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0. Summary

In estimating the population mean g, of the objective variable Y
(uni-variate), the optimum methods for stratification are studied which

minimize the variance of the unbiased estimator Y for g, based on
the concomitant variable X (p-variate). Especially, in case of propor-
tionate sample allocation to each stratum, the optimum stratification
above mentioned reduces to the optimum decomposition of the distribu-
tion function H(z) for the random variable Z=7(X), where 5(x) is the
regression function of ¥ on X. Further, a general method is shown by
which such an optimum stratification can be asymptotically attained.

1. Introduction

The problem of optimum stratification was first considered by C.
Hayashi [1] and T. Dalenius [2]. Their formulation for this problem is
as follows.

1-1° The distribution function F'(x) of the objective variable X is
absolutely continuous, and has the finite second moment and p.d.f. f(x)
which is positive over (—oo, c0). Though F(x) is discrete in the finite
population, it may be considered for convenience’ sake to be absolutely
continuous. In the consequence, the problem of optimum stratification
in the finite population is replaced by that of optimum truncations based
on the interval division in the infinite population as stated below.

1-2° The population 7 is classified into ! strata II,,--.,I,. The
ith stratum II; corresponds to the ith interval I,=[x;_,, «;) in the domain
of X, where —oco=u,<#,<--- <, ,<x,<--+<x,=-+400, and to the p.d.f.

f(@)/w;, wi=Sxi f(x)dxz. (The number ! of strata is predetermined.)
Ti-1
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1-3° The method for allocation {=.} of total sample size n is preas-
signed as proportionate allocation or Neyman allocation.

1-4° As an unbiased estimator for the mean y=Sm zf (x)dzx,
X=3wX, (f=>13\x,)
_i=1 i4diy i—'ajgl i

is used. Among all possible stratifications based on the interval division
{I,} stated above, the one which minimizes the variance V(X|{L}) of X
is called “an optimum interval division (stratification)” and it is denoted
by {IF}, L=[x¥x,, «F), (i=1,---,1).

Next, we shall sketch out the results, obtained up to now, of the
problem formulated as above.
1) Proportionate allocation (n;=w:n)

A necessary condition that {I}} is an optimum stratification is that
the relations

(L.1) xi=%(yi+pt+1), i=1,2,---,1—1,

where
1

pi= Sxi zf(x)dx and wi=S% Sf(x)da,
T Fi-1

are satisfied simultaneously for z,=xF.
2) Neyman allocation [n; =—le n
‘ jz_lea!

A necessary condition that {I}} is an optimum interval division
(stratification) is that the relations

(1.2) ol @ —p) _ ot + (@i—ps)’ , i=1,2,---,1—1,

g; Oit1

where

D O )
oi=— S(x ) @)da,

are satisfied simultaneously for x,=xF.

Though these results seem to be simple and usable, it is trouble-
some to obtain z¥* numerically by the successive approximation method,
since w;, p; and ¢? in (1.1) or (1.2) depend on z.’s and f(x). Thus various
computation methods, for obtaining x}’s approximately at one trial, have
been studied in many papers (see [5]~[12]).

By numerical investigations for various f(x), W. G. Cochran [13]
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and V. K. Sethi [14] found that the methods given by T. Dalenius and
J. L. Hodges, Jr. [9], [10] and G. Ekman [11] are satisfactory in precision
for obtaining approximate solutions to z¥’s. In doing so, Cochran ob-
tained an interesting result as a by-product that the optimum stratifi-
cation for equal allocation (n,=n/l) approaches to the one for Neyman
allocation, as [ becomes large enough (I=4). However, this fact has
not yet been proved analytically.

S. P. Ghosh [15] and H. Aoyama [16] obtained the optimum strati-
fication for f(x) in two-variate case x=(zx;, ¥;) among all possible lattice
divisions of the domain of « bounded by k and ! lines parallel to z,-
and «;-axes respectively. (k and ! are predetermined.) These results
leave much room for improvement to the general division of the do-
main of x.

Summarizing the results mentioned above, the following problems
are pointed out for further studies:

1) To obtain the optimum stratification for the general division of the
domain of X without restrictions of interval or lattice division. It will
be called “the general optimum stratification ”.

2) To obtain sufficient conditions that (!—1) end-points x¥’s of {I¥} be-
come optimum for the division of the domain of X within the limits of
interval or lattice one.

3) To obtain the optimum stratification for the objective variable Y
based on the concomitant variable X from practical point of view.

2. Formulation of problems

In section 3, we shall show the existence of optimum decomposition
{F¥(x)} of a given distribution function F(z) in the sense of minimizing

the variance V(X|{F}}) of the estimator X for the mean ¢ of F(x),
among all possible decompositions {F;} of F as stated below.

3-1° Let F(x) be the distribution function of the objective variable
X (uni-variate) and have the finite second moment.

3-2° The number | of strata is preassigned. The population I7
with F'(x) is classified into ! strata {I,}, and the non-negative and non-
decreasing function Fi(x) which is continuous to the right corresponds

to the ¢th stratum I, such that iﬁF,-(:v):F(x) for all z. We shall call
=1
{Fi(x)} “an l-decomposition of F'(x)”.
3-3° The total sample size n is fixed, and is allocated to each

stratum proportionately to each size, i.e. n,=wn, (i=1,---,1), where
w; = Fiy(+ o0).
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3-4° To show the existence of optimum decomposition {F¥}, i.e.
a decomposition {F}} such that

V(XI{F;"})=§;1§ V(XI{F.}).

However, the uniqueness of optimum decomposition {F¥} is not treated
in this paper because of its complexity and partly because it will make
sense to show its existence without treating its uniqueness.

In section 4, we shall treat the general optimum stratification for
the objective variable Y (uni-variate) based on the concomitant variable
X (p-variate) as follows:

4-1° Let G(x) be the marginal distribution function of the con-
comitant variable X, which we assume to be known. Let 5(x) be the
regression function of the objective variable ¥ on X, which we assume

to be unknown, but to belong to L*dG), i.e. Snpn’(x)dG(x)<00, where R?
denotes p-dimensional Euclidian space.

4-2° To consider all possible I-decompositions {G;} of G(x), i.e.
é Gi@)=G(z), for all x,

where G(x) is non-negative, non-decreasing function and G+ oo,---,
+o0)=w;. Such a decomposition {G;} will be called “a general strati-
fication for Y based on X”.

4-3° Let the total sample size n be fixed, and allocated to each
stratum proportionately to its size, i.e. n;=wn.

4-4° To obtain a general optimum stratification {G¥} among all
possible decompositions {G.} of G, i.e.

V(Y| {Gi*})=§g§ V(YH{G.D).

{G¥} will be called “a general optimum stratification for Y based on X”.
This problem reduces to the one obtaining an optimum decomposition
{H¥} of the distribution function H(z) of a new variable Z (uni-variate)
defined by the relation Z=7(X).

In section 5 a method is shown by which the general optimum
stratification {G}} can be attained asymptotically, if a jointly measur-
able function %(x, s) which converges to n(x) in the mean square is ob-
tained by using the prior information s. In section 6 a method for
construction of 7(x, s) mentioned above will be stated, which would be
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called “the randomized least squares method ” using an orthogonal ex-
pansion of n(x) in L*dG). In section 7 three examples will be shown,
by which the usability of our method is certified. In section 8 conclu-
sions are stated and unsolved problems are summarized for future studies.

3. General optimum stratification based on the objective variable
itself

Let {Fi(x)} be an l-decomposition of distribution function F'(x) of
the objective variable X (uni-variate). Fi(x)’s are all non-negative and
non-decreasing functions which are continuous to the right and satisfy
the relations

3.1) i F(x)=F(z), for all z,

and
Fy(+o0)=w;, (i=1,---,10).

Then, let us call an l-decomposition {Fi(z)} of F(x) “a general strati-
fication based on the objective variable X itself”.

Now, let us take a sample of size n, {(Xu,---, Xin), 1=1,---,1},
where (X, -, Xi,) is taken from the ith stratum 77, with the distribu-
tion function Fi(x)/w;. Then, we take

3.2) X=> X, (X'—_l_ e )
. =S wX, = 2 X))

as an unbiased estimator of the population mean p of X. It is well-
known that the variance of X can be obtained as

(3.3) VEI(F) =3 w2k,

where

=11 @-pydF@) and p=21{" sdF@.
w; - W

P —

If the total sample n is allocated to the ith stratum proportionately
to each size, i.e. n;=w;n (i=1,---,1), then the relation (3.3) becomes

(3.4) VEEN=L1" sape) -5 we.

We shall call {F¥} “a general optimum stratification” when {F}} mini-
mizes V(X|{F}}).
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Now, we shall give another expression to the I-decomposition {F}}
of F' for convenience’ sake to prove the existence of general optimum
stratification {F}}. It is easily seen from (3.1) that the measure dF; is
absolutely continuous with respect to the measure dF, i.e. dF,<dF.
Then there exists a measurable function vector ¢=(¢,,---, ¢,) such that

(3.5) dF(x)=¢(x)dF (), (¢=1,---,10),
and
3.6) é‘{gﬁi(x):l, 0<g(@)<1, ae. (dF).

Conversely, let us define {Fi(x)} by (8.5) for a given ¢=(g,---, ¢;)
satisfying (3.6). Then it is easily seen that {Fi(x)} satisfies (3.1), and
that {Fi(x)} becomes an l-decomposition of F(x). Let two measurable
function vectors be identified if they coincide elementwise except on sets
of dF-measure zero. Then, there is the one-to-one correspondence be-
tween @ and < (the set of all decompositions of F'). Therefore, we
can consider such a function vector ¢ to be a general stratification, and
the variance of X can be denoted by V(X]|g) instead of V(X|{F.}).

Now, let @ be the set of all function vectors ¢ satisfying (3.6), and
introduce the weak topology” into @. (See, e.g., Appendix in [18].)
Then we can easily prove the following two lemmas. (Proofs are omitted.)

LEMMA 1. @ is convex and compact with regard to the weak top-
ology, i.e. weakly compact.

LEMMA 2. U, Y and C are all convex and compact, where
@D U={u u=|"_sp@dF@), s a},
@8  W=lww=__s=)dF@),sea,
and
c:{(u, w); u=S: 2(x)dF (), w=S:° H(a)dF(x), ¢e¢}.

Now, since the first term in the right hand side of (8.4) does not
include ¢, the general optimum stratification ¢* in @ may be defined by

D Let & be a family of uniformly bounded measurable functions on a measure space
(X, A, p). The sequence {fa}, fa€<F, is said to converge to fe F weakly if Sf,.pd,u—-»

S Sfpdp for all functions pe L'(g). When f is a function vector, the above definition must
be considered for each component of f.
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the one that attains

3.9) sup é Wit

deo i=1

where

w={" p@ir@ and p=11" ss@iFe.

Let us consider the objective function

l 2 oo ’
(3.10) v, w)=3] % ui=S zp(x)dF(x),
=1 4 —o0
which is bounded and continuous except the origin on the compact sub-
set C of 2l-dimensional Euclidean space.
Since Sm

2 dF(x)<oo, it is easily seen that %%——»0 as w;—0 for
® i

2
any selection of ¢, When we define %:0 for w;=0, the function
i
v(u, w) is continuous on the compact set C including the origin. There-
fore, v(u, w) attains its supremum on C.

LEMMA 3. o(u, w) attains its supremum in the compact set C.
Namely, there exists (u*, w*) in C such that

(8.11) v¥=v(u*, w¥),

where v* is defined by

(3.12) vF= sup v(u, w).
(u,w):c

It should be noted that ¢* which corresponds to (u*, w*) is not
always uniquely determined in @.

Next, we shall show that the general optimum stratification ¢* co-
incides with an indicator function vector {Xu(x), 1<9<l} corresponding
to some interval division {I}, 1<t<l} of the real line (—oo, o).

It should be noted that w*>0, i.e. w¥>0 for ¢=1,-.-,I. In fact,
the assumption that w}=0 for some % leads to a contradiction that there
exists a better ¢ other than ¢*: We can select a ¢F, (wy>0), which
does not degenerate at one point if F(x) has increasing points more
than or equal to I. Let us divide ¢} into ¢, and ¢;, such that

U ja

u
wpt+wp=wf, uptupz=uf and —LF 2
Wi Wjq

where
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wj,,=g°_°m $,dF and u,,c=S°_°m ooudF,  (k=1,2).

Then, it is easily seen that

(3.13) Ui + Ui _ P = WinWi < Un _ U )2>0
Wi Wi, w¥ wf Wi Wi,

Let ¢ be defined by
¢=(¢iky' * %y ¢:k—1y ¢1>:k+11 Tty ¢j*-19 ¢j1’ ¢j2’ ¢;k+1; ct Y ¢2k)9

and v(u, w) be the function corresponding to ¢. From (3.13), it is seen
that ¢ is better than ¢*, i.e. v(u, w)>v(u*, w*), which contradicts the
definition of ¢*. Therefore, w* >0 and the supremum operation in
(3.12) may be considered within the range w>0.

Now we shall show that the general optimum stratification ¢}, for
any fixed w>0, will correspond to some interval division in the wide
sense as stated below.

LEMMA 4. Let @, and U, be defined by

(3.14) 0, = {¢; S: $(@)dF (z)=w, ¢ ¢ q)}
and
(3.15) U= {u; u= Sl 2d(@)dF (), 6 € q),,,}

respectively for any fixed w>0. Then there exists a general optimum
stratification ¢35 in @, which corresponds to an interval division such
that each component ¢%; of ¢% coincides with the indicator function X
of the ith interval IF except in its end points. Namely, (¢k,,---, ¢%)
may have positive probability masses in common at the end points.

PRrROOF. It is noted that U/, is convex and compact like ¢J. The fact
that ¢} corresponds to some interval division except in its end points is
equivalent to the one that there exists a real number ¢ satisfying the
relation
(3.16) S“; ﬁi(x)dF(w)=Sc "ot (@)dF(@)=0, for i#j,
where ¢3; denotes the ith component of ¢%. (Here we suppose that
uf/w;Suf/w;.) Let us show that the assumption of non-existence of
such a real number ¢ leads to a contradiction.

Under the assumption stated above, it is easily seen that there ex-
ists a real number d (uf/w;<d=<u}/w,) satisfying the relations
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3.17) S;,o £ (x)dF(z)>0 and Si“’ *,(@)dF () >0.
Then there exist k, and k, (0<k;, k,<1) such that the relation
(3.18) |, #L@AF@ =k gt@dF@)

is satisfied. Now let ¢=(¢,, -, ¢;) be defined by
ii(x)+k2¢ij(x) if x<d,
Pu(x)=1 Phix) if x=d,
¥i()—Iyph () if x>d,
i) —kpk () if x<d,
$,(x)=1 ¢%(x) if z=d,
ohi(x)+hpb(x)  if 2>d,
and ¢,(x)=¢%.(x) for all z (h+7, j).
Then it is easily seen from (3.18) that ¢ € @,, i.e., Si d(x)dF(x)=w,
and that Sw zp(x)dF(x)=u € Up. On the other hand, from (3.18) and
(8.19), it is easily verified that the relations

(3.19)

w=ut— (k| sgt@AF@—h w8 @dF@]| <ut,
w=uf+ ] sor@dF@—k| ssti@aF @] >us,

and w,=u}¥, (h#1,7), hold. Hence it can be seen after some calculations
that the relation

v(u, w)—v(u*, w)=wu,;—u¥) {(%;—%:)+(Z—;:—%)} >0

holds. Since this result contradicts the definition of ¢%, there exists a
real number ¢ satisfying (8.16). Thus our assertion has been proved.

Next, let us consider the supremum of v}=w(uk, w) corresponding
to ¢F, given in lemma 4, for various we 9. It is easily seen that the
relation

(3.20) v*¥= sup v}
weqy

holds, where v*=wv(u*, w*)=su£> v(u, w) is given in (3.11). From the
de

compactness of 9/, there exists a w* which attains v*, so there exists
a general optimum stratification ¢* corresponding to w*. Considering
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lemmas 1 to 4, together with the remark just stated above, we can show
the following theorem.

THEOREM 1. Let F(z) be the distribution function of X (uni-variate)
with the finite second moment and increasing points more than or equal
tol. Let @ be the set of all general stratification ¢, and the total sample
size m are allocated to each stratum proportionately to each size, i.e. n,
=wm. Then, there exists a general optimum stratification o* in @ which

minimizes the variance V(X|¢) of the unbiased estimator X for the pop-
ulation mean p, given by (3.2). Moreover, @* coincides with the indicator
Sunction vector {2} of an interval division {I}}. Ewvery end point x*
in {I¥} can be taken at a continuity point of F(x) such that the condi-
tion (1.1) is satisfied.

Remark. 1) We call z=a “an increasing point of F(x)” if F(a+0)
—F(a—3)>0 holds for any 6>0.

2) The last assertion in the theorem can be verified as follows:
We can assume !=2, u;+u,=0 and u,<u, without loss of generality.
Let the optimum division point x¥ be a discontinuity point of F(x) in
a vicinity of which F(x) is strictly increasing. Then the differential
variation év of v(u, w), corresponding to the differential variation ow, is
expressed by

sv~ W20 — (i + ) Jow -+ o (Sw)?}
(Wi —ow) (wf + 6w)

’

where
pf:ui“/’w:", ’l:=1,2.

Hence, we can see that z¥ can not be an optimum (maximal) point,
but that xf can be optimum either if F(x) is continuous and increasing
at z=uxf or if F(x) is discontinuous at =z} and not strictly increasing
in a vicinity of x¥. Even in the latter case, we can take z* as a con-
tinuity point of F(z) for which (1.1) is satisfied.

This theorem gives a complete extension of the result, obtained by
C. Hayashi and T. Dalenius for the proportionate allocation, in the sense
that there exists a general optimum stratification ¢* for the general
distribution function F(x) (without assuming its absolute continuity),
and ¢* corresponds to a “true” interval division {I}} of the real line.
The latter part of theorem 1 has a meaning, since the general optimum
stratification ¢* does not necessarily correspond to the interval division
{I¥} for Neyman allocation (K. Isii [19]). Moreover, K. Isii [19] shows
that the general optimum stratification ¢ also plays an important role
in proving the existence of optimum ¢* in the case when X is multi-
variate.
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4. General optimum stratification for objective variable based on
concomitant variables

In this section, we shall give an answer to the question given in
the formulations 4-1°~4-4° in section 2. At first, we introduce a meas-
urable function vector ¢=(g,,- - -, ¢,) corresponding to the I-decomposition
{G:} of the marginal distribution function G(x) of the concomitant vari-
able X (p-variate), i.e. ¢ such that

4.1) dG(x)=¢(x)dG(x) for all z, =1,---,1
and
4.2) Th@=1, $@)20, ae @G).

Let us call ¢ “a general stratification for the objective variable Y based
on the concomitant variable X”. TUnder the general stratification ¢ for

Y based on X, let us consider the unbiased estimator ¥ for the popula-
tion mean g, of Y such that

L
(4.3) =3 w:Y,,
i=1

where

f’;=—;—§l’i, and w¢=S d(x)dG(x).
$ J=1 R?

For the proportionate allocation (n;=w;n), it is well-known that the
variance V(Y |¢) of ¥ under ¢ becomes

@d  VTP=1{al-no+3| @ -mls@d@)],

where ¢; is the population variance of Y, 7yy is the multiple correlation
ratio of Y on X, p is the mean of Y in the 4th stratum, and x(x) is
the regression function of Y on X. The first term in the bracket of the
right hand side of (4.4) does not depend on ¢, and becomes small as 7yx
approaches to 1. The second term, however, depends on ¢. Therefore,
it is sufficient to show the existence of the optimum ¢* which attains

45) inf 31 [0)— I ()dG(@).

pe® i=1

Since

gl S RP [7(2) —pu] () dG(2) = S RP 7'(x) dG(x)—,é Wikt »
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it may be sufficient to show the existence of ¢* which attains

1 2
(4.6) v*=sup 3 -4,
$e0 i=1 W),

where
U= SRp 7]¢;dG and W= SRp ¢idG .

Let us consider the transformation Z=5(X). Let H(z) be the dis-
tribution function of Z, and suppose that the number of increasing
points of H(z) is larger than or equal to I. Further, let ¢=(¢f,---, ¢0)
be the l-decomposition of H(z) induced by ¢ through the transformation
Z=x(X). Then it is easily verified that the relations

@1 ui=81z¢t(z)dH(z) and wi=S°_°w</:i(z)dH(z)
hold. Now, by applying theorem 1 with H(2) and ¥ (the set of all pos-

sible ¢) in place of G(xr) and @, we can show the existence of ¢* which
attains

l u2
4.8 sup >} —-
$e¥ i=1 Y);

and that ¢* coincides with the indicator function vector {X;} corres-
ponding to an interval division {I*}, I¥=[z¥,, 2¥), of the real line (— oo,
o). Further, division points z¥’s can be taken at continuity points of
H(2) by the remark of theorem 1. Hence, the general optimum strati-
fication ¢*, corresponding to ¢*, can be expressed in the following form:

if p(x) e IF,
otherwise (1=1<0).
Therefore, we obtain the following theorem.

THEOREM 2. Under the assumptions that n(x) € L(dG) and that the
distribution function H(z) has the increasing points more than or equal
to 1, there exists a general optimum stratification ¢* for Y (uni-variate)
based on X (p-variate), and ¢* is expressed in the form (4.9), where H(z)
denotes the distribution function of Z=7(X). (The sample allocation is
supposed to be the proportionate one.)

1
(4.9) *a)= { 0

5. Asymptotically optimum stratification for Y based on X using
prior information s

In section 4, we have seen that there exists a general optimum
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stratification ¢*=(g},---, ¢¥) for the objective variable Y based on the
concomitant variable X, and that ¢* is expressed in the following form:

if y@)eIF, IF=[gh, 2%

1
5.1 *(x)=
(6.1) (@) { 0 otherwise, (1=1<0)

where {IF} is an interval division of the real line (—oo, ). However,
we can not get such a ¢* into our hand at once, since the regression
function 7(x) is generally unknown on which ¢* depends.

In this section, we try to obtain an asymptotically optimum strati-
fication ;S*(w, s) based on the estimated function 7(x, s) for the regres-
sion function 7(x), using prior information s. The procedure to obtain

ngS* will be stated in the following way.

5-1° Let s={(X., Y)),1<a<m} be the prior information (the 1st
sample) of size m and ¥Y={(Y,,---, Y.,), 1<4<l}, the 2nd sample, which
is independent of s. Based on the second sample ¥, the estimator Y for
o is constructed. Let us assume that there exists an estimated jointly
measurable function 7%(x, s) in L*(dG-dF) for »(x), satisfying the condition

(5.2) lim | 5@, 8)—7(0)dG@AF(6)=0,

where F'(x) denotes the distribution function for prior information s,
which is defined by the natural conditional distribution of Y, given X,
and the marginal distribution of X obtained by transforming the natural
G(x). :

Further, let us assume that the increasing points of fI(z, s) are
larger than or equal to I (the preassigned number of strata) for each
fixed s, where ﬁ(z, s) denotes the distribution function of the random
variable Z(s)=7(X, s).

5-2° To obtain the asymptotically optimum stratification 3*(9:, 8)
for a.a. s in accordance with the procedure stated in section 4, consider-
ing 7(x, s) to be a regression function instead of the true regression
function 7(x) for a.a. fixed s. It is possible because of the assumptions

in 5-1° and theorem 2 in section 4. Here, it should be noted that $*(x, s)
coincides for a.a. s with an indicator function vector {Xzs., 1=<i<l},

where E¥(s)={x; 7(x, s) € I¥(s)} and {I}(s)} is a suitable interval division
of the real line (—oo, o), and that 8*(:1:, s) is not always jointly meas-
urable.

5-3° Let the loss L,(s), caused by using the asymptotically optimum
$*(x, s) instead of the optimum ¢*(x), be defined by
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(5.3) L (s)=v*—v(ii*(s), w*(s)) 20,
where

e w=3M, are=( e 966,

are)=| 4t 96

and v* is defined by (4.6). Then, we can show that “the upper ex-

pected loss” of L,(s) tends to zero as m —oo. (In this sense, 3* may
be called “asymptotically optimum ”.)

LEMMA 5. For any jointly measurable function (x, s) in LXdG-dF),
the inequality

(5.4) L[, e 0s@iew]'s| v, sace

=1 w,
holds, where ¢ denotes a gemeral stratification for Y based on X and w,
=\, $:i(x)dG(x).
PROOF. Since {(z, s) is square integrable in z for a.a. s by the
. l
Fubini’s theorem, it holds a.e. (@F) that wo>| cde=31{ (ic—pl+ )
vy N st =1 2 J0C —
¢,ngi§ w,yi, where ”i_ESmwidG' For any s where Sm’c dG = oo,

the inequality (5.4) holds clearly. Thus, our assertion has been proved.

LEMMA 6. Under the assumptions in 5-1°, for any ¢ in O the in-
equality

(5.5) [ ((8), w)—v(u, w) | < V7(s)-5(s)
holds, where

i) =| @ 996w, u={ (e)@ac@),
=|,,0006@), 160=| B+ric and so={ G-irac.

PROOF. By the Schwarz’s inequality, we obtain

(5.6)  |v(i(s), w)—v(u, w)[—'z [“%u:] [i(s)— ui][

\/é [i(s) +u.]* \/g [%:(s) —u.]*

w; w;
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Applying lemma 5 to (5.6) for {=7%=+7, we can obtain the inequality
(5.5).

LEMMA 7. Under the assumptions in 5-1°, there exists a constant
K, independent of m, such that the imequality

(5.7 SR,M V7(s)-0(s) dF(s) < KV 6,

holds, where 6,,,=Sg[ﬁ—n]2deF.

PROOF. Applying the Schwarz’s inequality, we obtain

Rr?

68 | .. vieww dresy |, TOIFGNY | , 8aF () .

By the definitions of 7(s) and 4(s) in lemma 6, we can see that

(5.9) Lm 3(s)dF(s)= SS [ —7PdGdF=5,
and
(5.10) SRM 7(s)dF(s)= S S 5+ dGdF.

Since it follows from (5.2) that 6,—0 as m — oo, we can see that
(5.11) limS , 7(s)dF(s)=4S 7dG(x).
m—voo ) R*™ RP

Hence, the existence of a constant K in (5.7), independent of m, can
be easily proved.
By lemmas 5, 6 and 7, we can evaluate the “upper expected loss”

L, of L,(s) as in the following theorem.

THEOREM 3. Under the assumptions in 5-1°, the loss L,(s), caused
by using the asymptotically optimum 3*(@‘, s) instead of the optimum
¢*(x), can be evaluated by the imequality

(5.12) 0 = La(s) = v*—v(@*(s), W*(s)) = 24/7(s)-8(s) ,

where
vi=v(u*, w*), u*=S 7¢*dG, w*=S ¢*dG,
RP RP
@)= wirae, wr={_ gre,

and 7(8) and (s) are given in lemma 6.
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Further, the upper expected loss L, of L,(s) (see the remark 3) can
be evaluated by the inequality

(5.13) 0<L,<2K+v3,,
where K and 5, are given in lemma 7.

PROOF. Putting ¢=¢* and ¢=¢AS* in (5.5), we can obtain the in-
equalities,

(5.14) v* < 0X(s) + V7(s)-0(8) ,

and

(5.15) [ 0(@*(s), WH(s)—D¥(s) | < V7(s)a(s) ,
where

D*(s)=v(R*(s), *(s)) and ﬁ*(s)=SRp$$*dG.

From (5.15), we can get easily the inequality
(5.16) PH(8) < v* + VI(s)d(s) -
From (5.14) and (5.16), we obtain the inequality
(5.17) | 94(s)—v* | < VT(5)-8(s) -

Thus, we can obtain the formula (5.12), from (5.15), (5.17) and the re-
lation that v*—wv(@*(s), w*(s))=0. The inequality (5.13) is a direct result
of (5.12).

Remark. 1) The asymptotically optimum stratification 3*(:1;, s) is
not necessarily uniquely determined for each fixed s.

2) For any selection of $*(a:, s) for each s among all possible gAS*’s,
the evaluation formulae (5.12) ‘and (5.13) always hold, but 3*(0&, 8) is not
necessarily jointly measurable. Therefore, v(#*(s), W*(s)) and L.(s) are
not necessarily measurable in s. Hence we can not consider the expected
loss of L,(s) in the usual sense. '

8) The “upper expected loss” L, of L,(s) in this theorem have to
be considered in the following sense. The upper integral of a non-
measurable function f(x) is defined usually by ‘

(5.18) Sf (x)dp(x)= }rg Sg(w)dﬁ(w) ,

where g(x) varies over the family of all measurable functions dominating
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f(x) a.e. with respect to the measure gz. L, can be defined by (5.18)
taking L,(s) for f(x).

4) TUnder the assumption of (5.2), we can see that the upper ex-
pected loss L, tends to zero as m—oco. In this sense, 3* may be called
“asymptotically optimum ”. In practical situations, however, 3* is used
for finite m. Therefore the above mentioned assertion can be taken as
its mathematical justification, and the following remark will be impor-

tant in practice.
5) We can consider J,, appearing in the evaluation formula (5.13),

to be a measure for the degree of approximation of $* to ¢*. So we
shall show a method for construction of %(x, s) satisfying (5.2), and ob-
tain $*(x, s) based on this 7(x, s) in the next section.

6) The constant K can be taken as 2 \/ SRP 7'dG=2]|n|| for sufficiently

large m.

In connection with theorem 8, we shall mention some theoretically
interesting results. Let 9* be defined by

(5.19) o*=sup |, o@6), w(E)FE),

where @, is the set of all jointly measurable function vectors ¢=(g,,---,
¢,) satisfying the relation, for any fixed s

(5.20) g@(x, 9=1, ¢z, =0, for all o, a.e. (dF).

Then the following relation can be obtained as (5.17),
(5.21) |7*—v* | KV 6, -

Moreover, we can show that 7*(s), given in (5.15), is measurable and
integrable in s, and that the inequality

(5.22) w=| , v@iFe (s||7dedr)

holds from the definition of 9*(s). If the equality holds in (5.22) and if
there exists a 35* in @, which attains %%, then the relation

(5.23) WTHE), %) =0%(6),  ae. (dF),

D Prof. K. Isii pointed out to the author that the equality in (5.22) always holds and

that there exists a jointly measurable function ¢*(z,s) in @; which attains 5* in (5.19).
These results will be published in the near future.
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must be satisfied, where ﬁ*(s):Sﬁ{S*dG and z’v*(s)=S$*dG. This rela-
tion implies that among all possible optimum stratifications for each s

we can take $*(m, 8) so as to coincide with the jointly measurable qz*(x, s)
a.e. (dG) for a.a. s. In such a case, the loss function L,(s) may be con-

sidered to be measurable in s, and the expected loss L, can be defined
in the usual sense.

6. Construction of estimator for regression function

In section 5, we have shown the existence of an asymptotically

optimum stratification ngS*(x, s) under the assumption that there exists
an estimated function 7(x, s) for »(x) satisfying the condition

©6.1) 5,,.=SS[$(¢, 8)— (@) dG@)dF(s) >0  as m—oo.

In this section, we shall show the existence of 7(x, s) stated above,
using the orthogonal expansion in L¥dG). Of course, it is supposed that
7(x, s) € LX(dG-dF') is jointly measurable and 75(x) € L*(dG). Let {¢(z),
7j=0,1,---} be a C.0.N.S. in L¥dG). Then, it is wellknown that the
relation '

6.2 lim | [7(e)—7(@)1'dG(z) =0
holds, where
(%)= jéo a,4,(x) and a;= SR‘, 7$;dG .

On the other hand, considering that 7(z, s) € L(dG) a.e. (dF), we can
obtain the relation '

(6.3) lim | [, 5)—7.(z, )PdG@)=0,  a.e. (@F),
where »
7o, 9= £ @) and as)={ i@ 94,@)H6m).
It is noted here that a,(s) € L*(dF’), because we have
| mai@dF@=| | 7@ 9d6@dFe) | si@d6@ <.

Now, we shall construct an unbiased estimator 7%.(z,s) for 5.(x)
such that
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(6.4) 7%, 8)= 2 8,(8)$,(®),
with @,(s) subject to the condition

Skm a,(s)dF(s)=a, and S a2(s)dF(s)< 0.

Rim
Since %,(x, s), defined in (6.4), satisfies the relation
(6.5) [\ 9—1@Fd6@dF @)= S o+ 3 a,
where

ajzstmb,dG and 'v,=SRm [@;(s)—a,l’dF(s),

it is sufficient for proving (6.1) to show that there exists a 7.(z, s)
satisfying the condition

(6.6) j‘év,—»O as m-—>oo,
=0

where m may depend on r. For constructing such a %,(x, s), the follow-
ing relations are useful (see, Ermakov and Zolotuxin [20]): For any
f € LXdG) the formulae

)

6D |, L dGe) 6= f@e@d6e)

o (r+1)!
and
6.8) IRER I ]’F%)!da(x.,). - -dG(,)
={ , r@ac@-3[|  r@e@icE)
hold, where )

Do(@e) - - - Po(2r)
0=0(To, * +, T,)= COREREACH) , P>y, 0, x)= _lzof(xj)gif,

----------

Sl’r(mo) c ¢’r(wr)
and £2,; is the (7, /)th cofactor of w.

LEMMA 8. If the random wvector (Xi,---, X!) is distributed accord-

ing to the joint probability distribution iﬁﬁ_yﬂ ﬁ dG(x)), then the
! =0
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Jollowing relations hold :

(6.9) Ef “’;gf’ )gf) L= r@) @G =a,
and

This lemma is obtained directly from the formulae (6.7) and (6.8)
by putting f=7. It is noted that Pr{(x},---, z}); o(x},- - -, /)=0}=0.

LEMMA 9. If the prior information s={(X},Y)),0=j<r} is distri-
buted according to the joint probability distribution

i(a(“”T-’”) 11 f )| 2)dG (),

then the estimator

(5= Ko, X)

(6.11) (X, X))

1s unbiased for a;, and its variance is given by

(6.12) V(ai(s))zjéo SRP .. S ()2 DT +1)' ﬂ dG(x] )+j§‘.;1 a;
= S I @)dGE)+ jz a,

where o (x))=V(Y}| Xj=x)), f(¥'|2') is the conditional p.d.f. of Y' (the
natural one) and o@(X},---, X))= éY:’-Qu-

PROOF. Since E(Y}| X|=x))=y(x)), it is easﬂy seen from (6.9) that
@s) is unbiased for a,. Next, we shall prove (6.12) in the following
way. It is easily seen that

Sl ([ O, XD (X, XD)
V(aL(S))_E {<|: w(X(,)y M) X;) w(X{)’ ) X,) ]

o))

O_(Xly e, XD T WXL, -+, X0)
o) v e )
o X x) U e, x0

Noting (6.10) and E{(Y]—n(X))(Yi—9(XD))| X]=2}, Xi=wl} =d.d"(x}), we
can obtain (6.12), where d,,=1 or 0 according to j=Fk or j#k.
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In the above discussion, we have supposed that {(X},Y}), =0,1,
--,r} are mutually independent.

THEOREM 4. Let s9={(X};,Y/), j=0,1,---,7r}, (g=1,-+-,p), be a
set of mutually independent prior information, each of which is ident-
1eally distributed according to the probability distribution of s given in
lemma 9. Then the estimator

(6.13) Tucr s, 8)= 31 8,(8)4,(@)

is unbiased for ».(x), and satisfies the relation

(6.14) lim SS [ocr+n(®@, 8) —7(2)"dG(x)dF (s)=0
for a suitable choice of p=p, (depending on r), where
(6.15) &i(s)=% JaE),  s=E 8,

and a@,(s9) is given by (6.11) for s=s.

PROOF. By lemma 9, it is easily seen that G,s) is unbiased for a;
and its variance is given by

(6.16) V[a,.(s)]=% {SRP P@)dG() + 3 ai].

From (6.5) and (6.16), we obtain at once

6.17) || Gsni@, )= n@PdGEaFe)
=4y, A@de@+(1+7L) 5 g

=r+l

0
":jl oi(1— »yyx)+(1+"‘+1)]i a

r+1

[NeY

Since 3 a}—0 as r-—>oo, the relation (6.1) holds for suitable
J=r+1

selection of p corresponding to . Thus our assertions are proved.

This theorem gives a method for constructing 7(x,s) satisfying
(6.1). Moreover, it is easily verified that our method is a randomized
least squares one in the case of m=p(r+1) in the sense that @’s are

obtained as solutions which minimize E{Y’ Z‘, a,gb,(X’)}
Further, it should be noted that the second term in the right hand
side of (6.17) vanishes if z(x) € L}(dG), i.e. n(x):jZajgb,-(:c). In cases
=0



122 YASUSHI TAGA

where 7(x) can not be represented in the finite terms, the usual (non-

randomized) least squares method could not give an unbiased estimator

for a,. For simplicity, let us consider the case where the first sample

size m coincides with the degree » of the orthogonal expansion 7-(2)

approximating to 7(x). Then, the usual least squares estimators (@/(s),
-+, @X(s8)) for (ay---,a,) can be expressed in the following way.

~7 — r L;j
(6.18) @(s)= 2 Ly i
where
=1 N Y,@), =i 3 g5 6,(@),
r+1 i r+1 «=o

L=det(li.!)’ (ir j=09 1) 29' ° r)r 8={(xay Y:)’ Oéaé’r}r

and L, is the (¢, j)th cofactor of L. We can easily show that @/(s) is
expressible in another form using the determinant » and o defined in
(6.8):

(6.19) al(s)= 2@, @)
w(xO) * yxr)

This functional form of @(s) apparently coincides with that of the unbiased
estimator @,(s) given in (6.11). However, it will be shown that al(s)
given by (6.19) can not be unbiased for a, unless 7(x) is expressible in
the finite terms of expansion by {¢,(x)}. In fact, we can obtain

(6.20) E{d(s)} =200 2) o4 $hog @
(%, * + +, X) =

Since the second term of the right hand side of (6.20) does not vanish,
@i(s) is not unbiased. Therefore, we can not construct 7-(x, s) satisfying
(6.1) based on the usual least squares method. On the contrary, in our
method, the bias term in (6.20) can be removed by changing non-random

variables (xo, -+, x,) into random variables (X}, - - -, X?) distributed accord-
ing to " +1)' ;l;[dG(oa) It should be added that @/(s)= it Y)i")' is also

unbiased for @; with the natural distribution ﬁ fy] xD)dG(x)).
k=0

In practical situations, an orthogonal polynomial system {P.(x)} may
be recommended for {¢.(x)}. We shall mention below sufficient condi-
tions under which the orthogonal polynomial system {P,(x)} associated
with a given G(x) becomes complete in p-variate case, i.e. x=(2y,-+, &,).
They are:
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(6.21) SRplxil"dG(x)<oo, for i=1,2,-+,p; k=1,2,+-,

and
. 1 P R k 1/3k _
om gkl e
Instead of (6.22), we may take
(6.23) lim l[i} p:k]”’" =0,
k—co i=1
where

- SRP 2*dG(x).

7. Examples

i) Linear regression case

We shall give two typical examples in contrast to the one in non-
linear cases, though they are not so suitable for our method.

Example 1. Let ¥ and X be one-dimensional variates, and 7(x)
=B+Bx. In this case, it is easily seen that

V 1 2 ), 0 ! 2 g3 ; Ot
(7'1) V(Yl ¢)='—{0'3(1_‘Pm)+1001—7 ) 'wta'u} =—(1—P01‘—,> ’
n gy =1 n g1
where

A=V(Y), =V, = @—m)pdGw),

1 oo
o= wtr—m), M= —]:—S rd(x)dG(x),
i=1 W; J—=
m=E(X) and pu=Cor(Y, X).

2

. « s e s . e s g
Then, we can obtain ¢* minimizing V(Y|¢), or maximizing =2,
g

among ®. Namely, ¢* is nothing but an optimum stratification for G(x).
Therefore, the estimation of 7(x) and ¢*(x) using prior information s
becomes unnecessary if G(z) is known.

Example 2. Let Y be a one-dimensional variate, X=(X,, -+, X,) a p-
dimensional variate distributed according to N(g, 2), n(x):ﬁ.,+é‘, Bix;,
and V(Y| X=x)=¢* (independent of z). In this case, we can use the



124 .. YASUSHI TAGA

usual (non-randomized) least squares estimators (ﬁn, [31,- .., Ep) for (B, Bi»
-+, B,) based on prior information s={(x*, Y!), 1<a<m}, where (z,
-+, ) are non-random variates representing observational levels,

f=7'—3 B, r=13%y, 7= Shup,
Jj=1 m a=1 m a=1
(7.2) B=l Lo, =L 3 (v— )P —z),
k=1 L m e=1 A

(@07 (77, L=det(l),

and L, is the (g, k)th cofactor of L (1=<j,k<p). Then, it is well-known
that (ﬁu, El, -+, B,) are unbiased for (Bos ﬁl, ++, B,), and their variance
and covariances are given by ‘

V(ﬁo)=%, Cov(Bu B)=0, (1<i<p)
(7.3)

Cov (@, fo=-2Le, (1<j, k).
Let us put Z=7(X)=f+ 31 4, X, and Z=5(X)=5, +;ﬁ B,X;, where
j=1 =1
random variables (Xj,---, X,) have to be considered implicitly in the
second sample based on which the estimator Y for y, is constructed. ‘Then,
it is easily seen that Z and Z are distributed according to N(y(x), 8'Z8)

and N(3(), ' Zf) respectively, where 8=(8,- -+, ), B=(Biy- -+, ByY, u=(,
-+, 1) and p;=E(X}), j=1,---,p. Further, we can see that

(7.4) - Cov(Z, Z)=p'3B.

Now, the optimum stratification ¢* for Z can be defined by the
interval division {I¥, 1=<¢<1}, I¥=[z},, z¥), such that
(7.5) Zr=n()+z, v 28, (1=igi-1),

where 2,’s are end-points of the interval division {I} corresponding to
an optimum stratification ¢ for N(0,1). (3s are obtained numeriéally
by Sethi [14] for I<5).

On the other hand, the optimum stratification qAS* using s for Z is
defined by the interval division {T¥, 1=<:<l}, IF=[zk,, 2F), such that

(7.6) Br=7w+2VEZB , (=isi-1).

Noting that w}=1#}=1w, we can obtain, after some calculations,
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u; =71’L'ﬂo+fi «/.3’2.6 y

(7.7) ~
ur =wiﬂ0+7i_ﬂ——£ ’

VB'z

where

~

Ti=SZi t_ e"z/zdt.

Zia + 2z
Thus, we obtain
L gk
2 l* =‘u§+KlﬂIZ,B9
i=1 wi
(7.8) ook 757 2\2
= 57

i

where K,=3>) 7l

~

i=1 Y i
mum stratification ¢ in N(O, 1).
Thus, we obtain:

(1.9) V(Y| $9) =L (o1 —eh0+(1— KDF'Z8)
and

isq_ (BZB)
(7.10) VIRV I8+ K toze— s @2y,

where pyy denotes the multiple correlation coefficient of ¥ on X. The
second term in the right hand side of (7.10) is non-negative and.can be
regarded as the loss caused by using ¢* instead of g¢*.

Evaluating the expected loss, mentioned above, asymptotically, we
obtain the inequality

(7.11) E{p'z,s (Bzpy } 93 (1—pb ) tr(QL-Y) +o(m-Y),
BB m

where Q=3—388'2(8'2B)* and the constant factor K;/n is neglected.
Finally, we shall propose a problem how to select observational
levels x=(z,- -, ) optimally so that tr(QL') in the right hand side
of (7.11) is minimized. We shall call the minimizing levels “the asymp-
totically optimum design” and denote it by x*. The minimum of
tr(QL™) can be obtained in the following way: Under the condition
tr(L)=c (any positive constant), ‘
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(7.12) min tr (QL“‘):tr(QL;"")=%[tr(Q"’)]’,

where
L¥=c@Q"[tr(@/)]*.

Therefore, we can determine the asymptotically optimum design x* for
any positive constant ¢. However, as is seen from (7.12), x* depends
on @ which includes unknown parameters (8;,---,8,). To tackle with
such a situation, more artificial means will be necessary. Detailed dis-
cussions will be done in the other chance.

if) Non-linear regression case

Example 3. Let X be a one-dimensional variate, distributed accord-
ing to N(0, 1), p(x)=€* (2>0), and V(Y| X=1x)=d%) € L}dR), where

1 (* 2

G(x =—__—-S e tAdt.
(@) V2 )=

By easy calculations, we obtain the results

U= Sl 2(2) $(2)dG (@) =€ [G(,— ) — G(x: -1 — )],

(7.13) )
w=|"_4(@d6@)=G) 6.,
and
& w_ ad [GE—N)—G@, ,— T
(7.14) v(u, w)--g; ” é = Ga)—Glz.r) ,

where ¢ denotes a stratification corresponding to an interval division {I,},
L=[2;,, x], —co=x, <, <+ -<2,_,<x;=00. Then, we can obtain an
optimum ¢* corresponding to {I}}, I*¥=[zk,, z¥), by solving numerically
the equations

o, (=1,2,---,1-1),
0x;

where v is given in (7.14).

Next, we shall state the outline of constructing the asymptotically
optimum stratification $*(x, s) using prior information s. At first, we
mention of the orthogonal polynomials associated with G(z). It is well-
known that the Hermite polynomial system {H,(x)} is complete and
orthogonal with respect to the unit normal distribution, where {H,(x)}
is given by
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H(x)=1, H(x)=2z, Hyx)=2'—1,

(7.15)
Hy(x)=2"—8x, H,(x)=x'—62+3, and so on.

Considering the relations

n! for m=n

(7.16) Ho(2)Hy(z)e~dw = {

7).

0 for m#n,

‘/l_ H,,(ac)} is the complete ortho-normal polynomial .
system associated with G(z).
Using the C.0.N.S. {¢.(x)}, ¢u(x)= ~/_

biased estimators (Gy(s),- - -, @.(8)) for (a,---, a,) using p sets of the first
samples, where

we can see that {

H,(x), we can obtain un-

LINp% O J’) (€)) L
(7.17) ai(s) =_.. JEI w((J)X(()f()( ng{; ) , a;= S-oo 7]¢i dG ’

and 8=(s®,---, &), as in section 6. Then, we can construct an esti-
mator 7,.-+n(x, 8) for y(x) by

(7.18) Dor+(®, 8)= féo a;(8)¢;(x).
The mean square error of 7.(x, s) is given by

T19)  Sre=|| (e, 9)—7(a)] dG(a) dFls)

o

”‘18 a’(x)dG(w)+<r+1 +1> 3 al.

=r+1

Accordingly, we can calculate d,.,,, explicitly or numerically only if the
degree r and the functional form of ¢*(x) are preassigned. In addition,
coefficients a,’s are given explicitly by

1
~Vor

(7.20) &,

S e ”gb,,(x)da:—- Vm

8. Conclusion

In this paper, we have obtained the following results:

1) There exists a general optimum stratification ¢* based only on the
objective variable X (uni-variate) within the limits of general strati-
fications, without the assumption that F(x) is absolutely continuous.
Especially, in the case of proportionate allocation, the general optimum
stratification ¢* coincides with the optimum stratification within the
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limits of interval divisions {I;}.

2) In the case of proportionate allocation, the problem of general opti-
mum stratification, for the objective variable Y (uni-variate) based on
the concomitant variable X (p-variate), reduces to that of general op-
timum stratification for the objective variable Z=y(X), where y(x) is
the regression function of ¥ on X.

3) The asymptotically optimum stratification $*(x, s) using prior infor-
mation (the first sample) s can be obtained in the case of proportionate
allocation, only if there exists an estimated function 7(x, s) which tends
to n(x) in the sense of LdG-dF) as the first sample size m tends to
infinity.

4) The function 7(zx, s), satisfying the condition just stated above, can
be constructed by using the complete ortho-normal system {¢,(x)} as-
sociated with G(x). Further, the sufficient conditions are given for
the completeness of {¢.(x)} in the case of multivariate orthogonal
polynomial system.

It should be added that our results will give some prospects to re-
gression analysis and multivariate analysis, especially selection and dis-
crimination problems.

Finally, we shall mention unsolved problems for optimum stratifi-
cation.
1° To obtain the general optimum stratification for the objective vari-

able Y in the case of multivariate, based on Y itself or the concomit-
ant variable X.

2° To extend our results to the case of multi-stage sampling.

3° Considerations on cases where the empirical d.f. G,(x) is given in-
stead of G(x), or the empirical d.f. F,(x’,y") for the first sample is given.

4° To find the conditions for the uniqueness of the solution satisfying
the equations (1.1) or (1.2), and to find sufficient conditions for {x¥*}

" to be really optimum.
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CORRECTIONS TO

“ON OPTIMUM STRATIFICATION FOR THE OBJECTIVE
VARIABLE BASED ON CONCOMITANT VARIABLES
USING PRIOR INFORMATION”

YASUSHI TAGA

In the above titled article (this Annals 19 (1966), 101-129) the fol-
lowing corrections should be made.

(i) On page 120, line 14, replace
[{3 i a? ” by &« i a; ”‘
j=0 j=r+1
(ii) On page 121, lines 9 and 17, replace
“dF(s)” by “dF(s)”.
(ili) On page 127, lines 12, 13, 14 and 15, replace
“ 77P(f+1)(w’ 8) ” by “ 5p(f+l)(x’ 8) ”'

(iv) On page 127, line 15, replace
(44 F(s) ” by [14 F(s) ”.
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