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1. Introduction and summary

The method of least squares and the Gauss-Markov theorem are
well known and are used widely in univariate statistical analysis. We
shall consider in this paper some generalization of them to the multi-
variate case, based on Loewner’s partial ordering [1] on symmetric ma-
trices, which is stated below.

Let f(x:80) be a density function with » dimensional (column) vector
variable x and s dimensional (column) vector parameter 6. Let us de-
note the class of unbiased estimators of @ based on the sample of size
n by C={t} and the class of covariance matrices of the unbiased esti-
mators by L={¥,}, suffix ¢ showing that ¥, is the covariance matrix
of t. Then we have the class consisting of concentration ellipsoids, which
are defined by H. Cramér [2], as

1.1) t—6Yvr;(t—6)=s+2, teC, V,e L.
If we define Fisher’s information matrix as
M=(m9)), (sxs)

e e

then the Cramér-Rao lemma ([2], p. 495) tells us that the ellipsoid
(1.2) mt—0)YM(t—6)=s+2

lies entirely within the concentration ellipsoid of any #e¢ . Hence, if
there exists ¢ in C such that its concentration ellipsoid coincides with
that in (1.2), then ¢, has the smallest concentration ellipsoid among all
unbiased estimators of @ and is an efficient estimator of 4.

Now let us express the efficiency in the above sense in terms of
covariance matrices of teC.
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DEFINITION 1.1. (Loewner’s partial ordering). For any symmetric
matrices A and B of same order, we write A>B (A=B) if and only if
A—B is positive definite (positive semi-definite).

This definition is equivalent to the statement

(1.3) A>B&S> Az > 2Br
(2) (2)

for all non-zero z such that z’z=1.

Suppose now that ¢ and £ are unbiased estimators of #, and that
t, is more efficient than ¢,; namely, the concentration ellipsoid :
(&, —6) ¥ \(t,—60)=s+2 is contained entirely wholly within the concentra-
tion ellipsoid : (¢,—8)’ U (t,—@)=s+2. It is easy to see that this state-
ment is exactly equivalent to the statement that

2V z=2 vz

for all non-zero z such that z’z=1, which is again, by (1.3), equivalent
to the statement that

Wt_‘l > w‘t—,l
or

v, 27, .

ty =

From the similar argument, the Cramér-Rao lemma in the multivariate
case can now be expressed by

(1.9) 7,z ’:; M-

for covariance matrix ¥, of any unbiased estimator ¢ of 6.

DEFINITION 1.2. Let % be a class of symmetric matrices. If there
exists an A, such that

AzA, (Az4)

for all A in %A, we say that A4, is a lower (an upper) bound of «A. If
A, belongs to U, A, is said to be minimum (maximum) in %A in the sense
of Loewner’s ordering.

In the minimizing or maximizing problem in multivariate analysis,
it is ordinary that scalar quantities such as determinant, trace, some
norms, etc. of a certain matrix of variable elements are adopted as
criteria to be minimized or maximized, and the calculations are carried
out separately for each criterion under investigation. They do not in
general give the same solution. However, suppose, for example, that
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we have a class of symmetric positive definite matrices for a minimizing
problem. If we can obtain the minimum matrix A4, in the class, this is
more appropriate for us than when we use a particular scalar index or
when we use several indices separately, because A=A, implies simultane-
ously the relations |A|=|A,|, tr A=>tr A,, ch(A)=ch(4,), i=1, -+, D,
where the characteristic roots are arranged on descending order, and
so on.

Along this line we shall consider a generalization of the Gauss-
Markov theorem to the multivariate case and principal components of a
vector random variable.

2. Preliminary lemmas
The following are well known :

LEMMA 2.1. For symmetric matrices A and B of order p, A=B
implies a;=p,, t=1,---,p, where = -+ 2a, and = --- =, are
characteristic roots of A and B respectively.

As corollaries of this lemma, we have immediately
LEMMA 2.2. A=B implies the following :

(i) [Alz[B],
(ii) al+ e +akg[31+ e +‘8k7 k=li e, D
(i) trA=trB

LEMMA 2.3. Let A and B be symmetric positive semi-definite, i.e.,
A>0, B=0. Then A=B implies

@.1) trA"=trB™, m=1,2---.

PROOF. Let the characteristic roots of A and B be &= --- Za,
and B,= --- =8, respectively. Then the characteristic roots of A™ and
B™ are af’s and fr’s. Since A=B=0, we have a;=28,20, t=1,---,p
by lemma 2.1 which implies =87, t=1, :---, p. Hence

trA"=al'+ --- +af2p'+ .- +H=trB".

LEMMA 24. Let 2, A and B be symmetric positive sémi-deﬁnite
matrices and let A and B be of same order. Then

2.2) IXA=IxB&> AZB.

PROOF. Let us denote the characteristic roots of X by 4, :--, 4,
and those of A—B by g, ---,p¢,. Then the characteristic roots of
XX (A—B) are Ap;, i=1,-.+,p; j=1,--+,q. Since s are non-negative,



248 MINORU SIOTANI

and since a symmetric matrix is positive semi-definite if and only if its
characteristic roots are all non-negative, both sides in (2.2) hold simul-
taneously if and only if p,=0, i=1,---, p.

LEMMA 2.5. Let Z'=(z;, 25, ++, 2,) be mXm, V be nXn and sym-
metric, and a be mXxX1. Then

2.3) 'ZVZ'a)=2a,a/ZV a=1,---,m
where az(a, a,---, a).
0z, 0%, 0% 0Zan
PROOF.

(a'zvz'a)=a'( a"’ z ) Vz'a+a'zv<iz')a

” Zas Zes

=2a'ZV( 9 Z’)a
02.;

=2a'ZV),a.

where (a’ZV), is the gth component of @ ZV. (2.3)is just an expression
in vector form.

Now we consider the practical procedure of the maximization or the
minimization. Let A(X) be a real symmetric matrix whose elements
are differentiable functions of X in a domain D. Then the maximization
or the minimization of A(X) under conditions r(X)=0, i=1, ..., 7 is
accomplished by maximizing or minimizing, in the usual way, the scalar
valued function

(2.4) HX)=d' A(X)a—22r(X)

for any fixed non-zero scalar vector a with a’a=1, where 1’s are
Lagrange’s multipliers. If the maximizer or the minimizer X* is deter-
mined independently of a, and is in D, then a’A(X*)a is the maximum
or the minimum for every @ and hence A(X*) itself is the maximum
or the minimum in the Loewner sense, because of (1.8).

3. A generalization of the Gauss Markov theorem on the method
of least squares

Let us consider the general linear model
3.1) E(X)=64A

where X(pXn; p<n) is an observation matrix on p-component random
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vector x, O(pXm) a matrix of unknown parameters, and A(mXn) a
design matrix which is known beforehand and of rank r(Em<mn), i.e.,

A1 T
A= )
Ll

where A, is a basis of A. Suppose that
=6C

be a matrix to be estimated by X, where C is an mxgq known matrix
of coefficients, and of rank q.
Assume that

(i) @ is estimable (The condition for estimability is given in (3.12)
or (3.13) below.),

(3.2) (i) Clxf—E(Mxf—E(x)=0,H  where x¥=(xu, -, %)

is the vector consisting of 7 observations on the ith component of x,
H is an nXn symmetric positive definite matrix which is known, and
o;; is the covariance between the ith and the jth components of x.
Under these assumptions let us consider a natural generalization of the
Gauss-Markov theorem to the multivariate case.

First of all, we shall determine the best linear unbiased estimator

(3.3) - Y(pxg@)=X(pXn)B(nxq)

of @ in the sense of the minimum covariance matrix. Rewriting 6C as

6C=1(6, 6,) [C‘} i

r m-—r Cz
q

we have the conditions

¢ = QC= 9101 + 6202
=&(XB)
== GAB = QlAlB’l‘ QzAgB

for all @, since @ is estimable and hence
(3.4) C=AB or C=AB, C=AB.

Now let us express the covariance matrix of Y, which is to be
minimized under the conditions (3.4). If yl=(yu, -*+, ¥%y), t=1, -+, D,
then y/=x}B, and
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Elyi—EWIly,—Ew)Y
=B'Exf—E(x)llx¥—E(x¥)YB
= (TUB’HB B

Hence the covariance matrix V(pgX pq) of (yi, y} -+, y,) can be written
in the form of the Kronecker product

(3.5) V=23Xx(B'HB)

where 3=(o;;) is the covariance matrix of x. Our problem is therefore
to minimize V with respect to B under the restrictions (3.4). This
minimization is, by lemma 2.4, equivalent to that of B’HB, because
is a non-variable matrix and >0. Then the actual procedure is carried
out as follows: For an arbitrary non-zero vector a of ¢ components
such that a’a=1, put

(3.6) 9(B)=a'B'HBa—2tr M'(AB—C)

where M=(2;;)=(4;, -+, 4,), (mXgq), a matrix of Lagrange’s constants,
and minimize g(B) with respect to elements of B. By lemma 2.5,
dg(B)/ob, =0’ leads to

a.ad BBH— 2, A=0
or
(3‘7) a.,a’B':Z{,AH“ , a,.—_-l, cee,q

where b, =(b., - -+, b..) and 2, =(Ay, * ++, Ane). Multiplying both sides by
A} from the right, we have

a.a’ B'A|=2, AH'A]

or by the condition in (3.4)

(3.8) a.a'Cl=2,AH'A] .
Now we use the representation ([4], (A.3.11))
A T,
. A= — L
e )
or

A=TL, A=TL=TT4,

where T, (rXr) is triangular and >0, T, is (m—7)xr, and L (rXxn) is
row-orthogonal, i.e., LL'=1I,. Then (3.8) can be written as
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I,

a'Cl=2,
0.aC [Tle_l

}AlH 141 .
Since A,H'A! is non-singular,

I, 7]

2,’,[ . |=a.a'Ci{(AHA)™.
T,T1 |

Consequently, from (3.7)

- I

L T2T~i' !

=a,a'C(AH'A)'AH™!

a.a'B'=2,

|a-

for every non-zero a and hence we have as the solution
(3.10) B,=H'A|(AH'A)C, .

Thus we finally have the best linear unbiased estimator of @,
(3.11) Y,=XB,=XH'A{(A,H'A)™'C,

with the minimum covariance matrix

(3.12) V,=3 X (B,HB,)=2X X [C{(AH'A))'C}]

which is positive definite.
It should be noted that the condition for @ to be estimable is now
easily obtained from (3.4), (3.9) and (3.10) as

(3.13) C,=A,By=A,H'A|(A,H'A))'C,
= TzT; 101
(3.14) = A Al(AA)C, .

Next we show that the solution (8.11) can be obtained from the
minimization of the weighted residual covariance matrix

(3.15) S=(X—6A)H(X—B6AY

under the variation of ©®. To do so, let us reduce (3.15) to the case of
full rank:

OA=(6,4+6,T, T4, ,
@=6C=(6,+6,T.T)C, .
If we put
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E(pX1)=6,+6,T, T
we can write
S=(X—¢A)H (X—¢A),
. 0=£C;.

It is now required to minimize S with respect to &. For any fixed non-
zero a(pXx1l), d(a’Sa)/9&,=0" gives the equation

a.a'(X—§A)HA[=0' .
Hence, denoting the minimizer by &,, we have
§AH'Al=XHA]
or
(3.16) &=XH'A[(AHA)™ .

Consequently @,=£,C, coincides with Y, in (3.11); in other words, the
best linear unbiased estimator of the estimable function @=6C can be

given by -calculating ¢&, (=610+620T2T;1) which makes S minimum and
by forming ¢,C; (=6,C). So, the minimum of S is

(3.17) Sy=(X—&A)H (X —5A) =(X—6,4)H(X—6,4) .

Let us next show that an analogous relation as in the univariate
case of the Gauss-Markov theorem, i.e.,

(3.18) ESy=n—r)¥
holds in our multivariate case. First we notice that

(3.19) S={(X—&A)+ (6 — AN H {(X—5A)+ (6— ALY
=8+ (&—8AHA|(§—8)

since
(X—&ADHAl(6—§)=0 .

It is easy to prove that S, S, and (¢—¢&)A,H'A}(&,—¢&)’ can be expressed
as follows :

S =(X—¢A)H(X—¢A)) ,
So=(X—¢A)HV{I,—H ' A(AH'A) A H?} H- (X —¢£A,) ,

(&—&AHAY(E,—8)
=(X—¢A)H " HAl(A,H'A)"A H *}(X—¢A) .
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Therefore, if we put
U=(X—-¢A,)H"*,» E=H'"A(AH'A)'AH ",
then (8.19) can be rewritten as
(3.20) UU'=U1.—E)U'+UEU'.
The following are easily checked :
E=E, (I.—Ey=L,—E, E({,—E)=(,—E)E=0,

namely, E and I,—FE are orthogonal idempotent matrices of rank r and
(n—r), respectively. Hence there exists an orthogonal matrix which
transforms (3.20) into

Z7'=72,21+ 2,7}

where Z, is pX(n—7r), Z, is p§<r and each column of Z=(Z,Z,) has zero
mean vector and covariance matrix Y, and has no correlation with others:
in fact,

Z=UL=(X—¢A)H "L

where L is an orthogonal matrix. Let z}'=(2u, 2, * -+, 2w), and §'=
(Eily Eiz: ] sir)- Then

Cov (2%, z) =E(zt 2F')
= /H-E(xt — AgY)(xcf — AgFYH L
=0, L'H"HH"L

=gl ,
which proves the assertion. From this fact, we have
ESY)=E8(ZZ)=(n—1)2 .
Summarizing the above argument, we have

THEOREM 3.1. (Generalized Gauss-Markov Theorem). For the set-up
(8.1) and under (3.2), the best linear unbiased estimator of an estimable
matriz function @=06C can be given by 9,=6,C where 6, is a matrix
such that at @=6,

S=(X—0A)H (X—0AY
becomes minimum under the variation of ©, that is,

0,=XH'Al(AH'A)'C, .
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If we denote the minimum of S by S,, then
ES)=n—1r)2 .

Remark. It is a direct consequence from lemmas 2.2 and 2.3 that
the solution in the theorem minimizes the various scalar measures stated
in the lemmas for V or S.

Just the same as the Gauss-Markov theorem for the univariate case,
this theorem has various applications to the estimation in the multi-
variate regression problem including the analysis of dispersion, in the
sampling theory from a finite multivariate population, etec.

4. An application of theorem 3.1
We start from the multivariate linear model (3.1), i.e.,
(3.1) E(X)=6A.
Let
X'=(x¥, x¥, -+, x}), XF =(@isy Tigy * +, Tin)
o'=(6f, 6%, ---, 0%), 0F =(64, 63 -+, Oin) -
Then the model (3.1) for the ith variable reduces to
E(xF)=A'6F,
Cov (x¥, xf)=0,;H, 4,5=1,--+,p

where H is, as before, an nXn symmetric positive definite matrix which
is known. Now let us consider the estimation of

(4.1) p=clb¥+cifF+ -+ +¢; 05,

where ¢}0F, (j=1,:--,p) are estimable. J. N. Srivastava [5] proved

that, if we obtain the best linear unbiased estimator ¢ é;" of ¢j@F for
each j by the usual Gauss-Markov theorem, then

(4.2) Yo=clOF+ -+ - +cL 0%

is the best linear unbiased estimator of ¢ in the class of linear unbiased
estimators of ¢:

(4.3) y=Ffxt+ --- +f]xf,

i.e., Var(y)>Var (y,) for any y.
The following is another proof of it by theorem 3.1.
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Let
C(mXp)z(cly cz;"'rcp)a F(nxP)z(ﬂ: fy .-, fp)r
&'(mx p)=(8%, 6, - - -, 6%) .

Then we can write (4.1) and (4.3) as

4.1y ¢=tr (6C)=tr @,
(4.3 y=tr (XF)=tr (Y)
where ¢,;=c/0F and y,;=FfxF, i,j=1,---,p. If we denote the p'xp

covariance matrix of ¥ by V, i.e., V=3 x(F'HF'), and if ¢* is a vector
having 1 in the positions corresponding to those of y., i=1, ---,p in
the arrangement of Y in a row and 0 elsewhere, i.e.,

n 23 Y3 ** YUpp

t*=(10:--010---010---01),
then we have
4.4) Var (y)=#¥Vit* .

Now notice that @=6C is estimable and consider the best linear
unbiased estimator Y,=XF, in the generalized sense (theorem 3.1 in
the case that p=gq). Denote the covariance matrix of Y, by V,, and
determined F), so that a’Va=a’'V,a for all non-zero normalized a of p*
components and for all Y. Then we have in particular

Var (y)=p(t*/ ¥ p)V(*| ¥ P)ZP(t*| v P)Vi(#*] ¥ D)= Var (y,)

where y,=tr XF,=x}f,,+ -+ +xff,,. This y, is our solution, i.e., the
best linear unbiased estimator for ¢ and coincides with y, in (4.2) as is
easily seen that x¥'f,=cl6*.

5. Principal components of a vector random variable

Let x be a p-component random vector with mean g and covariance
matrix 3. Consider a transformation

(5.1) y=Tx

where T is a ¢Xp matrix (¢<p), and the joint covariance matrix of x
and y is

5.9 DI i
6.2 T T3T' |

The predictive efficiency of y for x depends on the residual covariance
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matrix of x after subtracting its best linear predictor y=Tx:
(5.3) O=3-3T(TXT")'T>.

C. R. Rao [3] considered two measures :

(5.4) (i) tro, (il) 2] =(tr 9»)'*

as statistics for determininé T, and showed that both measures when
minimized lead to the same 7, the matrix of the first ¢ characteristic
vectors of 3. Let us now treat the problem according to our method
based on Loewner’s ordering. To do so, we prove the

LEMMA 5.1. Let x be a p-component column vector and Z(pXp) be a
given symmetric positive definite matriz. Then the maximizer x, of

Ixx'¥
x'Zx

(5.5)
s the characteristic vector corresponding to the largest characteristic root
Ao 2, e, .

Yxoxid > Ixx'y
x{Ex, = x'Xx

(5.6)

Jor all x. ‘
PROOF. Without loss of generality, we can assume that
(5.7 x'Tx=1.

We need to maximize a’Zxx'>a for any fixed non-zero a(px1) such that
a’a=1 under the condition (5.7). Put

(5.8) d(x)=a'Zxx'Za—(x'Zx—1)

where 2 is the Lagrange multiplyer. Then dg(x)/ox=0 gives

(5.9) Yaa'Zx—1Ex=0

or
aa'lx—ix=0

since ¥Y>0. If we multiply 'a' from the left, we have
a(Zx—ix)=0

holding for every a. Hence

(5.10) (2—-a)x=0,
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that is, the solution x, is a characteristic vector of ¥ corresponding to
a characteristic root 4, of 2. Since, from (5.7) and (5.9),

(5.11) Ah=x{Zaa'Zxy=a'Zxx/Za ,

A, should be the largest characteristic root 2, and hence x, is correspond-
ing to 4,.

LEMMA 5.2. Let x; and x; be two-p-component column vectors and
I(pXp) a symmetric positive definite matriz. Then

2xxly 2xx]Y  Zxixl | Txpxhl
5.12 max == 4 omgx Sl - 2 ,
(5.12) R X{2x + By X372 X102 X1 X502 Xz

where R, is the pdihemiond space of x1, Ry={x:: x/x;:=0, x,#0}, and
Xy, Xy are the characteristic vectors of 3 asswiated with the largest and
second largest characteristic roots 2, A, of 3, respectively.

PRrROOF. By lemma 5.1,

14 S ’
max Z-‘;'lxlz - .\:mwa' )
R Xx{Zx X103 X1

To evaluate the second term in the left hand side of (5.12), let us con-
sider, for any fixed non-zero a(px1) with a’a=1,

(5.13) dx)=a'Zxpx!{Za—p(x; 2x,— 1) —2v(xix,) ,

where p and v are Lagrange’s multipliers. Differentiating ¢(x;) with
respect to x, and equating it to zero give the equation

(5.14) Jaa'Zx,—pEx,—vx,=0 .
From the fact that Zx,=4,x,,, we have

aa'Tx;,— px,— (v[A;)x,=0
or

a'[Tx,— px;— (v[2)x10] =0,
for every a. Hence

Zx,—px— (v[2)x,=0 .

\Since, in R, x{x;=(1/4)x/,Zx;=0, it is easy to see that v=0. Thus
the desired maximizer x;, satisfies

(Z—HI)xzo= 0
p=a'Txxila .
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Consequently x; should be the characteristic vector associated with the
second largest characteristic root i, of .
Now back to the problem of minimizing @ or equivalently maximiz-
ing IT(TXT')"'TZ. If we denote ¢ column vectors of T'(pXgq) by ¢,
-+, t;, we may assume without any loss of generality that

(5.15) ti2t;=0, (i#7)
and the function of T to be minimized can be expressed as

St L StyS

5.16
(5.16) 13t t3t,

with the conditions (5.15). This can be carried out as follows:

2ty St ity
5.17 max [_1.1_ e otq ]
(5.17) ox [ZHEE ... 4 ZUL
_ 2Lty 2Lty St %
—=max max L max
Ry t{Z'tl + By t{th + + Rq t;th

where R is the whole region of (¢, ---,¢,) satisfying #/3¢t,=0, (i#j),
R, the p-dimensional space of ¢, and

B;={t;: t..2t;=0, a=1, -+, j—1, t,#0}, j=2,---,q,

where t,, is the maximizer of the ath term of (5.17). By lemma 5.1,
maximum of the 1st term in the right hand side of (5.17) is attained
by the characteristic vector #, associated with the largest characteristic
root 2, of . The maximum of the 2nd term can be achieved, according
to lemma 5.2, by the characteristic vector #, associated with the 2nd
largest characteristic root 2, of . Doing in this way until the gth term
in (5.17), the maximizer of (5.16) is found to be

(5.18) Ti=(tws « -, tqo)

where ¢, is the characteristic vector corresponding to the 4th largest
root A; of X.

The transformed variables, #x, ---, t,x are well known as the first
g principal components of the random variable x.
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CANCELLATION OF

SECTION 5 OF “SOME APPLICATIONS OF LOEWNER'S ORDERING
ON SYMMETRIC MATRICES”

MINORU SIOTANI

Soon after the above titled paper was published (this Annals, Vol. 19,
No. 2 (1967), 245-259), the author found that there was a big mistake,
that is, Lemmas 5.1 and 5.2 do not hold, so the whole of Section 5 should
be canceled.

In fact, for any vector with aa’=1, we have

a'Xxx'Ia _ a'>yy' 3" ’a
e sy
_ y’El/zaa,Zlﬂy
Yy
<max ch(ZVaa'2*)=ch(a'Za)=a'Za =<2,

where ch denotes a characteristic root and 2, is the largest characteristic
root of 2. The equality in the first inequality is attained by y=23"a or
x=a for fixed a, which depends on a, and the equality in the second
inequality can not be attained generally except when a is equal to the
characteristic vector corresponding to 2.
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