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The Dirichlet’s transformation for evaluating the Dirichlet’s multiple
integral is well known, and is found in almost all text books on advanced
calculus, see, e.g., Gibson ([5], p. 492). This transformation may be
used to simplify certain multiple integrals which occur in the distribution
theory of linear functions of ordered gamma variates. In fact, Dirichlet’s
transformation reduces certain unknown integrals, occurring in the distri-
bution theory of ordered gamma variates, to integrals of known types.
The transformation may be slightly modified and used in the distribution
theory of linear functions of ordered normal variates. The Dirichlet’s
transformation does not appear to have been utilized in connection with
ordered gamma or normal variates, and it might, perhaps, be useful to
point out its applications to ordered gamma variate theory. Some other
applications of Dirichlet’s integral are given by Wilks [13].

1. Introduction

A considerable amount of research work has been recently done in
connection with the distribution theory of linear functions of ordered
exponential variates, see, e.g., [2], [3], [4], [9], [10], and [12]. Com-
paratively the ordered gamma variate theory is less developed, although
recently it is drawing attention of many research workers, see, e.g.,
[6], [7], and [8]. One of the foremost obstruction encountered with the
ordered gamma variate theory is the difficulty of integrating the ordered
gamma variates, say, x,<x,<---<=%y, over the range, 0<z;<co, i=1,
.-+, N, and z,<2,<---<zy. Often this difficulty is completely obviated
by the Dirichlet’s transformation, which transforms the ordered x vari-
ates to the unordered # variates with the range, 0<8,<c, 0<6;<1,
4=1, ..., N—1. We formally develop this general theory in the next
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section and in section 3 we give a few illustrations of our general
theory.

2. General theory of Dirichlet's transformation

The Dirichlet’s (or Dirichlet-Liouville’s) multiple integral, which all
of us know, may once again be stated as follows, Gibson ([5], p. 492).
Integrate the following multiple integral

(2.1) Syi’l“y:f‘ c YDt Yoty dys - - dyy

over the range, 0<y;+y+---+yy<Oy, 0<y;<oo, i=1,...,N. We
assume «; >0, i=1,.--, N, and f a suitable function so that the result-
ing single integral, Gibson ([5], p. 492, last line), with respect to @y
exists. The following transformation ([5], p. 147, example 2) may be
used to evaluate (2.1).

Y1 =00, -+ 0y,
Y1+ =003 --- Oy,
22 h+yt -ty =0;0;1. O,

The Jacobian J of the transformation from the y’s to #’s is known to be
([51, p. 147, example 2)

(2.3) J=0,036% - - - 683687 .

i i-
From the left hand side of equation (2.2) we note that 12 Y;> Zi Y,
=1 Jj=1
1=2, .-+, N. This suggests us the following transformation of our
i
ordered gamma variates. Set mi=;2 Y;, t=1,---, N. This transfor-
=1

mation with Jacobian unity assures us that the range, 0<xz;<oo, 1=1,
«++,N; ;<2< +++ <xy, is now transformed to the range 0<y,< oo,
1=1, ..., N. Since y’s are now unordered we transform y’s to ’s by the
transformation (2.2). Thus our transformation from z’s to #’s has the
Jacobian J;, where

(2.4) Ji=1XJT=00; --- O¥=1657* .

Since z;>x,,, 1=2,---, N, we note that the range of integration with
respect to 6’s is determined by the condition, 0<8y, <0, 0<8,<1, i=1,
+++, N—1. Further, we note that the process of integration must be
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carried on as follows. Integrate with respect to 4, first, and then with
respect to 0y_, and so on, and finally integrate with respect to 4,.

Now we proceed with the theory of ordered gamma variates. We
suppose that an ordered sample z, <#;< --- <wy is drawn from a gamma
population, say,

(2.5) g(@)=(I(p)) 2" 'exp {—2}, 0<z<co.

Obviously the characteristic function (c.f.) #(t) of the linear function
w2+ -+ +uyry, where #’s are constants, is

(2.6) ¢®)=N!T' ()™ Sxi’“ - xiexp {— jZ:(l—ujit)xf} da, - - - day

the range of the integration in (2.6) being, 0<x;<oo, i=1, ---, N, and
2, <#,< +++ <xy. Transforming 2’s to ¢’s by using (2.2) we find that

@7) $O=N'T@) " exp {—0,[DNOYF=04=7 - . 42077 dbs - by,

where

2.8) [D]=[A—uyit)+ 0y (1 —uy—12) + (1 —Uy_sit)0y_o+ -+ -
+(L—u,it)6,0; - - - Oy_s)] .

On integrating (2.7) with respect to 6y from 0 to oo, we find that
2.9 é@O)=NII'(Np)(I" (p))‘”S[D]‘””B‘ﬁi"P“ <o O dOy_y -+ dO; .

Our next problem is to integrate (2.9) with respect to 6y_,. However,
we note that the required integral is a known type of beta integral
([5], p. 490)

(2.10) g:z""‘l(l (@ t-ba)- D g
=a =" (a+b)“"'“‘"S: (1~ (a+b(1—¢)) dt
=a "(a+b)"™B(m, n) , if p=0.

If p#0, then the right hand side of (2.10) is a series of beta integrals.
Hence the integral (2.9) with respect to 6,_, can at least be formally
integrated. Suppose this integration with respect to 6y_, has been per-
formed.” Then from the right hand side of (2.10) we note that the
integral with respect to 6y_, is also a beta integral of the type (2.10).
Similarly we see that all the successive integrals with respect to Oy_,,
Oy_s, + -+, 0, are beta integrals of the type (2.10). Thus we have shown




370 D. G. KABE

a formal solution to our ordered gamma variate problem, i.e., the c.f.
(2.7) can be explicitly found as a multiple series of c.f.’s of linear func-
tions of unordered gamma variates.

Now we proceed with the theory of ordered normal variates. Here
the range of integration is —oco <, <%, < + -+ <xy<oo, and —oo<x; < 0,
t=1,..., N. We transform the x variates to the v variates by the

i
transformation z,= ,2 v;, 1=1, ..., N. The Jacobian of this transfor-
=1

mation is unity. We note that this transformation assures us that v’s
are unordered and that —oco <9, <0, 0<v; <0, 1=2, ---, N. We trans-
form all v’s except v, to new variates &’s by the transformation

i
(2-11) jg‘:z ’Uj=$i-15i SR 3 7:=2: Tty N‘-

The Jacobian J, of the transformation from v, v;, -+, vy to &, &, -+,
§x-1 is known to be ([5], p. 147, example 2)

(2.12) Ji=EE -+ ENTRENTT .
Thus the transformation from the #’s to v, &, -+, éy_; is
=17,

T=(5:6z + - Exatvr)

(2.13) ’ ’
=861+ o+ Exi i),

Ty=x-14v) .

The Jacobian of the transformation (2.13) is given by (2.12). We note
that, —co <9, <0, 0<Ey_< 0, 0<E;<1, i=1,.--, N—2. The order of
integration in the multiple integral with respect to v;, &, + -+, éy_; is as
follows. Integrate first with respect to v, then with respect to &y_;,
and then with respect to £y_,, and so on, and finally with respect to
&,. Unfortunately, the transformation from z’s to v, &, :--, éx_1 does
not reduce the original multiple integral to any of the known types,
except for N=2, and N=3. However, forr N=2, and N=3 we hope
our method is at least of classroom interest.

We now proceed to consider a few illustrations of our general trans-
formations developed in this section.
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3. Some examples

We take our first example from Govindarajulu [6]. Let al<a? be
an ordered sample of size 2, from the o« distribution

3.1) 9(a) =(2r)" exp {—% az} @1,  0<ai<oo .
It is required to obtain
B2  E@)=r"|atexp | =5 (@t+a) | @)@ da das

The range of integration in (3.2) is al<al, 0<al< o0, 0<ai< co.
Transforming o’ variates to 6 variates, we find that

3.3) E(@):E(olo,)m—lgoyw, exp {—_;. 0,(1+6) }da, ds, .

The range of integration in (3.8) is 0<6,<oco, 0<#,<1, and integration
must be performed with respect to 6, first. Integrating with respect
to 6; we find that :

(3.4) | E(010,)=4n:“S: 031 +6,) df,

— 4z {[—o}/=<1+0x>"12+ S Wfdﬁﬁ)‘} ‘

The integral in (3.4) is evaluated by setting 6,=t% and we find that
(3.5) E(a))=E(0,0;)=(z—2)/x .

The result (3.5) agrees with the one given by Govindarajulu ([6], p.
1302, in his notation v{})).

" Often only the transformation from #’s to y’s is sufficient in case
of exponential populations. Suppose x,<x,< .-+ <y is an ordered sample
from the exponential population, say,

(3.6) g(x)=exp {—2}, 0<z<co .

Tanis [12] proves that ; and ﬁ (z,—=))/N are independently distributed.
=1

He uses this property to characterize the exponential population. Now
transform the z variates to the y variates and observe that the joint
density of y’s is

3.7 g, Yz v, YN)
=Nlexp {—N[y+(N-1)y:+(N—2)ys+ -+ +yx)IN1} .
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Obviously y,=z,, and é (x;:—2)/N=((N—-1)y,+ --- +yy)/N. Thus from

(3.7) we see that z;, and iﬁ (x;—=x,)/|N are independent.
=1
It may be noted that this property of independence of x, and
N
Z‘; (x;—2,)/N also holds for the joint density

(3.8 g(@y, o3, + -+, )
=(N—-DINXI(p))'a? " exp { — (2, + 2+ - -+ +24)},

where the range of «’s in (3.8) is ;<% < -+ <#y; and 0<x;< o0, i=1,
..., N.

Further, we observe that the iterated integral of Tanis ([12], p. 271)
reduces to a product of independent integrals by the transformation of
2’s to y’s.

The distribution of ratios of linear functions of ordered exponential
variates, see, e.g., [4], and [9], may be easily derived by transforming
ordered variates z’s, from an exponential population, to 8’s.

We conclude this section with an illustration of the application of
our method to the normal population

(3.9) 9(z)=( 4/20)" exp {—%m'} ,  —oo<w<oo.

Following Cramér ([1], p. 483) we construct the following problem. An

ordered sample of size 2, z,<=,, is available from the normal population

(3.9), find the varijance of the linear function z=cx,+(1—c)z..
Obviously the c.f. ¢(t) of z is

(3.10) ¢(t)=(na’)“g exp {—%(m}ﬁv? } exp {it(cx,+(1—c)x,)} dz, dx, .

The range of integration in (8.10) is 2, <®;, —o0<¥; <00, —oo L Fp< 0.
Transforming x, and z, to v, and &, we find that

oo
0

61D gy=o) || exp [~ @+t

+it(1—0)Eitu)} dvd;

Integrating with respect to v,, we find that

612 g)=(vaor| exp |- Loaritt—c) e+ G ) ae,.

The integral (3.12) can be evaluated in terms of Ruben’s K functions




DIRICHLET’S TRANSFORMATION AND ORDERED GAMMA VARIATES 373

[11], which perhaps are inevitable in the distribution theory of linear
functions of ordered normal variates. Differentiating (8.12) with respect
to 4t twice and setting ¢=0, we find that

(3.13) variance (z):%z.;_z(_;__c)zoz__ G—0) 4,
T

— i) - B0=]

Here ¢ is a non-negative constant less than or equal to unity.

4. Concluding remarks and acknowledgment

In this paper we have pointed out that a simple transformation
used in evaluating Dirichlet’s multiple integral may also be used as a
tool for deriving the distributions of linear functions of ordered gamma
variates. This method is very useful in the theory of ordered statistics
from an exponential population, and of sufficiently pedagogical or class-
room interest to solve some simple problems in the theory of ordered
statistics from normal and gamma populations. We can also use it with
other populations as the transformation which we have given does not
depend on any particular population. However, even theoretically also
the transformation does not give a complete formal solution for any
population except for the gamma population. This reason prompted the
author to choose the title for the present paper.

The author wishes to thank Dr. C. K. Tsao for several helpful sug-
gestions.
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