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Summary

For the one criterion analysis of variance problem, some nonpara-
metric generalizations of the two well-known methods of multiple com-
parisons by Tukey [26] and Scheffé [19], are proposed and studied here.
The performance characteristics of the proposed methods are compared
with those of the others, available in the literature.

1. Introduction

Let there be ¢ (=2) independent samples, the ith sample comprising
of n, independent and identically distributed random variables (i.i.d.r.v.)
distributed according to a continuous cumulative distribution function

(cdf) Gi(x), for i=1,---,c. In one way analysis of variance problem,
it is assumed that

1.1) Gi(x)=G(x—86;) , 1=1,---,¢c,

0=, ---,0.) being a real c-vector. The null hypothesis to be tested
relates to

1.2) H:6=-.--=6,=0.

Under the assumption of G being a normal cdf, the classical variance
ratio (F-) test is known to possess some optimum properties as a com-
prehensive test for H, in (1.2). However, in many situations, we may
not be merely satisfied with the rejection of (1.2), but may also desire
to test more detailed hypotheses concerning two or more of the com-
ponents in #. An important class of parametric functions used for this
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purpose is the set of all contrasts among 4, ---, 6, ; a contrast ¢ being

defined as
(1.3) =16, I=({,---,l), I1LI=(Q,.--,1).

The class @ of all possible contrasts is generated by the space L (of
rank c¢—1) of all possible I vectors, satisfying (1.3). Obviously, we can
have always a set of ¢—1 linearly independent contrasts, say ¢, - - -, go_s,
which spans the class @={¢: ¢=1-0,lc L, 1] I,)}. It is also interesting
to note that ¢ is translation imvariant in the sense that for any real
scaler 4,

(1.4) d=U6+51)=1-6 .

The problem of making further inferences about these contrasts,
arising when the F-test rejects H, in (2.2), has been considered by Nandi
[15], Duncan [4], Tukey [26], Scheffé [19], Bose and Roy [2], Roy [18],
Ghosh [8], Dwass [6], among many others. The two mostly used methods
are due to Tukey [26] and Scheffé [19]. Essentially these methods are
concerned with providing simultaneous confidence regions to all possible
contrasts with a view to carry out any multiple comparison test having
a preassigned level of significance. These procedures are all valid for
normal cdf’s only.

Now with the steady advancement of nonparametric techniques in
this field of research, it has come to be recognized that the nonpara-
metric competitors not only compare quite favourably with their para-
metric rivals but also possess some properties which may not be shared
by the others (cf. Lehmann [12], [14]). Further, an interesting method
of estimating shift parameters by rank order tests considered by Hodges
and Lehmann [11] has made the opening of a new line of approach to
the analysis of variance problems, on which further works are due to
Lehmann ([13], [14]), Bhuchongkul and Puri [1] and Sen ([22], [23]). How-
ever, for the problem of simultaneous confidence regions or multiple
comparison tests, these results may not be directly applicable.

The object of the present investigation is to provide some non-
parametric generalizations of the well-known 7T and S methods of multi-
ple comparisons (cf. [20, pp. 66-83]) through the use of the same class
of rank order statistics as has been used in ([11], [13], [14], [21], [22],
[23]). Some of the ideas of the present paper are scattered in rudi-
mentary forms in the works of Dwass [7] and Steel ([24], [25]). How-
ever, no systematic approach to this problem (particularly the asymptotic
theory) has yet been made elsewhere in the literature. The asymptotic
properties of the proposed methods are studied and compared with those
of the parametric S and T methods as well as the other ones by Steel
([24], [25]) and Dunn [5].
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2. Nonparametric generalizations of T-method of multiple com-
parisons

By analogy with the homoscedasticity condition implicit in the use
of the T-method (cf. [28, p. 294]), we require here

@21 M=+ =N="N.

Our proposed method is essentially based on Tukey’s [26] principle as
adapted for the one way classification. We shall consider first the method
of paired comparisons, where we want to test for the difference of
0;—6; (referred to (1.1)) for all 1#j5=1,.-.,¢c. Subsequently, we will
consider the method of multiple comparisons, where we want to test
for the significance of all possible contrasts.

2.1. The paired comparisons. Let us formulate first the class of rank
order statistics which will be used throughout the paper. Let

(2'2) Xz(XIly ct ‘Xin), 'i=1; ce,Cy In=(19 "'!1);

(2'3) Enz(En,lr ctty En,zn) ’ En,z:r:Jn( 2a ) ’ léaézn ’
n

where J, is defined on the same line as in Chernoff and Savage [3, p.
972] and it satisfies all the four regularity conditions of theorem 1 of
[3]. Throughout this paper, these regularity conditions will be implicit
in the use of E,. We write then

— 1 2n 1 m —
2.4 E=—3F,. d AA=—E: —E?.
( ) 2n §1 ’ an 2n ngl ’

Also, we denote by J(u)= li_m JJ(u) for 0<u<1 and write

2.5) p={Jwan, &= radu—p.
Then, we assume further that

(2.6) Ju)is T inu: O0<u<l;
2.7 |Ea—pl=0(n=?),  |A,—Al=0(1).

Further, let Z{%”=1, if the a-th smallest observation in the combined
(t, 5)-th sample is from the ith sample, and let Z{”=0, otherwise, for
a=1, --.,2n. Then, we shall be concerned with the following class of
Chernoft-Savage [3] type of rank statistics
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n

2.8) h(X., X,)=% S E,.Z%P,  for i#j=1,---,c.
a=1

In conjunction with (2.6), we shall assume that
(2.9) h(Xi+al,, X;) is 1 in a for all X;, X;, 1#5=1,---,c¢c.

It may be noted that statistics of the type (2.8) include as particular
cases, the Wilcoxon’s [27] statistic and Normal score statistic among
others. Let us then consider the following statistic

(2.10) W.= Max. [2n'2A4;'|h (X, X,)—E.|],

1st, fs¢

which plays the basic role in our proposed method.
THEOREM 2.1. Under H, in (1.2),
lim P{W,<t}=x(t) ,

n=o0o

where y(t) is the cdf of the sample range in a sample of size ¢ drawn
from a standardized mormal distribution.

PROOF. Let us define

@.11) Y=B(X)=S: J'[G()] dG(z) , G(xo)=% )

Then, under (1.2), Y;,=B(X,;), j=1,---,n; 1=1,---,¢ are N (=nr)
i.i.d.r.v.. By theorem 1 of [3], it is known that Y has a finite abso-
lute moment of order 2+7, for some >0 and the variance of Y is A’
(defined in (2.5)), and we denote its mean by §. Thus, on defining

(2.12) Z,;=n"A! él[yﬂ_gl , i=1,---,¢,

it follows that Z,, ---,Z,. are ii.d.r.v. distributed asymptotically
normally with zero mean and unit variance. Consequently, it is easily
seen that for any given ¢,
(2.13) lim P{ Max. |Z,;—Z, ;| <t} =2¢) ,

n=o0 15i,/s¢
where x.(t) is defined in the statement of the theorem. Now, proceeding
precisely on the same line as in the proof of theorem 1 of [3], and then
using Poincares theorem on total probability, it is easily seen that

(2.14) [nlﬂA-‘{h,.(Xi, X)—p} ——%(Zn,i—z,.,,)] =0,(1) ,
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simultaneously for all i#j=1, ..., ¢. Thus, from (2.4), (2.5), (2.7), (2.10)
and (2.14), we get that

(2.15) {W.— Max.|Z,,~Z, |} =0,1) .
1=i,js¢

Hence, the theorem follows from (2.13).

In small samples, the exact distribution of W, (under H, in (1.2))
may be quite involved and no suitable algebraic expression may be
attached to it. However, there appears to be a permutation procedure
of evaluating the exact null distribution of W,. Let us write Xy=
Xy, +--, X.). Under (1.2), Xy is composed of N i.i.d.r.v. and hence
conditioned on the given Xy, all possible (N!) permutations of the vari-
ates among themselves are equally likely. This, conditioned on the
given Xy, all possible (N!/(n!)), partitionings of these N variables into
¢ subsets of equal sizes are equally likely, each having the (conditional)
probability [N!/(»n!)]]-. Thus, if we consider the set of all these parti-
tionings and for each one of them, we compute the value of W, (with
the aid of formulation (2.10)), we will arrive at the permutation distri-
bution function of W,. Since G is assumed to be continuous (so that
the possibility of ties may be ignored, in probability), and as h.(X;, X,)
(t#J5=1, ---, ¢) are all rank order statistics, it follows that the permu-
tation distribution of W, derived in this manner will agree with the
exact null distribution of W,. This procedure may be quite useful for
small or moderately large values of = (particularly, if some modern
computing facilities are available), while for large samples, we may use
theorem 2.1 to approximate the true null distribution of W, by x.(t),
tables for which are available in Biometrika tables [16, pp. 165-171].
It may be noted that for Wilcoxon’s [27] statistic, theorem 2.1 (in a
slightly incorrect version) has been considered by Dwass [7].

Let now a: 0<a<1l be our preassigned level of significance. We
denote by W,,. and R, ., the upper 100 a?% point of the exact null distri-
bution of W, and of y.(f) respectively, so that

(2.16) P{W.<W,.H}=1—a, 1(R.)=1—a,

and by theorem 2.1, W,,—R...

The simplest type of paired comparison test may now be formulated
as follows:

1. For all 1=4<j=<ec, compute the values of %,(X;, X;); the values
of the remaining set will be obtained from the relation that

217 (X, X))+h(X;, X;)=2E, for all 4,j=1,---,¢c.

2. Compute the value of W, . corresponding to the preassigned a.
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3. Referred to (1.1), regard those (6,—8,) to be significantly dif-
ferent from zero for which

(2.18) 202 A (X, X)) — Eo Z W -

It is easily seen that the test is an exact size & (0<a<1) multiple
comparison (similar) test.

Steel ([24], [25]) has used Wilcoxon’s [27] statistic to derive some
multiple comparison tests analogous to Duncan’s [4] and Tukey’s [26]
methods. Here, we won’t consider Duncan’s method, while his generali-
zation of Tukey’s method may be regarded as a particular case of our
paired comparison test in (2.18). Moreover, his study remains appreci-
ably incomplete in the sense that he has not supplied any (asymptotic
or exact) expression for W, . (even for his simplest case), not to speak
of any property of his proposed procedure. For ¢=3, he has provided
a table for the probability law of the minimum Wilcoxon-statistic (among
the ¢(c—1) pairs of samples) for sample sizes up to 6, and also some
approximate values for ¢<10, n<10. Our results not only generalize
his procedure to a wider class of rank order statistics but also suggests
some asymptotically simplified form of W,.

Now, often we are not merely satisfied with the detection of those
pairs of (;, 6,) for which 6,#6,, but also we want to attach a simul-
taneous confidence region to all possible 6,—8;, i#j=1, ---,c. For this,
we shall use (2.18) and a method of deriving confidence intervals for
shift parameters, considered by Lehmann [13] and Sen ([21], [22]). Let
us write

(2.19) Ay=0—0, for i,j=1,---,c.
From (1.1), we will have then
2.20)  Gw)=Ge—0)=G,w—A,), for i,5=1,---,c.
Let us then define
pO=By— AW,
(2.20")
PO =Bt S AW e

Now, by (2.9) h(X.+al,, X;) is monotonic in a. Hence, by the sliding
principle, we arrive at the following two values:

Aij.o=Inf{a: h(X;+al,, X;)>pP},

2.21
( ) Ayyp=Sup {a: h(X:+al, X)<pP};
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which defines an interval
(2.22) Li={A:: D1 =8=0i50) 1#5=1,---,¢c.

Then, it follows from (2.18) through (2.22) that the probability is at
least 1—a that the inequalities A;.. <A;; <A, hold simultaneously for all
t#5=1, ---,¢c.

We shall now consider certain asymptotic properties of the proposed
paired comparison procedure. To justify the approach theoretically and
to avoid the limiting degeneracy (2.22), we shall now conceive of a
sequence of c-tuplets of cdf’s {G,,i(x), =1, ---, ¢}, for which (1.1) holds
and

(2.23) 1’0, — A=Ay, -+ -, ;) as n—ooo,

where 6, is defined as in (1.1) and 4, 7=1, ---, ¢ are real and finite.
We also define

(2'24) 2U=2i—2,- fOI‘ 'i, j=1, cee, C

We will be then interested in paired comparisons in s instead of
6’s. (It may be noted that as for the simultaneous confidence region
{I;;: 1<%, j=<c}, we may consider a somewhat more general formulation
where as n— oo

(2.242) n*(Ay;—AY) — A, defined in (2.24) ,

A?; being some (fixed) real quantity, not necessarily equal to zero. Since,
the confidence intervals of the type (2.22) are all translation invariant
(cf. [13], [22]), for the study of the asymptotic properties, it is im-
material whether we take A};=0 or not, for all 4, j=1,---,¢.) The
above formulation is analogous to Pitman’s type of translation alterna-
tives usually adopted to study the efficiency aspects of the nonparametric
analysis of variance tests. Let us now consider the Hodges-Lehmann

[11] point estimate [&ij of A;; in (2.19). For this, we define

AD=TInf {a: h/(Xi+al,, X,)> )

(2.25) -
AP=Sup {a: k(Xi+al, X;)<p.) .

Then, conventionally
(2'26) A“ ='%'(A’(l.11)+ Ag? ’ ?:, j=1: ree,C.
We also define

(2.27) B(J, G)=S: (@/de)J[G(x)] dG() .
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Then by a simple and straight-forward extension of theorem 1 of Sen
[22], it follows that asymptotically I,; in (2.22) reduces to

(2.28) L;={2y: |—4,|<AR..|BJ, G)} ,

where ﬁij=n‘/2(&,~——A§'j) is the derived form of Hodges-Lehmann [11]
estimate in (2.26), and A and R., are defined in (2.5) and (2.16), respec-
tively.

Let us now compare (2.28) with the confidence interval obtained by
T-method, when G is assumed to be normal with a variance ¢°. If we

define A,;=X,—X;, as the difference of the ith and jth sample means,
and if R .._p. is the upper 100a2% point of the studentized range
R. -1y (cf. Wilks [28, p. 294]), then we have the probability 1—a that
the inequalities

(2.29) A— ’n_mSRc,c(n—x),a <A <A+ n_uzsRc,c(n—l),a

holds simultaneously for all ¢, =1, - .., ¢, where s? is the unbiased esti-
mate of ¢* carrying c¢(n—1) degrees of freedom (d.f.). As it is well-
known that

(2.30) sz—P—> a, and R..u1.—>R,. as n— oo,

we get from (2.29) that asymptotically the confidence interval in (2.29)
reduces to

(2.31) Iij={2;: llij—}iﬂé"Rc,n} ’

where 2,;=n"%d,;—A}). Thus, if we take the ratio of the square of
the width of the confidence intervals as a measure of the asymptotic ef-
ficiency, the asymptotic relative efficiency (A.R.E.) of our proposed method
with respect to the T-method reduces to

(2.32) e(J, G)=d'[B(J, G)*/ A .
Thus, we arrive at the following theorem.

THEOREM 2.2. The A.R.E. of the proposed nonparametric generali-
zation of the T-method of paired comparisons with respect to the T-method
1tself is equal to the A.R.E. of the two sample rank order test (on
which the proposed method is based) with respect to the Student’s t-test.

We shall discuss more about (2.32) later on.

It may be noted that the present author, in an earlier paper [22],
has considered a method of estimating B(J, G) for any absolutely con-
tinuous G, satisfying the conditions of lemma 7.2 of Puri [17]. If we
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estimate B(J, G) separately from each (7, j)th samples (for 1<i<j=<e),
we may combine these together by an unweighted average (as the

sample sizes are all equal). If we denote this estimate by ﬁ(J, G), then
it follows from (2.28) that asymptotically the confidence interval for
—2; may be written as

(2.33) A;— AR, JB(J, G)<2,—3,=<4,+AR../BJ,G) .

2.2. The multiple comparisons. We start with a remark that the esti-
mators A, in (2.26) are incompatible in the sense that they may not satisfy

the transitive relations viz., 3,-,+3,,,=1§ik, which must be true for the
corresponding parametric quantities. To remove this drawback, Lehmann
([12], [14]) has considered the following adjusted estimates. Let

A

(2.34) Ai-—___(]’.— é Aij fOI' 'l:=1, Ty, C;

Jj=1
(2'35) Zij=Ai,"‘Aj. for ?::f:j:l’ cee, €

It is easy to see that Z;; satisfies the aforesaid transitive relations. It
is also well known (cf. [1], theorem 3.1) that

(2.36) n"z(Zij—ﬁij)=op(l) , for all <, 5=1, .
Our proposed method is based on certain properties of Z,,’s.

LEMMA 2.3.

Range {Z;,—A;;}= Range {Z,;—A,;} = Max. | Z,—A.)| .
i J 1sk,ls¢

PROOF. Suppose for any fixed ¢, the range of (Z;;—A,)) is attained
by the pair of paired suffixes (7, k) and (¢,1). Then, using (2.35) we get
that
(2.37) Ral}ge (Zij_Atj)= {(Zik—-Aik)_' (Zu-‘Au)} =(Zu;_'Au;) .

Since the right-hand side of (2.37) is independent of %, it holds for all
1=1, ---, ¢, and is also the unrestricted maximum. Hence,

Range (ZU_AU)= MaX. (Zkl_Akl) .
J 1sk,lsc

The other relation also holds similarly.
Hence we have the following.

LEMMA 2.4. If ¢=‘Z‘,li0¢ be any contrast in @ and if for some m
1
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(= y " ,C), we de.ﬁne ¢m lezim; then

Sup [gn—gl<L 1[I - Max. |Z,—A,| .
m 27 1=4,kse

PROOF. We can rewrite ¢ as ¢,= Z} lA;,, and hence,

2.38)  |ga—d|=| 3 LZn—Au]l
< 31|l Range [Zin—Au]
=L S Max.|Z,—A,,|, (by lemma 2.3).
2 7 154, ksc

Since the right-hand side of (2.38) is independent of I, and the in-
equality holds for all =1, ---, ¢, the lemma follows directly from (2.38).
If we now let

(2.39) li,=—(1;-li for j=1,-+-, ¢, i=1,-+-,c,

then the contrast ¢ may also be expressed as i‘, jz,g‘ li;A;; . Consequently,
i=1 j=1
from lemma 2.4 we get that

(2.40) 6 — 31 S, 7| < (l a1 ) Max. |Z,— Ay .
i=1j7=1 2 i=1 1s/,kse

Now corresponding to the c(c—1) estimates A, ; in (2.26), we compute
the values of Z;; for i#j=1, ---,¢. Further, from the c¢(c—1) simul-
taneous confidence intervals I;; in (2.22), we compute the value of

(2.41) M,a;é [Ze;—Ax;] subject to A;; € I; for all i#j5=1,.--,¢

isj,k=sc
We denote this maximum by H,.. So that from (2.22) and the proba-
bility statement made just after it, we get that

(2.42) P { MaX Iij_AjklsHﬂ ,,}>1—a

154,k

Consequently, from (2.40) and (2.42), we conclude that the probability
18 at least 1—a that the inequalities

(2.43) ;}:1 é ,,jZij——Hn a Z Ilils¢ Z liﬁ 12: é: lith./+ Hn a E Ilil

hold simultaneously for all ¢ € @.
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This may be regarded as a nonparametric generalization of the well
known T-method of multiple comparisons. (2.43) may be used to attach
a simultaneous confidence interval to any number of contrasts in € or
to test the significance of them.

Now using (2.22), (2.28), (2.41) and (2.42), it readily follows that
asymptotically

(2.44) n'*H, . — AR../B(J,G) ,

where A, R,, and B(J, G) are defined in (2.5), (2.16) and (2.27), respec-
tively. Thus, if we define the derived estimates

(2.45) =0 Zy—A), i, =1,

(A% being defined in (2.25)), then from (2.43), (2.44) and (2.45), we get
that (2.43) asymptotically reduces to

(2.46) —2 SIUIAR..[BU, G)< 3} 1Ly (y— 1) S5 S LAR...[BU, G) .

If we now compare (2.46) with Tukey’s [26] results, as adopted in the
case of one way classified data with equal number of observations (cf.
[28, p. 296]) we again get the same A.R.E. as obtained in (2.32).
Hence, we have the following.

THEOREM 2.5. The conclusions of theorem 2.2 also hold for the
multiple comparison tests considered here.

Now regarding (2.32), various known bounds are available in the
literature. For example, if we use Wilcoxon’s statistic, then for normal
cdf, (2.32) is equal to 0.95, it has the minimum value of 0.864 for any
continuous G (cf. [9]), while it can be arbitrarily large for some specific
G. Similarly, it is known that the use of normal scores results in a
value of (2.32) which is always at least as large as one, while it may
also be indefinitely large for some specific G. The relative value of the
efficiencies of the Wilcoxon’s test and normal score test depends on the
particular G, and for various known G, a nice account of this is avail-
able with Hodges and Lehmann [10].

3. Nonparametric generalizations of S-method of multiple com-
parisons

The results of the preceding section have a somewhat limited scope
of applicability in the sense that they deem the sample sizes to be all
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equal. The method to be considered now overcomes this drawback, and
may be regarded as a nonparametric generalization of the well known
S-method of multiple comparisons (cf. Scheffé [19]). This method is es-
sentially a confidence region procedure which is based primarily on the
construction of a suitable simultaneous confidence region for the set of
all possible contrasts among 8.

In an earlier paper ([22]), the present author has considered such a
simultaneous confidence region for the (c—1) parameters (§;—6, for i=
2, - -+, ¢) which may be used here. However, from computational stand-
point this procedure appears to be a little involved in the sense that
here we are faced with a set of (c—1) simultaneous equations in (c—1)
unknowns, where each single equation is an involved function of all
these (c—1) unknowns and is only asymptotically linear in them. Thus,
the usual method of iteration, which has to be mostly adopted in such
a case, becomes very tedious. To remove this difficulty, we shall con-
sider the following approach which is computationally much more simple,
and at the same time, asymptotically equivalent to the preceding one.
This method will be very appropriate if one of the ¢ populations may
be regarded as control and the rest as treatment group. On the other-
hand, if there is no such natural control group, our procedure is based
on selecting one of the ¢ groups as the standard or control group.
However, as we shall see later on that asymptotically the procedure
remains insensitive to the choice of any arbitrary control group.

In this situation, the sample sizes n,, - - -, . are not necessarily equal.
Let us denote by

3.1) N,;=n+n; for i=j=1,:---,¢ and N=m+ -+ +n..
Then, for the (i, j)th samples, we define k. (X;, X,) precisely in the same

manner as in (2.8), with the only change that here Ey,, replaces E, in
(2.3) and have N, instead of 2n elements. The mean of the entries in

Ey,, is denoted by Eﬂu’ and as in (2.7), we assume that
(3.2) |Ey,,—pl=o(N '),

where we define ¢ (and A% as in (2.5). Let us also define

Nig — _
E1 [ENM’“_ENH]ZNU"’): nw Xy X5)— Eiv]
= i

B.3)  Viu=2u (

nn;

for 1#5=1,---, ¢c.

Conventionally, we let Vy.,=0 for i2=1, ..., ¢ and we regard the
first sample to constitute the control group. Then, we define
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(3.4) SN=% 12; jéz [n(d;;N—n))IN1Vyi Vs

where 0;; is the usual Kronecker delta. If we write

o

3.5) N1 = N Vi =% igz N Vyai

1
N i=1
then (8.4) may also be written as

(3.6) Sy=A" gl N[ Vi — ‘71\7-1-]2 .

We may adopt a similar permutation approach (as in section 2) to find
out the exact null distribution of Sy. On the otherhand, if N is large
subject to

3.7 /N —p,: 0<p<1 for all <=1, .--,¢,

then by an adaptation of the same proof as in lemma 1 of [1], we
readily arrive at the conclusion that under H, in (1.2), Sy in (8.4) has
asymptotically a chi-square distribution with (¢c—1) d.f. Further, from
the same lemma, it follows that under the sequence of alternatives in
(2.23) (with = replaced by N), Sy has asymptotically a noncentral 12
distribution with (¢c—1) degrees of freedom and the noncentrality para-
meter

(3.8) A;=[B(J, OFA™ 3 pa—1)

where 1= 31 p,4;, and B(J, G) is defined in (2.27).
Now f;om (2.20), we have

(3.9) G(x)=G(x—A;)  for i=1,---,¢c.

So, if we define

Ny

n;

then it follows from (1.1), (3.5), (3.9) and (3.10) that for all @

(3.10) Vwar@)= [h‘N(Xi"I'aInir Xj)_E—NU] for 1,5=1,:--,¢;

(3.11) SN(Q9)=A_2 té ’ni[VN.n’(An)— VN.x-(A)]Z

(where A stands for the vector (A, ---, Ay), and Vy..(A) is defined by
(3.5) and (3.10) with a’s replaced by A, i=2, -- -, ¢) has the same distri-
bution as of Sy in (3.6) under H, in (1.2). Further from (2.9), (3.3) and



332 PRANAB KUMAR SEN

(8.10) we may conclude that Vy..(a) is 1 in a for all t#5=1,---,¢c.
So if we denote by Sy,. the upper 100 a% point of the null distribution
of Sy (so that

(3.12) Sy.—1,. where P{X=X_,.}=a),
then from (3.11) we get that
(3.13) P{Sy(0)<Sy,.|0}=1—«.

Now, equating hy(X;+al,, X;) to EN” in the same way as in (2.25)

and (2.26), we arrive at the Hodges-Lehmann [11] point estimate Ay of
A,; for 4=2, ---, ¢, the joint asymptotic normality of the standardized
form of these estimates follows precisely as in the proof of theorem
3.1 of [1]. Let us now denote by

(3.14) V=(Vy, +-+, Vo)

the running coordinate of the points Vy(A)=(Vx.x(Aw), -+, Vi.a(Ai)), on
the boundary of the ellipsoid in (8.13). For any particular V, if V; is
positive, we find out a value of A,;, say A¥, such that

(3.15) A¥=Inf {Au : VN-u(Au).Z Vil ;
on the otherhand, if V; is negative, we define
(3.16) A¥=Sup {A;: Vaa(An) = Vi},

for each =2, ---,¢c. In this manner, any point ¥ on the interior neigh-
bourhood of the boundary of the ellipsoid in (3.13) is mapped into a
point

(3.17) A =(A%, - -+, A¥) .

Further, (3.13) is the equation of a closed convex set of points {Sx(6)},
and as each Vy.(a) is 1 in a, i=2, ---, ¢, it follows that the set of
points

(3.18) CAL)={(As, -+, D) : Sy(0)=Sy,.}

will also be a closed convex set in (4, ---, A,), having the property
that

(3.19) P{(Ay, -+, A) €CA,) |0} =1—a.

For small samples, Sy in (3.4) will have essentially a finite number of
discrete mass points and hence on the interior boundary of the ellipsoid
Sy<Sy.., there will be only a finite number of points {V'}. So, if for
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each of these points, we find out (by the process in (3.15) and (3.16))
the corresponding (finite number of) points {A¥} in (3.17), then the
convex hull of these set of points will be our desired simultaneous con-
fidence region for (A, -+, A.). For large samples, we get by a straight-
forward generalization of theorem 4 of Hodges and Lehmann [11] along
with an extension of theorem 1 of Sen [22] (to more than one parameter)
that the set (A,.) in (3.18) reduces to

BY(J, G)

(3.20) C(Al.)={A1-= A? ,-;

py pi(a”—pj)N(An—A,i)(Al,-—A,,)gxﬁ_l,,} ,

where A,.=(A,, -+, A) and A,.:(An, cen, AAM) is the Hodges-Lehmann [11]
estimate of 4A,.. Thus, if as in (2.25) we write (replacing n by N)

(3.21) Nllz(AU-—Agj) — A;; as N-—> oo, for 1,5=1,---,¢,
(3.22)  A,=N"A,;—AY) for i#j=1,---,¢, A= -, A,
where 1;,’s are all real and finite, then (3.20) reduces to

c ¢ A A A2x2c—1a
(3.23) C(zx.)={21= P jgzpi(a.-j—pf)(zn—zu)(zu—z,,)é———Bz( 7 é)} .

Consequently, if we attempt to estimate B(J, G) as in [22], separately
for each combination (1, %)th (¢=2,--.,¢) samples, and pool these to-

gether into a single estimate B(J, G), then an asymptotic simultaneous
confidence region to 4, will be

e ¢ A A A2x2 L
320  Ca)={a: 35 D0l0u—p )= 2)(hy—h)S Sre)

BY(J,G)

We shall now use (3.18) or (3.23) (or (3.24)), to derive a simultane-
ous confidence region to any number of contrasts in #. Any contrast

#=1-6 may also be written as —é LA= —Z: l.A;. Since C(2,.) in (3.18)
1

is a closed convex set, its convex hull is contained within the intersec-

tion of all the supporting hyperplanes of C(4,.). Thus, given any éliAu

(which represents the equation of a (c—2)-dimensional hyperplane), we
can always find two parallel (¢c—2)-dimensional hyperplanes having the

equations ﬁliAn=c,, j=1,2; such that the convex hull of C(4.) is
2

contained within the (c—1)-dimensional strip defined by these two hyper-
planes. Then, if we let ¢;<c, (without any loss of generality), we get
the confidence interval
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[4

(3.25) —=¢=—>2LA;<—¢,

2

whose confidence coefficient will be at least as large as 1—a, whatever
be the number of contrasts, we work with. In general, ¢;,, ¢, will depend
not only on (l, ---,l) but also the convex hull of the set C(4.). For
large samples, (3.25) simplifies to a great extent. For this, let us define

(3.26) F=A%,_, . B¥J,G) and &=A%._,.B'J,G).

Then, it follows from (8.23) and a few simple adjustments that the
equations of the two parallel (¢c—2)-dimensional hyperplanes ; LA =c¢;,

7j=1, 2, reduce to

62D BN —8)= Shu—4) =%, (3 S UUectule)

=45 \/ Sy
1
Consequently, asymptotically the probability is 1—a that the inequalities
(3.28) S L= (S ) S 3 L= 32 Lidu+3(S Blp)
2 1 2 2

hold simultaneously for all ¢=il,~0i , ¢ €D, where 6 is defined in (3.26).
Since §, in (3.26), converges stlochastically to ¢ independently of ¢ € @,
we get that asymptotically the probability is at least 1—a that the in-
equalities

(329)  SUA—HS ) SF= L0 S U+ (S Blp)
1 1

hold simultaneously for all ¢ € ®.

(3.29) may also be regarded as an extension of a similar result by
Lehmann [14, p. 1500] to a much wider class of rank order statistics.

Again, comparing (3.29) with the simultaneous confidence region
provided by the S-method of multiple comparison (cf. Scheffé [20, pp.
68-71]), we conclude that the asymptotic relative efficiency (A.R.E.)
of the nonparametric generalization with respect to the parametric S-
method is equal to

(3.30) e(J, G)=d*B*J, G)/A*,

which is the same as in (2.32). Hence, we have the theorem.
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THEOREM 3.1. The conclusions of theorem 2.2 also hold for the nmon-
parametric generalizations of S-method of multiple comparisons.

Thus, the discussion made at the end of section 2 also applies to this
case.

Finally, regarding the comparison of this method with the one pro-
posed by Dunn [5], we would like to point out the following.

(i) Our method is valid even when A{,’s, defined in (2.25), are not
necessarily zero, where as the procedure by Dunn assumes that 4 is a
null vector (under H,) against the set of alternatives that at least one
of the 6,’s in each group is different from at least one from the other.
Our method is naturally applicable in a more wider class of situations.

(ii) This is essentially a simultaneous confidence region based on
the principle of S-method of multiple comparisons, while Dunn’s technique
requires a selection of a fixed number of contrasts on which the level
of significance to each contrast depends. This is not really justifiable
in many cases, where we may desire to test for any arbitrary number
of contrasts and in that case, her method will have some difficulty to
apply.
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