T((n—b—a)/2+p+v)
2.16) exp(~(Ki+Kaf2) 3 eyl T@2+p)l(n—b—v+1)/2+v)

< o F>a/2+p—1 (1 + @ F)—(n—b-i)/z-p-v
n—b—v+1 - n—=b—v+1

Ut ™)

where
2.17) a=ap,+- - tan,.
If we put
(2.18) 0=4"'7'®(c, Al + - - - +c,A)P'x,
and ‘
(2.19) 0=4"' 7' O(Crs Ab it - -+, AL,

then the probability element given by (2.16) may be rewritten as

2.200  exp(—dpn 2D U Gaq_5_ 5y
=0 l! rtvtr=1 ﬂ!V!)’!

. ['((’n—b-—c:t)/Z +y+v) < @ )E/2+y—1
L@/2+mI(n—b—v+1)/24v) \ n—b—v+1

p’ —(n—b-a)/2—p—v —
S A
< n—b—v+41 n—b—v+1 >
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The null-distribution of the F-statistic after the randomization should
be obtained as follows :

(2.21) I'((n—b—a)/2) ( a F);/H
T'(@/2)(n—b—v+1)/2) \n—b—v+1

a —(n-b—-a)/2 < a )
. - * df—mM
<1+ n—b—v+1 F) n—b—v+1 F
(4/24%* 1]
Ul p+v+ZE=L ply!
- —(p+v) - ©
< + n—b—v+1 n—b—v+1

- I'((n—b—a)/2+p+v)(@/2)[(n—b—v+1)/2)
I(@/2+p)(n—b—v+1)/2+v)(n—b—a)/2)

- exp(—42) %) ElF0(1——0)]

where the operator £ stands for the expectation with respect to the
permutation distribution of (6, 3) due to randomization. Thus our task
has been reduced to the calculations of the expected value E[6°0'(1—8
—5)“] for p+v4y=L

3. The calculations of the means and variances of the quantities
# and 6 with respect to the permutation distribution due to
the randomization

8.1. Necessary motations
Let us put

T'=aTi+ - +aTi=0eAl+ - +ad)d,
(3'1) =
Ti=c T+ - +e.Ti=0(ch AL+ -+ +c, AP,
then, by (1.3), we get

T'=ﬁ3T0+l_11T1+ R 7Y

(3.2) _ _ i
T= T+ iTt - +anTn,
where
3 — m
(3.3) A= e and =3 g, =0, 1,---,m,

with
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tau=acC2u/(vn),  i=1,---,m, u=0,1,---,m.

Numbering the whole units from 1 through » in such a way the ith
unit in the pth block bears the number f=(p—1)k+1, let us put

T.=1T52 o=t Tod=118P71 (G 5=1,--+, k),

where

1, if the f=(—1)k+ith and f'=(g—1)k+jth

units receive treatments which are uth asso-
Hprr = ciates,

0, otherwise.

Clearly
t(u)M t(u)Pq tg(})m:: Bij and t%g)m_'_t%)m 4. +t§jm)m___1 .
If we put
=TI,  Th=It]
and "
T'=||T4I,  Th=l#rl,
then
09 = GOV P P,

(3.4)

t”"’ = TP DRI T P
Let us put z,=z" if f=(p—1)k+1,
2D =P, -+, 2P),
(3.5) 4, =7 g®,
=%, ngz»)‘, p=1,---,b.

Other notations which are necessary for the calculations in this
section are listed in the following for the case when k=4.

( i ) z(l)m’ 2 t(n)pp a=0, 1’ e, m,
(il) 2p2= 3 9760, « §=0,1,---,m,

() AP7= 5 P, «,f=0,1,---,m

ixjxixs

(iv) X;Z)aa_z t(a)Pq 2 t(a)PQ_I_E t(a)pq a=0, 1, e m,

ixj
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( v ) 15;";1)“'5 = z; t%;-‘”’"t(j‘}”’“ +i§j tg;)pqt%)pq +2 N t%)pqt%)pq
ix

ixjixl

42 S EPREPRE S PR, @, f=0,1,--0,m,

ixjxl ixjRlss

(Vi) I%)aﬁvzziz tg;)pqtgf)pq_l_ E tg;)pqtgf)pq’ a, ‘3=0, 1, cee,m
xj

ixfxl

8.2. The mean value of 8 and 7]

First, we calculate the mean value £(f) of # with respect to the
permutation distribution due to the randomization.
Put,

Aﬁ—= é=ﬂ,T’ﬂ'=’r,([_laTo+;_llT|+ s +[_l,nTm)7l'.

Then, an analogous calculation to that given in [1] leads us to the fol-
lowing

2\ — 2 (1ii
e@)= ———Ak(k Ty 2 2 (B By

In a completely similar manner one obtains

= 2= i
(3.6) EB)= ——-Ak(k 1)52%("" 234,

3.8. The variances of 6 and ]
Since the variance of # can be obtained by an analogous way to

that of #, we present only the calculation of the variance of 6. The
calculation goes parallel to that given in [1].
Now,

E@)=Ex' U TV .x)
=&(2 77 8., TS, 7).

Expanding the last expression we obtain
3.7 EB)=E(A)+E(B)+2£(C),
where

— 2 =S, T} S, xPx®'S,, T3S, =,

B E n.(r) Sl T ppS n.(p)u(q) SI Tqiqs 1&'(0
ap ’

pxq

C 2 1!'(1’) S' qu S n.(q),,_.(zr) S’ T’ S ,t(q)

pxq

It can be shown that
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E(A)= E[ 33 (o= )4 A+ (45 —2T)

)

. { 1 Z ﬁ'ﬁl(l)iz 4 E ,—1 l—“ 2(2)1’1
k(k—1) T l—1) (k—2) 7

3

R E—1) (—2)(i—3) 1 2"""13)””'

S(B)=82(@)—§ 4 [ Z (my— ﬂL)ZZ(l)ti

k(k—1)
___1— 2 (D __2___ 2ot
k(k-——]_) E Hi pP + kz(k 1)2 2 ml
4 -
+_k2(k—_1)2— 12;' Ft#jlﬁzw-{-m 3 1(3)”] _
M — YO ___1— i
&)= 4,4, [ SR gl DA
2 _— .
o SRR

Thus we obtain
(8.8)  Var(8)=47Var(0)=4"E(6%)—EYH)]
=— s@—2r)[ L sy

Te(k—1)
4 2 gt A
k(e—1)(k—2) *
3 - —
5 2(3)13]']
PR (k—2)(e—3) o "
_1._ 2|:_1____ PR AV 2 A
MR WSS VI s v
4 1 —
= 1(2)17 Z(S)ij:l
kz(k Ty 35 M kz(k—l)z 2 btts o
2 — y
—>14,4 [ I S — A
+ Z kz 2 + kz(k 1)2 Z l“ipf
4 .
- 2(5)0]'
kZ(k 1) 2 ”tpj

The variance of 8 may be calculated in a similar manner and is
given by

7 __1_ 2 __ 1 —2 9(D)it
@9 Var@)=; D20l S
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4
T RkE—1)(k—2) % > sk
+ 3 Emml( )”]
k(k—1) (k—2)(k—3) |
Y D | T R DR
4 . 1 .
2(2)11’ 2( )i]:|
kz(lc T 23 A gy 2
= 2 .
L 4 A [ 21(4)ii 21, A0
+ 5 i SRR e S R
1
- 2(s)u] .
T R—1) * 2

This is obtained from (8.8) by replacing z’s by g’s throughout.

3.4. The covariance between 8 and 6

We caleulate the covariance between # and # from the relation

(3.10)

Since

Cov (3, 6:’)=—;—[Var(§+5)—Var((7)—Var((?)].

G+0=4""2'B(c, A}t - - - +¢,A%)Px,

323

Var (6+ 5) can be obtained from (8.8) replacing p’s by p=p+p’s through-

out.

Thus one gets

@11)  Var@+9)=L s-ar)[ L

fz(l)ii
W—1) +"

4
3 2(2)11

TRh—1) (h—2) 5 "

3 S e -zw]

lele—1)(k—2)(—3) o3 [“iti%e

1 1 2

- AZ flg;lp)”

T dl Wh—1) * " T =1y

(2)t! 1 z(a)ij]
2ttty Ay Th—1) ° 2 tatts
__2
K(—1) i

+

4
K(k—1) @

+1 4,4, [ S A+
A% pxq

4
T Rk—1) ©

DI

E gt X(G)if] .

2 ‘!122(1)“



324 JUNJIRO OGAWA, SADAO IKEDA AND MOTOYASU OGASAWARA

By using the relations

pi—pi— =2, Bafty = ity — pafty = papt;+ pafty
(2)if — 3(2)jt (3)ij — 9(3)jt 5)ij _ 9(8)ji 6)i] — (6)ji
'2111’ _XPP ’ X}u? —zg’P) 4 l(Pq)j_ZSIP)j ’ qu)j_l(qp)j ’

one can obtain from (3.8), (3.9), (3.10) and (3.11) the following result:

(312) Cov(l, O)=— S (f—20)| b SEAIR

k(k—1)
AEMMJ’
k(k—1)(k—2) %7

3 3)i
+k(k Dk— 2)(k 3) Z’“’"zm]

1 2 -
_+ Az[ (iE__ l)ii
tF3 3 P kz(irc—l)2 > By

= 77,7]

k(k—1)
4 (2)U 1

W1y 2 s 153 K—1) 1
g o g R

4
T R(k—1)

2
__ o
Bo—1y 5" 2z

2 i 2<e)ij]

4. An approximation to the permutation distribution of (8, 6) by
a certain two-dimensional continuous distribution when the num-
ber of b of blocks is sufficiently large and certain uniformity
conditions are imposed on the unit errors

In this section, we assume that the following uniformity conditions
on the unit errors are satisfied :

4.1) 4,=4, and I,=T, for p=1,2,---,b.
Under such conditions, the means and variances of ¢ and ; are ex-
pressed as follows:

(4.2) &)= > (—p) 3 25",

bk(k 1)

(4.3) E@)= S (o) 3 253,

blc(k 1)

1
bh(k—1)

(4.9 Var(6)= (1 2l )[ ? T ? P
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4
T PR(—1)(k—2) *
3

(3)2]
RGe—1) (k—2) (—3) 23 "1 3 ]
1

2 _
- - 2(1)ii 2 2 (1)is
+ bk(k—1) PHZ bk (e — 1) T3 A

1 _ ;
o Pl S ey B T

DITIZPI

2 ity 35 2

+

4
b"kz(k 1y

—2 (4)zi
b2k2 32 b b%z(k 1)

4 (68)ij
TERh—1) & PR

and
(4.5) Var(;) is obtained from Var(;) given in (4.4) by replacing
all #’s by p’s throughout.

Quite analogously to the calculations presented in [1], it can be
shown that

(i) I Ai=1-d)imov, 1=0,1,---,m,
p

(il) I at=(r—i)nw, i=0,1,--+,m,

pxq

(4'6) (iii) Z 2(5)” = 2 2 2p 2 p,,pp’,’n,'l) 5”2 NV — 22(1) (2)
- 505(1 50]) (k 2)11')1/]’0 50j(k 2)2;'”/1,'0 ’
(iv) D i@=p 2 2D5M. 0 —0i(1—85,)2;m v

pRq
_501(1—501:)2;%,»1}—2%), 1/, 9_0, 1’ LN m’
where, as before, d;; stands for the Kronecker delta and

1) W=, =30,

P P

Hence, from (1.2), (2.4) and (8.3), it follows that

(4.8) E@)= and 6’(«9) =

b(k 1) b(k -1
From (4.4) and (4.6), it follows that

2(2k—3) _ 2T, v 3o
k(k—1) & ][ it

Var ()= [ FR—T) =P
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- E papts A
TR (=) o P
3 2v m g
W B IR ) AM;
+bzk(k 1)(k—2)(k—3) « E"f‘f f] Ple(le—1) 1 Z=J( —p)am
2v 21 13 D
+ gy | Y B
+ 53 EEALPEm—2r(—1) 3 3 ﬁzﬁjp:-',-n.,].
1,7,l=0 a,p=1 =
Since

i ;)’nllt —ka/’v N
the second term of the right-hand side of the above expression is

2 G-
BRe—1 2 oA

B %  (ka) 1 (gniz‘)@(ﬁ"_p‘)zn’“i)
——W<T> r(k—1) [g (po—pi)nizi]z

5 (o) (o o) mum, 2y ~

2a°
kat[v* |

CBE—1y |

2a’ 20°
B b’(lci1)3 R E—1) Z(#n ) (o— E)mem 3,2,

and the third term becomes

%i 1 s DD

1

2v [rﬂ(k—l)2 if‘,ﬁ%ni+ 3
=0

vk (k—1)° o it «

—2r(k—1)

1,

m

ﬁtﬁ;lapz‘fm]

e

-

0 a=

h m m m
—1) . ) ot .t
bzkz(k 1) E [rz(k 1) i};(’) Msiluil; +i, j,El=0 a,p2=l ﬂsiﬂmpnﬂpzjnlxalﬂ

—2r(k—1) éo % ﬂnﬂmlamm]
)(ﬂc pu)

2 LK

= R (l—1) ?—wz(»rk pu>< .
2 R 2a

=T h—1y =T BT

we have
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— 2a 2a’

2¢°
bEAk—1)° i=

+[ 2}0((2kk_—1?;) 21“0][1)%(; 5] % s

+ Z (=) (s— p)nim, 2.2,

4
T oh(e—1)(k—2) ¢ Z N

3
Bk(l—1)(k—2) (k—3) iz papts & ]

+

Likewise

(4.10) Var(z) may be obtained from (4.9) by replacing z’s by
#’s throughout.

Finally, by using the relation (3.11), one gets

2= 2aa
(4.11) Cov(d, 6)= B 1) + b%z(k Iy = [(#o 1) (s — 1)
+ (o —1t:) (ﬁi—l_lf)] nin,2i2,+[ 21‘5(2: _—13)) - 241}]
v Zo—= _ 4
[ bk(k—1) 32, Pttt be(k—1) (k—2)
LA 3 S )
112=1 it 7+ bzk(k——l)(k—2)(k—3) i,jzlpij ]

When Iﬁ=2 or 3, the last term of the expressions Var(d), Var(0=) and
Cov (8, 6) vanishes.
Now, let us consider the limiting process such that

b—co

m
whereas v, k, ny,- -+, n,, and p}, are fixed. Then, since vr=>bk and 33 n4;
i=1

=r(k—1), r and at least one ; are of the same order as b, and
/7,:0(%-) and ﬁL:O(%), 1=0,1,-+-,m.

It is also seen that
A0<bk(k—1)(k—2), A2 <bk(k—1)(k—2)(k—3)

and
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Iy#i<1.
Thus, we get
Var(ﬁ):m?%i—)?(l+0(%>> :
(4.12) V‘“";)=b«f—iy<1+°<%>>’

Cov (8, 5)=O<%) .
Hence we can treat that for sufficiently large values of b

2a
bk—1)

2a

e Cov (3, 6)=0.
B—1) ov(6,9)

Var ()= Var (§)=

In such a situation, we take the following two-dimensional continu-
ous distribution :

I Vq + Vo + V3
2 -— = — = —_— =
(4.13) G171 (1 — 6 —0)=/*'dade
r(3)r(5)r(3)

2/ \2

for 820, 6=0, 6+0<1,

as an approximation to the permutation distribution of (4, ;) due to the
randomization.
Then, equating up to the second order moments, we have

—U__=£6), —2_—=£0),
vyt vt
2”1(”2 + l’8) =Var 5
(4.14) (142 2) (012425 +-2) >
. 2uy(v;+v5) =Var (5 ),

(+v+ ”3)2(”1 +vp+v3+2)

—2u, =Cov (8,
(91 v2Fv3) (v vy +vs+2) ©6)

From the first three equations of (4.14), one obtains

C 2 e 1-EEN—VarGNEG
"= oy EO =€)~ Var @IED).

S 2 e o) —VarBNEG
@15) =260 1-E@) - Var DIE),



ON THE NULL-DISTRIBUTION ON THE F-STATISTICS 329

w=—2 __[£@)(1—E@B))—Var @)[L—E@)—E®D))].
Var(9)

If we put
(4.16) v=¢a, v,=¢a and v, =¢(n—b—v+1),
then, from (4.8) and (4.12), we can see that
(4.17) ¢=1+0(%) .
It can easily be checked that the solutions (4.15) satisfy the remaining
two equations of (4.14) under the limiting situation deseribed above.

Tlius, for sufficiently large values of b, the permutation distribution
of (8, 8) due to the randomization may be approximated by

")

r(§)r(3)r(=t

5. The approximate null-distribution of the F-statistic after the
randomization

N

(4.18) G111 —G— )P+ DA-dGdg

Now, we can calculate the expectation
@ a(1—8—0))

with respect to the permutation distribution due to the randomization in
the sense of the approximation described in the preceding section. Thus
we have

G.1)  E@EF1—8—06))
L e

_T\T2 2
r(GIG) (=g r(2 )

Inserting (5.1) into the right-hand side of (2.15), we get an approximate
null-distribution of the F-statistic after the randomization as follows:

D) e

(5.2) F<_§’2x_>r<n—b—2-v+1> <n——b—'v+1
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- —(n—b—a)/2 —
- (1 __“___F> d<—_“—F>.
( +n—b—v+1 n—b—ov+1

When ~=m, this turns out to be the central F-distribution with de-
grees of freedom (v—1, n—b—v+1).
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