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1. Summary and introduction

Distribution problems in multivariate analysis are often related to
the joint distribution of the characteristic roots of a matrix derived
from sample observations taken from multivariate normal populations.
This joint distribution (under certain null hypotheses) of s non-null char-
acteristic roots given by Fisher [4], Girshick [6], Hsu [7], and Roy [20]
can be expressed in the form

(LD £ (8- -+, 8)=Cls, m, m) [T 67107 T] (0:—0,)
0<<---=6,<1
where

ny TiT I‘( 2m+2n—zl-s+i+2 )
L 2m+i+1 2n+i+1>r . ]
H[d 2 >F< 2 (/2)

i=1

1.2) C(s, m, m)=

and m and » are defined differently for various situations described by
Pillai [12], [14]. Nanda [10] has shown that if &=n#, (i=1,.--,s), then
the limiting distribution of & as n tends to infinity is given by

1.3) filts, &0y -+, £)=K(s, m) n gre IT (6i—¢))

0<6< - <6<
where
(1.4) K(s, m)=a"" / L]_T r(.?l”%“_) F(i/2)].
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The distribution (1.8) can also be arrived at as that of &:-;—Ti (=1,

2,---,8) where 7/’ are the roots of the equation |S—73[=0 where S is
the variance-covariance matrix computed from a sample taken from an
s-variate normal population with dispersion matrix X. In this paper,
the first four moments of W, the second elementary symmetric func-
tion (esf) in s&”, have been obtained and approximations to its distribu-
tion suggested. In addition, the variances of the third and fourth esf’s
are also obtained. An example is given to illustrate the use of W as
a test criterion.

2. Formulae for the first four moments of W

The joint distribution (1.8) can be thrown into a determinantal form
of the Vandermonde type and integrated over the range R: 0.
<¢,<oo, giving

|, errtende, - ("erende,
3 0 e s o ’ .
@) | f@ e de=Kem)| | O
S:zéi"*"‘e‘eld&' ' 'Sezfi"e“ld&

Now denote by W(s—1,s—2,---,1,0) the determinant on the right
side of (2.1). Using lemma 1 in Pillai [15], the first four moments of
Wi® can be obtained as follows: (denoting E(W®)" by s

(2.2) p=K(s, m)W(s,s—1,8—38,---,1,0)

(2.3) p=K(s, m)[W(s+1,s,5-38,---,1,0)
+Wi(s+1,8—1,8—-2,8—4,---,1,0)
+W(s,s—1,8—2,8—8,5—5,--+,1, 0)]

(2.4) p=K(s, m)[W(s+2,s+1,58-3,.-,1,0)
+2W(s+2,s,5—2,8—4,--+,1,0)
+3W(s+1,s,8—2,5—8,8—5,--+,1,0)

+ W(s+2,s—1,5—2,5—8,5—5,-++,1,0)
+W(s+1,s,8—1,8—4,---,1,0)
+2W(s+1,8—1,5—2,8—8,5s—4,8—6,---,1, 0)
+ W(s, s—1,5—2,5—38,5—4,5—5,5—17,---, 1, 0)]

and

(2'5) ﬂIZK(S, m)[W(s+3’ 8+2, 8_3; ) 17 O)
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+3W(s+3,s+1,8—2,3—4,---,1,0)
+6W(s+2,s+1,8—2,8—3,8—5,---,1,0)

+2W(s+3, s, s—1,s—4,---,1,0)
+3W(s+3,s,8—2,8—8,8—5,---,1,0)
+3W(s+2,s+1,s—1,8—4,---,1,0)
+7W(s+2,s,s—1,8—8,8—5,--+,1,0)

+8W(s+2, s,s—2,8—3,s—4,8—6,--+,1,0)
+3W(s+1,s,s—1,8—2,8—5,---,1,0)
+6W(s+1,s,8—1,8—-8,s—4,5—6,---,1,0)
+6W(s+1,s,5s—2,5—3,s—4,8~5,5—7,--+,1,0)
+W(s+3,s—1,8—2,5s—3,s—4,8—6,---,1,0)
+3W(s+2,s—1,8—2,8—38,s—4,8—5,8—17,---,1,0)
+3W(s+1,s—1,s—2,s—38,s—4,s—5,s—6,8—8,--+,1,0)
+ W(s,s—1,s—2,s—3,s—4,s8—5,8—6,s—7,s—9,---,1,0)].

3. A method of evaluation of the W-determinants -

Let us denote by V(g ¢;—1,- -+, q,) the determinant which could be
obtained from Wi(g,, ¢,_;,---, q) by replacing & by 6; in (1.1), e by
(1—6,)" and the range of integration by that in (1.1). Pillai, [11], [18].
has given a method of reducing the sth order determinant V{gs, qs_.,- - -,
¢,) in terms of (s—2)th order determinants and an sth order determinant
with ¢, changed to ¢,—1, the last one being zero if ¢,—1= =gq,_;.. The
method of reduction for W(g,,---,q;) can be deduced from that for
V(g.,- -+, q;) in Pillai [13] and we obtain the following :

(3.1) W(q., Qo1+, @)
1
=21§_1(_1)’—j_11(qs+‘h; Z)W(Q:—n ey Qi1 Qym1st t 0y Q)
+(m+q8)W(qs—]-y Qs—15°° ql)
where
Ip; 2)= S:’ e do =T (p-+1)/2°H.

The values of the W-determinants involved in (2.2)-(2.5) are obtained
using (3.1) and presented in the following section.

4. Values of the W-determinants

Let us set
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4.1) 2m+a)(2m+b)---=M(a,b,---).

Then for the first moment

4.2) K(s, m)W(s, s—1,8—8,---,1,0)=s(s—1)M(s, s+1)/23,
where, using (4.1),

M(s, s+1)=2m+s)(2m+s+1).

In fact, in general
(4.3) K(s, m)W(s,s—1,8—2,-+-,8—1+1,8—i1—1,---,1,0)
=<§ )M(s—i+2,~ o s 1)/2".

For the second raw moment, we get
(4.4)  K(s, m)W(s+1,s8,s—38,---,1,0)
=[(3 )M(s, s+1)/2‘3!]
X [48(s+1)m?+2s(2s*+ 5s+9)ym + s +4s*+ 115+ 8s+12].
(4.5) K(s, m)W(s+1,8—1,8—2,8—4,--+,1,0)
=[(§ )M6—1,5,5+1)/2"|[23s—1ym+35"+5+10]
+(m+s+1)K(s, m)W(s, s—1,8—2,8—4,---,1,0).

The last determinant on the right side of (4.5) is evaluated by putting
1=38 in (4.3). In general

4.8)  K(s, mW(s+1,5—1,8—2,---, s—i+1, s—i—1,---,1,0)
=[5 )Ms—i+2,: -, s+1)/27+1)|
X [2(s+1)ym+(s+1)(s+2)+i+1].

K(s, m)W(s, s—1,8—2,8—8,s—5,---,1,0) is obtained from (4.3) by putt-
ing i=4. Now using the results (4.2)-(4.6) we get p,, the second cen-
tral moment of W, as

@1 = [( : )M(s, s+ 1)/2“][4(s—l)m+28’—2s+3].
For the third raw moment, we get
4.8) K(s, m)W(s+2,s+1,8—3,---,1,0)

- [(31'2>M(s, s+1, 542, s+3)/2“-3!]
X [4s(s+1)m*+2s(28*+5s+21)m + s+ 4s*+ 235’ + 205+ 72].
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In fact, in general
4.9) K(s, m)W(s+2,8+1,8—2,--+-,8—1+1,8—1—1,---,1,0)
= [i(i—1)(§ ig)M(s—Hz,- - s+3)/2‘+°3!]
X [48(s+1)m*+2s(2s'+ 55+ 4i+13)m
+8(s+1) (s +3s-+4i+12)+6(i+1) (:+2)] -
(4.10)  K(s, m)W(s+2,s,5—2,5—4,---,1,0)
= [(sjl)M(s—L s, 841, s+2)/25-15]

x [25(88+1)m?+ 5(168*+ 198+ 109)m + 45* +95*+ 595*+ 543+ 180
+(m+s+2)K(s, m)W(s+1,s,8—2,8—4,---,1,0).

The value of the determinant in the last term on the right side of
(4.10) is obtained by putting i=3 in the following general result:

(4.11) K(s, m)W(s+1,s,8-2,---,8—t+1,8—1—1,---,1,0)
[(z 1)( )M(s 42, s+1)/2”3(i+1):|
X [4s(s+1)m*+2s(28*+ 58+2i+5)ym
8t F48' 20+ T)8 + (20 +4)s+2i(i+1)].

Now K(s, m)W(s+1, s, s—2, s—3, s—5,--+,1,0) is obtained from (4.11)
by putting 7=4.

(4.12) K(s, m)W(s+2,s—1,8—2,8—3,8—5,---,1,0)
= [(s'gl)M(s—z,- . s+2)/2531][2(53—2)m+5s2+s+42]
+(m-+s+2)K(s, m)W(s+1, s—1,s—2,s—-3,8-b,---,1,0).
In fact, in general
(4.13) K(s, m)W(s+jJ,s—1,8—2,--+,8—1+1,8—1i—1,---,1,0)
=[(HT) (3T M2, -, sz i+ |
X [2{(@+.7—1)8—j}m+(i+j—1)82+(’i—.1'—1)8+.1'(i—1)(i+.7'+1)]i

+(m+s+75)K(s, m)
X W(s+j—1,8—1,8—2,---,8—i+1,s—1—1,---,1,0).

The value of the last determinant on the right side of (4 12) is ob-
tained easily from (4.6) by putting 71=4.

(4.14)  K(s, m)W(s+1,s,8—1,8—4,---,1,0)
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- [( s )M(s—l, s, s+1)/2°4!][8(s—l)s(s+1)m3
+12(s—1)s(s*+28+5)m?+2(s—1) (3s* +9s* + 325’ + 145+ T2)m
+8(s—1)(s*+45'+17s*+ 145+ 72) + 144].

Now, K(s, m)W(s+1,8—1,s—2,8—3,8—4,8—86,---,1,0) is obtained from
(4.6) by putting :=5 and K(s, m)W(s,s—1,s—2,5s—38,s—4,5—5,8—17,---,
1, 0) from (4.3) with ¢=6.

For the fourth raw moment we get

(4.15) K(s, m)W(s+3,s5+2,8—3,--+,1,0)
- [<31'2>M(s, s+1, 542, s+3)/285!]

X [168(8 +1)(s+2)(s+3)m*+8s(s+2) (s+3) (45’4 148+ 46)m®
+4(s+1)(s+2) (6s* + 48s*+233s* + 609s -+ 720)m*

+2(3+2) (48°+ 465°+ 310s* + 13208 + 35425+ 58025+ 6480)m
+(s+2)(s+3)(s*+11s°+81s*+373s* + 11185+ 22565 + 4320) + 2880].

(4.16) K(s, m)W(s+38,5+1,5—2,5—4,--+,1,0)
=[(*52)Me—1, -, s+ yzat][Bste-+1) Gs-+ 3y

+45(158* 4478+ 1895+ 213)m* 4 2(15s° + T0s* 4 403s* +966s*
+1842s+1440)m + 5s°+ 31s°+217s* 4 769s* + 2210s2+45123+5760]
+(m+s+3)K(s,m)W(s+2, s+1,s—2,5s—4,---,1,0).

The value of the determinant in the last term of the right side of
(4.16) is obtained from (4.9) by putting 1=38. K(s, m)W(s+2, s+1, s—2,
s—38,8—5,:+-,1,0) is deduced from (4.9) with ¢=4.

4.17) K(s,m)W(s+3,s,s—1,8—4,---,1, 0)
= [(S-é-z)M(s_l, ooy, 3+3)/283!:|[882(s—1)m3

+45(s—1)(38*+25+24)m*+2(s— 1) (3s* +4s* + 498>+ 245+ 180)m
+8(s—1)(s*+ 25"+ 25?4 245+ 180) + 360 |
+(m+s+3)K(s, m)W(s+2, s, s—1,s—4,---,1,0).

. The value of the determinant in the last term on the right side of
(4.17) is obtained from the following result by putting »i=3.

(4.18)  K(s, m)W(s+2,8,8—1,8—3,--, 8—i+1,8—i—1,-++,1,0)
=[G-2 (] Me—i+2, -, s+ 22+
X [8s(s—1){8(i+1)s+2(i— 1) }m*+4s(s— 1) {9(i+1)s'+ 2(Ti—1)s
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+2(64*+20¢+4)}mP+2(s—1){9(3+1)s* +2(117 4 1)s*
+(244¢°4-85¢4-17)s*+ 2(69* + 19 +-5)s+244(1+1) (i +2) } m
+8(s—1){3(141)s*+2(5i +1)s*+ 3(44*+ 15t + 3)s*+ 2(64*+ 197+ 5)s
+24i(0+1)(1+2)} +24(i —1)i(i4+1) (i +2) |+ (m +5+2)

X K(s, m)W(s+1,s8,8—1,8—38,--+,8—1+1, s—i—-l, -+, 1,0),

where the value of the last determinant on the right side of (4.18) is
obtained from the following :

(4.19) K(s, m)W(s+1,s,8—1,5—3,---,8—i+1,8—i—1,-.+,1,0)
= [(i—z)( ; >M(s——i+2,- ., s+1)/2”‘(i+1)4!]
X [8(s+1)s(s—1ym*+128(s—1) (8*+ 28+ i+ 2)m?

+2(s—1){88"+98*+ (65 + 14)s*+ (3i+5)s+ 6i(i+ 1)} m

+8(s—1){s'+48'+(3i+8)s"+(3i+5)s +6i(i+1)} +6(:—1)i(s+1)].
K{(s, m)W(s+3, s,8—2,s—3,8—5,---,1,0) is deduced from the following
result by putting 7=4.
(4.20) K(s, m)W(s+3,s,8—2,--,8—i+1,8—3—1,---, 1, 0)

=[@ -3 1) Me—i+2, -, s+ i+3)]

X [48{8(i+2)s+ (1 —6)}m?+25{6(i +2)s*+3(3i—2)s

+12i?+49i—6}m+8(s+1){3(i 4+ 2)s+ (51 — 6)s+ 12i(i +4) }

+12i(i+2) (i+8) |+ (m+ 8+ 3)K(s, m)

X W(s+2,s,8—2,---,8—1+1,8—1—1,---,1,0)

where the value of the determinant in the last term on the right side
of (4.20) is given by .

(4.21) K(s, m)W(s+2,8,8—-2,---,8—i+1,8—1—1,-.-,1,0)
= [(i_n(g ii)M(s—Hz, . s+2)/2‘+3(i+2)3!]
X [48{2(i+1)s+i—2}m?+28{4(i +1)s*+ (T —2)s+(62+19i — 2) }m

+8(s+1){2(i+1)s*+2(20— 1)s+6i(i+3)} +6i(i+1) (i +2)]
+(m+s+2)K(sv M)W(S+1, 8, s'_25 Tty S"—’l:+1, 8—’1:—1,' ) 1’ 0)’

where the value of the determinant in the last term on the right side
of (4.21) is obtained from (4.11).

(4.22) K(s, m)W(s+2,s+1,s—1,8—4,--+,1,0)
= [(8—52>M(s—1,. ., s+3)/2“][8(8+1)s(s-—1)m8
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+45(s—1)(3s* 465+ 31)ym*+2(s— 1) (3s*+ 9s* + 64s*+ 305+ 240)m
+8(s—1)(s*+ 45"+ 33s*+ 303+ 240) +480] .
K(s, m)W(s+2, s,s—1,5—3,8—5,---, 1, 0) is obtained from (4.18) by putt-

ing i=4 and K(s, m)W(s+2, s, s—2,3—383, s—4,38—86,---,1,0) from (4.21)
with ¢=5.

(4.23) K(s, m)W(s+1,s,8—1,8—2,8—5,---,1,0)
- [( : >M(s—2, e s+1)/2°5!]

X [16(s+ 1)s(s—1)(s—2)m'+16s(s—1)(s—2)(2s*+3s+11)m®
+4(3—1)(s—2)(6s*+ 128"+ 653> — s+ 240)m?

+2(s—2)(45° 4 68° 4 b4s* — 683+ 4625*— 6985+ 1680)m

+ 8%+ 143°—60s* + 269s* — 900s* + 2596 5> — 4800s + 57 60] .

K(s,m)W(s+1, 8, s—1,58—3,8—4,8—6,---, 1, 0) is obtained from (4.19)
by putting i=5; K(s, m)W(s+1,s,8—2,5—8,s—4,5—5,8—7,---,1,0)
from (4.11) with 1=6; K(s, m) W(s+3,s—1,s—2,8—3,5—4,38—6,---,1,0)
from (4.13) by putting j=38 and 1=5; K(s, m)W(s+2,s5—1,5—2,5—3,
s—4,8—5,s—17,--+,1,0) from (4.13) by putting j=2 and 1=6; K(s, m)
x W(s+1,s—1,s—2,8—3,s—4,8—5,8—6,5—8,---,1,0) from (4.6) with
1=7; and K(s, m)W(s,s—1,s—2,8—383,8—4,8—5,5—6,8—7,8—9,---,1,0)
from (4.8) by putting 7=S8.

5. Moments of second, third and fourth esf's

Using the values of the determinants evaluated in the preceding
section, the third central moment of the second esf, Wi, is obtained
in the following simple form :

G m{We)=[( § )M, s+1)2][56-1i@my
+(10s*—20s*+ 30s—23)2m + 5s* — 10s* -+ 255 — 263 4 21] .

Similarly the fourth central moment of Wi® is given by

62)  wmWoy=[3( 5 )Mis, s+1)/2]
x [4s(s— 1){(2m)* + 4(s —1)%(4s" — 35"+ 30s — 28) (2m)’
+(24s°—60s° - 408s* — 10565+ 18335 — 21735+ 1048) (2m)?
+(16s"— 363"+ 3845° — 1036s* + 26345’ — 4209s*
+4503s—2760) (2m) + 4s* — 85"+ 124s*— 340s° 4 1145s*
—2148s* 34795 — 33603+ 1944 .
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Further, the results of the preceding section can also be used to obtain

the first two moments of W and W, the third and fourth esf’s re-

spectively in the s¢&’s. It may be observed in general that

(5.83) p{W®}=K(s, m)W(s, s—1,8—2,---,8—1+1,8—i—1,---,1,0),
1::1’ e e y s

and the value of the right side of (5.3) is given in (4.3). Now using

the methods in section 3, we get

(5.4) { W®Y=K(s, m)[ W(s+1,s,8—1,5—4,---,1,0)
+ W(s+1,s,8—2,8—3,8—5,--+,1,0)
+ W(s+1,s—1,s—2,8—3,5s—4,8—6,---,1,0)
+ Wi(s, s—1, s—2, s—3, s—4, s—5,s—1,---,1,0)]

and
(5.5) p{W®}=K(s, m)| W(s+1,s,s—1,5—2,8—5,--+,1,0)
+ W(s+1,s,8—1,s—3,5s—4,5s—6,---,1,0)
+ W(s+1,s8,8—2,8—8,8—4,8—5,8—7,---,1,0)
+ W(s+1,s—1,8—2,8—3,8—4,s—5,8—6,5—8,---,1,0)
+ W(s,s—1,5—2,5—8,s—4,8—5,8—6,8—17,8—9,---,1,0)].

It may be pointed out that the values of the determinants on the right
side of (5.4) and (5.5) are available in the preceding section and using
these values and (5.3), the variances of W and W(” were obtained and
are given below.

56 m{W)=[3(§ )Me—1,5, s+ 12| =1 (s—2) @m
+ (s—2)(28'— 8s+7) 2m + s* — 48*+ 11s*— 205+ 20|,

and

G  m{ W)= [( s >M(s—2, cer, 1) 24]

X [2(3 —1)(s—2)(s—38)(2m)*+3(s —2) (s—3) (28*—4s+11)
X (2m)*+ (s—8) (6s*— 30s*+ 106s* — 2255+ 314)2m
+25°—18s°+ 89s* — 3185+ 8458 — 15008+ 1368] .

6. Approximations to the distribution of W

Using the results on moments of W given in (4.3), (4.7), (5.1) and
(5.2) the following approximation to the distribution of W{® is suggested:
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6.1) FW)= fo e (—a( WOy (WY
0< W< o0,
where
(6.2) v=8(2m+s+1)/2
and
(6.3) 2=2[s(2m+s+1)+2]/(s—1) (2m+s).

It may be pointed out that the first moment is the same for the
exact and approximate distributions. For further comparison, numeri-
cal values of the first four moments from the exact -and approximate
distributions and the ratios of the respective approximate and exact
moments and the moment quotients were computed (not given here) for
values of s=3, 4, 5, 7 and 10 and selected values of m. The tables show-
ed that the ratio of the respective approximate to the exact moments
tends to unity as m increases or s increases or both. On the basis of
these ratios the approximate distribution might be recommended for m=5
and above when s=3, m=3 and above for s=4, m=2 and above for
s=5 and m=0 and above for s=7 and all values of m and all values of
s beyond 7. The values of the approximate and exact standard devia-
tions, Bis and Bjs practically agree in the first two places at the smallest
values of m recommended for each value of s and this in turn almost
guarantees sufficient accuracy for upper or lower percentage points from
the approximate distribution. It may further be observed that an in-
teresting feature of the distribution of Wi is that it is asymptotically
normal for large values of m or s.

An alternate approximation (which is exact for s=2) is obtained by
replacing the value of v in (6.2) by s(2m+s)/2 and o in (6.3) by
2[s(2m+s)+2]/(s—1)(2m+s+1). But this second approximation is not
as good as the one suggested in (6.1) even for s=3.

7. Some remarks

It may be pointed that 2$& is distributed [11] as a chi-square

with s(2m-+s+1) degrees of freedom and hence the distribution problem
in this case is very simple. The results of this paper show that we
can also have a simple approximation to the distribution of the second
esf in the sé&’s. While the former chi-square distribution can be inter-
preted as the limiting distribution of Pillai’s V® criterion [11], [13], [14],
[17], the same is also true in the present case that the distribution of
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WS can also be considered as the limiting distribution of the second
esf in the s ’s following the joint density (1.1). It might also be pointed
out that the distribution problem studied in this paper has great use
since it has been shown that several tests based on the esf’s of the
characteristic roots have been observed to have monotonicity of power
and other optimum properties [1], [2], [3], [9]-

8. An example

The criterion W may now be used to test the equality of p-dimen-
sional vectors of ! p-variate normal populations having a common .co-
variance matrix. The values of m and » in (1.1) appropriate for this
test are given by

8'1 m=-— '1 —_ n=— N‘ l"— —1 Ky

where N is the total of | sample sizes. The data studied by Rao [19,
p. 263] may be used for the test, which consist of measurements on (1)
head length (2) height and (8) weight of 140 school boys of almost the
same age belonging to six different schools in an Indian city. The prob-
lem is to test the equality of the three mean characters from the six
different schools. Let S* and S be the sum of product matrices *be-
tween’ and ‘within’ schools for the three characters. These are avail-
able in Pillai and Samson [18]. Now

.0*78984 —.0'61351 .0°11246
(8.2) (S+8*) = ( .001388366  —.0°269036 )
.0'97857
and
.04684095 .11100391 —.00576916
(8.3) S*(S+S*)~! =( .00808723 .08898122 —.00120418 ) .
.01837418 .09115586 .05046243

Now, from (8.3), V®=600,+0,0,+6,0,=0.010340. Further from (8.1),
m=0.5 and n=65. For, this value of m and s=3, the first four mo-
ments, 8, and B; of W were computed using the results of sections 4
and 5, and their values are as follows:

=15, 1=142.5, 1£,=3600, =221400,
Vi, =11.9373,  5,=4.4788, /B, =2.1163,  £,=10.9030.

Now using the above values of 43, and 8, and extrapolating from
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“Tables of percentage points of Pearson curves, for given 3, and 38,
expressed in standard measure” (Johnson et al. [8]), the upper 5 per
cent point of W was determined as 38. Further, taking & =né,;
(1::1’. .-, s),

WE=nVPO=44,

which shows that the test rejects the null hypothesis of equality of the
mean characters of boys from six different schools. However, the test
does not reject the null hypothesis at the upper 19, level. This agrees
with (a) the findings of Rao [18] who examined the data using the A

criterion of Pearson and Wilks which is the product, ﬁ(l—ﬂi); (b) the
findings of Pillai and Samson [18] who tested the same hypothesis based
on the criterion U®= i} [6:/(1—6,)]= Zs]iii, and (c) the findings of Pillai

[16] who further considered the test of this hypothesis using the criterion
U, the (s—1)th elementary symmetric function in the si’s. Foster
[5], however, finds that the largest root is significant only at the upper
159, level.

The authors wish to thank Mrs. Louise Mao Lui, Statistical Labo-
ratory, Purdue University, for the excellent programming of the material
for the computations in this paper carried out on the IBM 7094 Com-
puter, Purdue University’s Computer Science’s Center.
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