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0. Introduction

Let us consider a Brownian motion on a bounded open set G and a
Brownian motion with drift a(x) on G which is obtained by the trans-

formation of probability measure connected with multiplicative func-
tional

M,=exp ( S: a(xu)dxu——;—s: a,’(x,,)du) [2].

Let G and G¥ be the resolvents of these two processes. Operating
G* to both sides of

0.1) (z—_;_ A)G‘f:f

and noticing

0.2) (z—.;_a—a(.)grad)é'f#,
we get

(0-3) Gif—Gif=Gla(-) grad Gif],
and similarly

(0.4) Gf—Gf=G"[a(-) grad G*f].

Rigorous proofs of (0.3) and (0.4) will be given in theorem 2 and theo-
rem 3, respectively. Simpler but less suggestive proofs of (0.3) and
(0.4) will be given in the appendix. As a corollary of theorem 2, we get

(0.5) h(xt)—h(xo)=S:gradh(xu)dxu+S:®h(xu)du for he D(®),

where ® is the generator of a Brownian motion. (0.5) is an extension
of the well-known formula of stochastic integral
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(0.6) h(x,)—h(aco)zg:gradh(x.,)dwu—l—gc—;-Ah(xu)du for heC.

A similar form will be obtained for the Brownian motion with drift.
(See the corollary of lemma 5.) In section 1 we will consider a Hunt

process M. Let M be obtained from M by the transformation connect-
ed with multiplicative functional with mean 1. We shall find the rela-

tion between the resolvent of M and that of M, and prove that R={f;
G'f=0} coincides with R={f;Gf=0}. In sections 2, 3, 4 and 5, we
confine ourselves to a Brownian motion with absorbing barrier. Sections

4 and 5 are devoted to the proofs of (0.3), (0.4) and (0.5). These proofs
also contain an interesting formula

0.7 e GF(E)= S” e grad Gof (&.)dZ, + Gf (Bo) — S‘ e f(®)du,

where (Z,, #,) is an appropriate martingale. (0.7) is nothing but the

decomposed form™ of supermartingale e"‘@{f(b’c,) [6]. It is well-known

that any continuous additive functional in 9M* of a Brownian motion is

essentially written in the form St grad G (x,)dx, [4]. (0.7) shows that
. 0

a similar statement is valid for the Brownian motion with drift.

1. Resolvents of M and M

Let M=(z,, P., {, x € SU {4}) be a standard Markov process. (S is
separable locally compact Hausdorff space.) The Green operator G* of
M is defined as
(1.1) U(x)=G‘f(x)=EzS:e“‘f(wz)dt
for any bounded Borel measurable function f on S, and 2>0. In this
paper the notations and definitions of additive functional, excessive func-
tion, ete. are the same as those of [2], [4].

Let M, be a uniformly integrable continuous multiplicative function-
al of M, such as P(M,=1)=1, E.M,=1 for "z €S and 0=5"t<oo. (M,
=M, for t={). Then M, is a martingale of class (D) [5].

Let us consider

(1.2) X[Ul=eU@)— U+ | e flz)ds  (¢<Q)
=X.{U] (t20).

* We denote by I8 the set of all 2-additive functionals, A:, having the properties
EzA1=0, Ef(A)2< o0 (0=f<00).
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This is a 2-additive functional of M such that E.X;[U]=0, E X [U])}’<co
(0=t< o). Define

(1.3) l7(x)=@‘f(x)=E,M-S:e“‘f(x,)ds=E,S:e“* s (2>0).
PROPOSITION 1.
(1.4) - U(@@)— U@)=EAM,- X[U]).
PROOF. First we notice
X[U)== U@+ eF(z)ds
and
| EM- XU U+ Tl < co.
Integrating both sides of
Mo X{Ul=~Me U+ M- | e F()ds,

we get the proposition.
We can also prove

(1.5) E’(M, SZ e““f(m,)ds) — Ux)=EM,- X[ U)).
Now consider

-~ -~ -~ t
(1.6) Y [Ul=e*U(x,)— U(xo)+ So e~ f(x,)ds (2>0).
It can be verified that the following properties hold:
E(M.Y[UD=0 (0st=0)

E.M,(Y[0]<2)0]-

E, (Mc- S:e'”’ f(m,)ds) |< oo

and

L7 Y01 (0)+e - YD1 t)= Yol O1(0).
PROPOSITION 2.

(1.8) U(2)— U(z)=—E.Y{U].

PROOF. Since |E,Y,[U1|<2||U|1+|U|l (0=<t=<(), integrating both
sides of (1.6), and noticing that
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B D)= M- | ) £t) >0 (= o0),

we get the proposition for 1>0.

LEMMA 1. Let
Ui(x)=E’xS:e““ﬁ(a;u)du fi20, i=1,2.
Then
(1.9) EX[U]-XIU)=2||U~ G| (| U+ T:1).
PROOF. Set U=U,—U,, f=fi—f;. Since the left-hand side is equal
to
4 2
EAX[UD'=E(| e fa)ds) - Ue),
we have
4 4
BXJU)'s2E | e U(w) @) ds) s2 TN E( || 1 5 ds)
2T T+ T
LEMMA 2.
(1.10) EM(YIU)-YLTr<2||0— Gl T+ T,
where

ﬁ}(x):E’,M- S: e *fy(x,)du.

The proof of the lemma is similar to that of the previous one, and will
be omitted.

Now we shall investigate the Markov process M =(&,, Pl xeS
U{A}) obtained from M by a transformation of probability measure

such that the elements of M are given as follows:
P(A)=E.M2,.

It is well-known that M is also a standard process. The Green operator
of M is given by (1.8). We will assume P(M.>0,0<t<0)=1.

THEOREM 1.
N={f: GFf=0}=RN={f: Gf=0}.
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PROOF. Suppose Gif=0. From lemma 1 it follows that E(X[Gf])’
=0 and X[G’f]=0 (a.s. P,). This and proposition 1 yield that Gf=0.
Conversely, if Gif=0, then Y{Gf]1=0 (a.s. P,) from lemma 2 and the

assumption M,>0 [0<t<(]. This together with proposition 2 yields
Gif=0.

2. Brownian motion with drift

Let X=(x., r, P,)* be a part of a Brownian motion on a bounded
open set G whose boundary is of class A®#, that is, any local coordinate
function of 9G is differentiable and its derivatives satisfy the Holder
condition, and a(x)=(a -+, %), (&, - *, £2))** be a bounded Borel
measurable function on G and r=inf{t>0,z,¢ G}. We shall treat the

Brownian motion with drift, X=(&, r, P,), the elements of which are
given by

%,=x2, for t<z, =A for t=r,
~ _ T 1 T
(2.1) P(A)= S L &xP [So a(x,)dx,— ESo az(xu)du] P (dw).

X is a continuous strong Feller process and lim T.f(x)=0 (x € G, a € 3G).
If a(x) is Holder continuous on G, then X is ;—’:liffusion process with ab-
sorbing barrier, and its Green operator @‘f is differentiable on G, and
twice continuously differentiable on G if f is Hélder continuous on G.

Let 9(G) denote the set of all twice continuously differentiable func-
tions which vanish outside some compact set in G. If fe€ D(G) and

@2.2) Df=%4f+a(-)gradf

is continuous, then f belongs to the domain of generator ® of X and &f
=Df. The above assertions are proved in theorems 14.17 and 14.18 of
[2]. The proofs of the following formulas are also found in [2].

(2.3) sup Er<o
(2.4) M,——1=S:a(xu)x,>uMudacu
where

* P, is the probability measure of a Brownian motion in R7®.
** We extend a(x) to the whole space by defining a(x)=0 for z ¢G.
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2.5) M:exp(g‘a<x.>x,>.dx,-lg‘aw,»ds) (0=t< )
0 2 Jo

(2.6) E.M,=1 (0<t<0)
E.(M,)<exp(|la|’t) (0=t<o0)
2.7) Tif (x)=E.e~f (5.)=E.Me "f (®)X.s.

=E.Me " f(@)X>:.

3. X,[U] and Y,U] for U, U€CXG)

In this section we shall represent X,[G%f] and Y.[Gf] by stochastic

integral when G and G‘f are twice continuously differentiable. The
formula of stochastic integral shows that for & € C?,

@3.1) S: grad h(@,) du*=h(e) —h(z0) — S: % dh()du,
and its slight modification,
3.1) S grad () da.=h(w.) — h(wo) — So Dh(z.)du+ S' () grad h(z.) duw
hold. By using the relation,
St e~ grad h(x,)dx,
t t u
=e“‘g grad h(mu)dxu+28 e“"(s grad h(a:g)dx.)du,

[1] ] 0

we get (8.2) and (3.3) from (3.1) and (3.1') respectively.

(3.2) So e~ grad h(@.) dr.=e—* (@) — k(@) + S: e““(l — % A)h(xu)du

(3.3) So e grad h(z)dz.— So ea(x,) grad h(z)du

— e () — o)+ So e(A—D)h(z)ds  (3>0).
Then, if both U=G and U=Gf are twice continuously differentiable
on G, we get
3.4) X[Ul=e*U(z)— U(x.,)+§ e F (w.)ds

¢
0

* t nrt 9 @
Sograd W@u)dzu= jélsomh(xu)dzu }
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= St e * grad U(x,)dx,
[1]
and

35)  YIO1=e @) - U@+ er@is
=S e grad U (3,)ds,— So ea(s,) grad UE)ds  (t<c).

These facts will be extended in the following sections.

4. Proofs of (0.3) and (0.5)

First we raise the next lemma which can be proved if we notice
that
l P, z, y) lth-—(nH)/z exp{—(y—2z[)/t}.
ax,
(See [8] and the appendix of [2].)

LEMMA 8. Let G'f and P(t,x,y) denote the Green operator and the
transition density of a diffusion process on G with an absorbing bar-
rier. Then

erad [G71(0)=_k@ f@Mdy* (@B

— 2
Sa(ga h=, y)dy) dz <o
where
bz, y)= S:e“" grad, P(t,z, y)dt  (x,y) € GXG.

Quantities analogous to G, %, etc. in lemma 3, but defined for X and X
of section 2, will be denoted by G, G, k, k, etc.

* Wz, v)=(h(=, ¥), bz, ¥),+ -+, bnlz, V),
5;0@={_ T, 1w,
i, )= e

—_ 2 ” —
(e )= 3, o)

G¥f(x)= SE 7z, v)f(w)dy .

’

oP(s, z, y) ds
oxy
2
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LEMMA 4. For any bounded Borel measurable function f(x) on G,
we get

(4.1) SE Ez<X,,[G‘ 11— S:’ ¢ grad G‘f(w,)d:v,)zdxzo

where G'f and X,[Gf] have the same meaning as in section 3. Moreover,
the fact that the integrand of the left-hand side of (4.1) is 2i-excessive

Sfunction yields that it equals 0 for any x € G and then
(4.2) X,[G‘f]:Ste““ grad Gf(wyde.  (a.s. P, t<7)

holds.

PROOF. First we shall prove the lemma when f(x) is a limit of
bounded pointwise convergence of a sequence f,(x) in C>*(G). Note that
f. € C*%@) implies

e
and

XAG1=| e grad G (v )da

By lemﬁa 3 we have
43) B[ e grad Gr s~ e grad G¥.(n)dm,)

=E.| e *(grad Gif () —grad G (e.)'du

= oz, ) (erad G (0) — grad @Y dy

={_oute. (1w, a7 @rta—_ntw, 20, @02) dy>.
Integrating both sides, we have
(4.4) SE E( S o grad G¥f (.)di.— Sa ¢ grad G‘f(xu)doc,,>2da:

=[.{_ ot 0)({_ntw. 2r0a2—_nw. 21, @dz) dy da

=K ugah(y, z)f(z)dz—gah(y, Z)fn(z)dz>2dy —0 as n—oo,

by Lebesgue’s bounded convergence theorem. On the other hand

n
=1

* (grad G ()= 3 (%Glf(y))Zél(gahj(y,z)f(z)af.
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@5 | B&XIG-XiGH
=2|_B,(| em@r—61) ) (F—£) w)ds o
-|. @r@-cwyis
=2[_{_ 0., ) (F=£) 0GF—GF) iy de
-|. @r@-creyds.

Both terms in the right hand sides of (4.5) tend to 0 as n— oo, since
Gf,—Gf boundedly. Thus we conclude

SE E( X.[Gf]— So e grad G (z.) da:u)zdx

<2|_F(XIGY1-XiG ) do+2|_Ed| e grad G, dz,

G
- So e~* grad Gif (w,)dx.)zda: -0,

which proves (4.1). In particular for any bounded continuous function
(4.1) is true. We can also prove in the same way as above that the
class of functions for which (4.1) is valid is a monotone class; thus, for
any bounded Borel measurable function (4.1) is proved. The rest is
proved by the fact that

XIGf1-{ e grad G (m)da,

belongs to the class M,. (See footnote of section 1.)
COROLLARY.
(4.6) e Gf (x.) —Gf (2)
=S: e * grad G{f(:c,)dx,—S:e“ff(x,)ds (a.s. t<7)

“.7) U(x,)—U(x.,)=S: grad U(x.)dm.+S:@U(x,)ds (@.s. t<7),

where
SU=u1—(GHHT, for Ue D(@),

18 the generator of X in the sense of K. Ito [3]. This is an extended
formula of stochastic integral.

From (4.2) it follows that
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EM.X.(Gf1=EMX[Gf=EM,| e grad G (z)dz.
=E,(M,~1)- e grad G (z.)dz,
= E’(S a(a:.,)Mudxu) ( So e grad G‘f(xu)dxu)

=F, S: M. *a(x,) grad G (x.)du
=FE, So e ™a(x,) grad Gf (x,)du*.
By this and proposition 1 we get the following :

THEOREM 2.

GYf (2)—G'f (x)=Gla(-) grad G¥f1(2),
for 7fe BG) and "xeG.

5. Representing Y;[U] by martingale Z,, and proof of (0.4)

From now on we assume that a(z) is Hoélder continuous, then as
was mentioned in section 2, X is a diffusion process with an absorbing

barrier corresponding to differential operator -;—A+ tgjai(w) a?c . The
=1 5

Green operator G’ is in CYG) and in C¥G) if feC**G). From lemma
3 we have already known that

grad G (0)=|_H(z, ) W)y,
h(z, y) = S: e™ grad, p(t, «, y)dt,
and

(5 h ) <o

SES“’ e~*B(t, , y)dt d is also bounded.
0

Let (%.n., E:, « € G) be a stopped Brownian motion on G. Obviously
Zop. =%, =2,(t<7)**. Let us consider

Zt=(Z§1)’ Zgz)’ MR Zgn))

* ao(z) grad Gif ()= él aj(x)-a%; G¥ ().

** gz (w) is the part of a Brownian motion. As for :E't(w), see the definition (2.1).
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tAT
(5.1) zsf>=x5;>,—xsn—go aw)du  (0<t<oo).

Applying the formula of stochastic integral to Z, and ML—1=SLa(xu)
° 0
‘M dx, and F(x,, )=, we have

tAT tAr
ZE”-MFS de5f>—§ M,-a(z)ds
0 0

+ 3. 20 M) -doo+ | Moo (ods
k=1)0 0
=" Mar+ 3" 20 a@aMdne (=12, ).
(] k=1J0
(See [3] and [7].)
Again applying the formula of stochastic integral to Z”, M, and
Z? and F(x,, x;)=1x,-x,, we have

zM=2|" M- 20dar+ 3 M, (Z0)- aw)das+ [ mdu.
k=1)0 0
Since |Z{"| < | —af’|+|allt<d+]|lallt, (z°)=<2(d*+|a|) and
E (M})<exp{||a|*} (0<t<oo), where d is the diameter of G, we have

E{" M:ds<Ciexp{llalit}-1),

EzS:Ar (ng)ak(x:)M)zdsécl(dz-l- ” a Hzt) . (exp { ” a ”2t} __1) <oo ,

and
EA(Z- My <(Ji+Jit) (exp{llallt} —1)<oco.
Hence
E.ZP-M=0 (0st<o).

Similarly we have
B[ (2 Voum) My ds S (Kot i+ Kt exo (llallt) —1).
Hence
EMZPY=E\" Mdu  (0st<o0).

Noticing that M,=M, (t=7), we have

(5.2) E.Z,=EMZ.=EM,Z,-E,M; t<t)+ EM.Z,; t 27)
=E,M.Z,=0,
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(5.3) E(Z)=EgtAr.

(Zsy, Fine 13,) is a square integrable martingale, and we can define the
stochastic integral for Z, following to Courrége [6]

G4 (| Raz)=E{"1Rd 0st<w)

(5.5)  E(Z—Z)|Fn)=Elt At—sAT|Fn)  (0Ss<t<oo).

LEMMA 5.

(5.6) SEE‘x<Y,[fo]—S:e“"grad@'{f(xu)dz.,)zdx:O (0<s<t)

(5.7) Y,[G"f]=S: e grad @ (z)dZ.  (a.s. t<c-P)
for e B(G) and "xcG, where Gf and Y,([Gf] are the same as in
section 3.

COROLLARY.

(5.8) e Gf(w)—Gf (z)= So o grad G (z.) d Zu— S e f (z.)du
(a.s. t<7-P)
(5.9) () — Uz = S' grad U(z,)dZ,+ S ST (x)ds
(a.s. t=z-Py),
where
BT=a—@)NT  for Uec D).

The proof of lemma 5 is carried out in the same way as that of lemma
4, if we remark the following :

[ 2([ e grad Gf w)az.) do

B\ e (grad G (m))du do

[, 9z, 4) (rad Gr )Yy da

. outz, ([, k. 27 dz) dyda
S

SE hy, z)f(z)dz)’dy .
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(5.9) is the extended formula of a stochastic integral represented by
the generator & of X.

Now we shall prove a lemma which shows that the set of P,-measure
0 is also P,-measure 0, and that (5.8) and (5.9) are valid if we replace
P; by P..

LEMMA 6.
(5.10) P(A)=E.N.-%(w), (AeT.,, "t20)

where

N,=exp [ S a(a:,,)dZu—-%S:M a’(xu)du] for 0=t< o0,

PROOF. Notice that
_ t —l t 2 t —-]; t 2
( So a(x,)dZ, 3 S a (xu)du>+<g a(xr,)dx, 2 So a (x,,)du>
=—S:a(x,,)dacu+s 2(a;u)du——-g a,’(x,,)du+s a(z,)dx,
g, -
ESo ak(z,)du=0,
by the definition of Z,. This yields M,N,=1 (0<t<o0) and E’waxA(w)

=E, M. N (w)=PLA).

Remark. N, has the same properties for X as those of M, for X,
for example,

(5.11) E.N=1 (05t=),
(5.12) M—l:—S:Nu-a(icu)dZ,. (0<t< o).

Finally we get the following :
THEOREM 3. If a(x) is Holder comtinuous, then »
(5.13) G'f () —G'f (@) =G[a(-) grad Gf1 (=),
for any bounded Borel measurable function on G and any z in G.
PROOF. By proposition 2 and the relation (5.8) for P,-measure,
GYf (2)—Gf ()=~ E; Y[G]
=— E‘,So e~ grad G (z,)d Z,
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=—F, So e~ grad G (x.)dz.+ E, So e~ grad G (z.)- a(z.)du

—E, So e~"a(z,) grad G¥f (z.)du
=G[a(-) grad G¥f1(x).
From theorems 1, 2 and 3, we can see that
D@®)=RGHR=RG)/N=DB)
and
G=B+a(-)grad,
where R(G*) and §R(C~¥‘) denote the ranges of G* ane G* of bounded Borel

measurable functions on G, respectively, and they do not depend on 2

(3].

Appendix

We shall give simpler proofs of (0.3) and (0.4). The assumption for
a(-) and the boundary of G are the same as those of section 5. (0.3)
and (0.4) are true for feC%*G) from the results of sections 1 and 2.
For any function which is a limit of bounded pointwise convergence of
a sequence f,(x) in C"%G), Lebesgue’s bounded convergence theorem
yields that G,(2)~>Gf (z), Gf.(0)>G(@) and |_h(y, 2@z~ iy, )
-f(z)dz, boundedly. Then

[, @) -G E)ds
=lim{_ @.(0)~ G ()=
=tim{ [ .z, ja)|_tw, Do)tz dy o
= SESE gz, y)a(y)ga Iy, 2)f (z)dzdy dz .
Since the integrands of both sides of this equality are continuous (X’ is
a strong Feller process), we obtain (0.3). We can also prove that the
class of functions for which (0.3) is valid is a monotone class, and we

have (0.3) for any bounded Borel measurable function. In a similar way
we can prove (0.4).
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