ON THE NOTION OF AFFINITY OF SEVERAL DISTRIBUTIONS
AND SOME OF ITS APPLICATIONS

KAMEO MATUSITA

(Received Feb. 20, 1967)

1. Introduction

The notion of distance between distributions often plays an impor-
tant and useful role in statistics, and thus far, the author treated decision
rules based on the distance in many occasions (see the references of [1]).
Among many definitions of distance between distributions the author
especially dealt with the following.

Let F, and F, be two distributions defined on the same space R,
and let the probabilities of any (measurable) set E according to F; and
F, be represented as

SEpl(x) dm  and SEpz(x) dm,  p(x), )20,

respectively, where m denotes a measure (Lebesgue or counting or mixed)
defined in R. Then, the distance between F, and Fj is:

aF, Fy=[| (Vo — v rdm]" .

Employing this distance, we can treat problems of decision, esti-
mation, and hypothesis testing. (As to the properties of this distance,
see [2], for instance.) With this distance is closely associated the quan-
tity

oAF,, F)=\ v pi@mie) dm .
In fact, we have
dy(F,, F)=2(1—py(F,, Fy)) .

As is easily seen, p,(F}, F;) has the following properties :

(i) O0=plFy, Fy)=1,
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(i) puF, Fy)=1 when and only when F,=F},

(iii) For a sequence of distributions {F,}, o(F,, F,) -1 means that
for any measurable set E, F,(E)— Fy(E) uniformly in E, where
F,(E), F(FE) respectively denote the probabilities of E accord-
ing to F,, F,, and vice versa.

In this way, p(F}, F}) represents the likeness of F, and F,, and we have
called it the affinity of F, and F,. This notion of affinity can be used
in place of the distance dy(-, ) (see [2], [3]).

The purpose of this paper is to extend the notion of affinity con-
cerning two distributions to the case of several distributions, and to
show some of its applications. In section 2 the notion of affinity of
several distributions is introduced, and some of its properties are stated.
In section 3 decision rules based on the affinity are given, and in section
4 its applications in multivariate analysis are mentioned. Some familiar
expressions in multivariate analysis, for instance, the likelihood ratio for
testing several covariance matrices being equal, appear as special cases.

2. Affinity of several distributions

Let F\, F,, ---, F, be distributions defined on the same space R with
measure m, and let p(x), p(x), ---, p,(x) be respectively their density
functions with respect to m (pi(x)=0). Then we define the affinity of
F,F, ..., F, as

pAFu Fy - F)=| (0@)po)---p ()" dm .
THEOREM 1. We have
0Sp/(Fy Fyy -+, F)Spi-iFyy Fiy -+, F_)S -+ <pi(F., F,)<1,
where (i, « -+, t,-,) s any set of r—1 integers out of (1,2, -+, r) and
(T 8)C v o s Cligy 2ay *++, 41,2, -4, 7).
PROOF.
As pi(x)=0, it is obvious that

0= @@ - p )" dm .

Now, by Hélder’s inequality, we have
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(r-1)/r

SR (D) - - - pA2))"dm = ( SR pi() dm>W< S RCICORE pr(x))txlrz-zr/(r¢1>zdm)

=<Su(p2(x) ce e p X))V dim )(r—l)/,. ’

that is,

(0@ p@yan)s(| @@ p@ycsan) ™.
Thus, we have
(|, @@ - p@ydn )<({ @@ - pla)erdm) "< -
(], @@p@yram)<1.
COROLLARY 1. It holds that |
@By Foy -+, )Y =(p,oFyy o -+, F)y~
when and only when

1
[ @ta) - puta)y e dm

pl(x)=(pz(x) e pr(x) )1/(7‘—1)

except for a set of m-measure 0.

This can be shown from the condition that the equality sign hold
in Holder’s inequality. /

COROLLARY 2.

pr(Ry FZ! tt Ff) = glgl)l (p2(E’ Fj))zlr .

This is an immediate consequence of Theorem 1.

COROLLARY 3.
PT(F,lr FZ, Tty Fr)=1

when and only when Fi=F,= --- =F,.

When F,=...=F,, it is obvious that o,(F}, F}, ---, F,)=1. Con-
versely, when o.(F,, F;, ---, F.)=1, we have p,(F;, F;)=1 for any pair
(, 7) (4, 5=1,2,---,7), from which it follows that Fi=F;,= ... =F, .

As mentioned above, the affinity of two distributions F, F} is con-

nected to the distance dy(F, F,)=(SR( V() — v px) Vdm )1/2 by an
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equality. The affinity of r distributions has connection to the distance
/r
d.(F;, Fz)=|SR(p}”(x)—p"’(x))’ am | However, the relation is not ex-

pressed in terms of equality as the case of two distributions, but in
terms of inequality.

THEOREM 2. It holds that
oA Fy, Fy, - -+, F)21—(r—1)d ,
when, for any pair (1, j) ¢, 5=1,2, .-+, 7), we have d.(F;, F,)<4.
PROOF. ’

(@i pyram

[S(pn - p)" dm— S(px « pyp)Y dm ]

r r—1
[S(ﬂ coo o0 dm — S(Z’l cor DD D) dm]
r—1 r—2

+ [S(plplps ee p)"dm— S(mf,2 N dm]
= S(p}”—p YYDy e D) dm S(p}/r—p}'/zl)(pl <o pip)" dm
S( =) Pups + - )T dm

r=1/r
= (SI Y —pr | dm) ( S(p’ o p)/rILr/r=D] dm)
r—1

(r=n/r
+(Slpi”—p‘/1d’dm) ((pl- Py, ‘”dm>
r—2

4+ .- +(Sl p}/'— ;/r I, dm)llr ( S (plp,, L p,.)[‘/’]'['/('"l)]dm)(r—l)/r
(by Hélder’s inequality)

1r 1/r
g(glpi”-—pl”l’dm> +<Slp}"—p1’.'ll’dm>
1/r
+ e +(Slp}"—p;”l'dm>
=(r-1)s.

Now, the distance d,(F}, F;) has a direct meaning for the probabili-
ties of any set E according to F; and F,, and as stated concerning
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o F1, Fz) in the introduction, dy(F;, F;) also has a probabilistic meaning.
In the following we shall show that the same can be said for d,(Fi, F})

(r>1), by establishing some relations between d.(F), F;) (r>1) and
dl(F’ly F'Z)'

THEOREM 3. It holds that
dx(Fn E)ér'dr(Fly Fz) .

PROOF. Let f;, f; be non-negative, measurable functions such that
frir=p fr/o-D gre also measurable. Then, we have

[ —fildm={ |fim Sl f ik - S dm

(r=1/r
é(g | fi— fil" dm)r- <S (Fr 4+ fifot oo + fI7) D A, )
B R
(by Holder’s inequality).

. (r=1)/r .
Since (S |f]e-» dm) makes a norm in the L,,,_;, space, we have
R

<SR(ﬂ’—l+f{—2f2+ e FrYICD Gy )(7—1)/,-
=5 ([ rpyevam )"

Further, we have

SR(flr-l—ifzi)r/(r—l) dm — SRflr(r-l—i)/(r—l)fzri/(r—l) dm

A

X (r=1-D/(r-1) (r-1
( Sfl[T(T—I—i)/(r—1)]-[(7—1)/(7‘—1—1)] dm> (S fzt"i/(r—l)]-[(r—l)/i] dm)
R

() )

I

hence,

i/r

(] soreoan) ™ ([ gram) ([ g am)
Therefore, we obtain
| 1fr— st dm

([ st an)” ([ sram) ™ (] giam)

i/r

When we put fi=p}", f;=py", we have
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yr

[ lp—pidm (| 1oy -t am)” - S1=r({ iptr—pirram)”
which completes the proof.
THEOREM 4. It holds that
d(Fy, Fy)z(d.(F, Fz))’ .

PROOF. Generally, for any two real numbers a, b with a=b=0,
we have a"—b"=(a—b)". Therefore, when we set

E={z|p@zn@)}, E={z|p@)<p@)},
we have A ’
(@) —p2) 2 (0" (®)—pi"(x))” on Ei,
and
—p(2)+p(@) 2 (=P (@) +pi"(x))” on K,

from which it follows that
|, I@)—pta)l dmz| ot @) - @ dm .

Through Theorems 8 and 4 we can know about the relation of
d.(Fy, F;) to the difference of F, and F,.
As a generalization of Theorem 4, we have

THEOREM 5. It holds that
(d,(Fy, o)) ' =2 (d(Fy, Fy) .
Consequently, we have |
dy(Fy, F) 2@y Fy, FR))'z - -+ Z(d(Fy, Fy)) .

PROOF. Let y=(x"—1)", £>1. Then, y is an increasing function
of r. Hence,

(xr _ 1)1/r > (xr-!_ 1)1/(r—1) (,r> 1) .

Let z=u""""Y, u>1. Then we have (u/"P—1)"">(u""—1)¥"-Y, that
is, (W/CP—1)"'>(u""—1)". Therefore, for x with p,(x)>p(x)>0, we

get
("= >{(2)" )
D2 P

consequently,
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@YD= P> (B =By
For x with py(x)=0 or p(x)=py(x), we have

(p}/(r—l) — p;/(r—l))r-i — (p}/r _ p%/r)r .

Therefore, we obtain

|, @ —preytamz | @ —pty dm
where E,={z|p(x)=p(x)}. Similarly, we obtain

|, @ —prey-tamz | @—prydm,
where Ez={x|p1(x)v<p2(ac)}. Hence we get

[ ovo>—pyep-ram 2 |pr—pyrrdm .

Combining the above results, we have

THEOREM 6. When dy(F;, F;)<d, for any pair (¢, j) (t#7, 1, j=1,2,
<o+, 7) and p,=min p,(F;, F;), it holds that

1_(r_1)21/r55/r§‘07(171’ F,Z, Tty Fr)épg/r .
In fact,
(@,(F, F))) =d(F;, F;)<2dy(F, F;)<24,

and the inequality follows from Theorem 2. The second inequality is
Corollary 2 to Theorem 1 itself.

3. Decision rules based on the affinity

To apply the notion of affinity to statistical problems, we have to
consider the affinity of distributions which are respectively determined
by samples from the distributions under consideration. Let F; (7=1, 2,
-+, 7) be the unknown distributions under consideration and p;(x) the
density function of F; with respect to a measure m on R, as above.
Further, let S; be the distribution determined by a sample from F;, and
q«x) the density function of S; with respect to m. The way S; is de-
termined by a sample depends on the functional form of F;. When the
functional form is unknown, we substitute some appropriate or reasonable
form for it, considering the nature of the distribution. Then we can
consider the affinity of S, S,, ---, S,,
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p'(Sl’ YRR ST)=SR(qI(x) g() + - gA(x))"" dm .

When the problem is to decide whether or not Fi=F,= ... =F,, taking
some value p,, we make a decision as follows.
We decide that Fi=F,= --- =F, when p,(S,S;, :-+,8S,)=ps,

We decide that F), F;, -+, F, are not identical when
p?‘(sh S2; ] Sr)<po .

The decision errors are evaluated when the distribution of o.(S, S,, -- -,
S,) is known. Also in the case when, for arbitrary ¢, 6>0, we can
choose the number of observations, 7,, so that we have P(dy(F,, S;) <3,
t=1,---,7)=1—¢, S; being based on a sample of =»,>n,, we can con-
trol the errors. To show that exactly, however, we have to modify the
problem as follows: Decide whether F,= ... =F, or the distance be-
tween some pair of Fi, F;, ---, F, is greater than or equal to a given
positive constant. In fact,

1—(r—1)2"6/" <p,(Sy, Sy, - -+, S))=pi"

when 60=r(r_u;.)x dS:, S;) and p2=r(r_1i};1 o(S;, S;). On the other hand, we

have

di(S, S))Sdo(Fy, S)+dy(F), S))+duF, F)) ,

dy(S;, Sj)2dyF, Fy)—dy(F, S)—do(F, S;)
Suppose that the sample size n,; is chosen for 6,>0 so that

P(dy(F;, Si)<6y, 1=1,2, -+, r)=1—c¢.

Then, when F,=F,= ... =F,, we have

P(dy(S;, S;)<20,, 1, 5=1,2,---,7r)=1—¢,
hence,

P@.(S;, Sz, - -+, S)=1—(r—1)2776/)z1—¢ .
When F}, F,, ---, F, are not identical, say dy(¥,, F,)=4¢'>0, we have

diS,, 8.)28 —dy(F,, S,)—dy(F,, S,) .
Suppose that we have taken 9, so that ¢'>25,. Then
P(dy(S,, S)zd'—25)=1—¢,

hence,
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P(max dy(S;, S;)=d'—26)=1—¢,

consequently,
PpSu S -+, )5 (1- T2 2y
Therefore, when ¢, satisfies
(1-=20F _2251)2)1" <1—(r—1)2"3)"
besides ¢'>26,, 1>(r—1)2¥"5,, taking p, such that
(1—L2251)—2)”’ <o<1—(r—1)2var,

we obtain

P(Pr(slv SZ! Tty Sr)gpo I E:Fzz e =Fr)gl_5 ’
and
P(o:(Sy, Sz, + -+, S))<py | Ao F,, F) 26" for some (g, v))=1—c¢.

In this way the decision errors are controlled to be less than e.

When sample sizes n; are fairly different, the order of approximation
of S; to F; also differs from distribution to distribution, so, in this case,
when each 7, is not so large as S; can be considered to give a satis-
factory approximate distribution to F;, we put a weight on S; in the
affinity, which depends on %,. For instance, we take the weighted
affinity

Prw(Sly SZ) Tty Sr)=pn(Slr ""Sly S21 "'9S2, tt Sr’ ""Sr) ’

—_— ~———— ~—
m Ng nr

where n=n,+n,+ -+ +n, .

4. Applications in multivariate analysis™®

Let F\, F3, - - -, F, be respectively k-dimensional Gaussian distributions
N(a,, ATY), Ma,, A7), ---, N(a,, AY), where ay, a,, - - -, @, are k-dimensional
vectors and A, A,,---, A, are positive definite (symmetric) (k X k)-matrices.
Then we have

Pr(Fu F2’ "‘yFr)

= I—_I_@TIEA_:T:T exp [—21? {(; A, (g A)! ; Aiai)—; (4:a;, ai)” .
r 7 i

*  Concerning this section see [4], [5].
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Especially, when A;=A4;= --- =A4,=A (say),
oAFy Fiy - F)=exp[ {4 S, r S a)- 3 (da, 0] |,

and when q,=a;= -+ =a,,
| | lAill/Zr
i

PT(FI» -Fzs ct Fr): 1 172 !
|5 34

Now, assume that F, F;, ---, F, are unknown. The problem is to
decide whether or not F,, F;, -+, F, are identical. Let «{”, 2{°, .-, 20
be a sample from N(a;, A7), and

s
—a-,u):_l_ Zl‘ Q)
ni a=1 “
| R N R Y
V.= 3 (&P —x@) (2P — D),
’n,i-—— a=1
l],;= Vi_l ’
1 r
U=— U, .
r o i=1

When A;=A4;,= ... =A,=A but A is unknown, we consider
_ 1 =0 1 <z ) D)
prn=exp |——1{{ U z?, =22 |3 (Uz®, z?)
2r 7 r i

as a test statistic for deciding whether or not a,=a,= --- =a,.

When Aj=A4,=-.- =A,=A, and A itself is known, we consider
pumexp [ L {(4530, L120) 51430, 5))]
2r 3 r 3 1
As a statistic for deciding whether or not A,;=4,= -.-- =A4,, we
consider
—]_.[ l a lx/zr
Prs'—_ 1 172
B
r i
As a statistic for deciding whether or not a,=a,= --- =a, and A,
=A,= --- =A, at the same time, we consider p,=p,10,s.

When we take the logarithm of p,, or p,,, we obtain
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—2rlog pn=3(UE®, ) — ( vsze, Ls a‘a(‘))
1 i ra

=3 (UE®— 1), (3°— 7))
and

~2rlog p,=33(45°, 3) — (4 07, L& 7°)
s

=3 (AE® —32), (8°-7)),

where i=—1—2 e,

Now, since the distributions of p,(F}, S,) (a=1, 2, 3) are obtained
(see [4]), we can evaluate the decision errors when employing the above
test statistics.

In the case where n; are not so large and are fairly different from
each other, we consider the weighted affinity

Prw=Prw(Sh "'9Sr)=pn(slr <, Sy, S, ey Sy e, Sy, "Sr)

'n' IUIn'/zn 1
-=——exp [—{(Z‘, n,Uz®, (EmU) En Ux”)
| 1 l 2n
—E
n i=1
(U0, 0]
where n=n,4+n,+ --+ +n,. Hence, when A, =A4,= --- =A,=A, but A

is unknown, we consider
= 1 7l — 1 o) (T 7
Prn=exp | o Ugnix ,;;mx\ —;ni(Uw » T,

where ﬁ=-1—2niU,- and when 4;=4,= ... =A4,=A4 and A is known,
n i

Prws=€XD [i {(A S nE®, Ls1ngo ) -2 n, (A, 5“")}] ,
2n i n 3 7
Taking the logarithm of these p,u, o, We obtain

—2nlog pu= 2 ( U0 —ay), (25— )

and
—2n log pru= Z‘. (A(z$° —a), (@7 —1x)) ,
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where :vo:l-z . These statistics have known distributions (#- or x*-)
n i

under the null hypothesis. Further, corresponding to p,;, we consider

;l:l' ll]’ilni/m
=1

1 12 °
|— >y Uzl

n i

prw3=

When nil =1, we can take

or

ni—
TT U
/ — i
POrws= 1 72 !
=> (m—1)U;
n i
'l'l' I []il(ni—l)/Zn
P;,m: :

1/2

[ eenol

These two statistics are essentially the same as the likelihood ratio or a
modified one for the problem under consideration. In other words, the
likelihood ratio in this case can be interpreted as representing the
affinity of distributions.
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