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Summary

In this paper a slippage problem for the covariance matrices of
multivariate normal populations is considered and a procedure is given
so that the probability of making the correct selection when there has
been no slippage exceeds a specified value. The proposed procedure is
shown to be admissible. The statistic used in the procedure is a multi-
variate analogue of Cochran’s [1] statistic.

1. Introduction

Slippage problems have been considered many times in statistical
literature ; for an extensive bibliography the reader is referred to Karlin
and Truax [3]. Roughly, the problem (in the controlled case) is as
follows: Suppose we are given k+1 populations with density functions
f(z, 6), f(x,6), ---, f(x,0). Then the problem is to decide on the
basis of a sample from each population, if all the 6, are equal to 6, or,
if not, which of the & populations has a larger (or smaller) parameter
than 6,, when it is known that all but one are equal to 4,, Karlin and
Truax, op. cit., considered a slippage problem for the means of multi-
variate normal populations and gave an admissible procedure in the
restricted class of symmetric invariant procedures; the admissibility of
this procedure without these restrictions has recently been proved by
the author [5]; the result has been extended for unequal samples also.

In the present investigation, a slippage problem for the covariance
matrices of multivariate normal populations is considered and an admis-
sible procedure is given.

2. Problem
Consider k+1 multivariate normal populations 7, 1,, ---, II,; T,
N(py, 4;), where N(ui, 4,) denotes a p-variate nonsingular normal distri-
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bution with mean vector g, and covariance matrix 4;. Suppose we have
k+1 hypotheses, H,: 4;=---=4,=4,, and H;: 4,=4, for j+1i, 4°47'4*
=L+, 1=1,2,---,k, where 5 is a pXr matrix of rank r=1, and
4Y? is the unique positive definite symmetric square root of 4;, and I,
is a pxp identity matrix. Suppose it is known that exactly one of
these k+1 hypotheses is true. We want to decide on the basis of N;
observations from 17,, j=0,1, .-, k, which one of these is true subject
to the restriction that if H, is true, the decision D, (D; is the decision
that the hypotheses H;, is true) is to be selected with probability =1—a,
where a is a pre-assigned number.

A minimal sufficient set of statistics consists of the sample means

X,, X;, - -+, X, and the sample covariances S;, Sy, - -+, S¢; S; is based on
N,;—1 degrees of freedom and E(S;,)=(N;—1)4;.

It is shown that the following procedure for selecting one of the
(k+1) decisions D,, Dy, --+, D, is admissible :

Select D, if [Efigclsjl/ISO+S1+"‘+Skl]>Ry
(1) Select D, if [lréljiSnkISjl [1So+Si+--+Si ISR, and

det (S;)<det (S;,) for all j=#1i, 7=1,2,---,k,

where the symbol det (A) stands for the determinant of a square matrix,
i.e., det (A)=|A|, and the constant R depends on a.

3. Solution

We use the Bayes technique to prove the admissibility of the pro-
posed rule (1). Hence, it will be shown that the procedure given by
(1) is an (a.e.) Unique Bayes procedure. Let

(2) 0,=N}"p;

(3) Y,=N}"X,

(4) Y=(Y,, Yy, --+, Yi)
and

(5) S=(Se, S1, - -+, Sx) .

The joint density of the sufficient statistics Y and S is

(6)  Const. I[ |4, etr —4{3 47(S,+(¥i—0)(Y;=0)'}]
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k
where the expression T[ (det S;)*s=?-»” is included in the constant, and
[]

where the symbol etr stands for exponential of the trace of a square
matrix. The density (6) under H;, i=1,2, ---, k, becomes

(7)  Const. IA«J—IIMIIP‘I"?’?’INi/Z etr _%[Ao-l é {Sj+(Yj—0j)(Yj—0j)'}
+A;"2W'A;”2{Si+(Yi—f’t)(Y»‘_"i)’}] ’

where
(8) N=3N;.

The density (6) under H, becomes (7) with =0 (zero matrix).
We compute the Bayes procedure relative to the prior distribution
k k k

P=;‘, &P, 056,51, 32¢,=1, on the parameter space 2=UH; with
=0 [} =0

P(Q)<oo and with P, a finite measure on H;, v=0,1,---,k. In the
present investigation, we consider simple loss function, i.e., the loss is
assumed to be zero or one, according as a correct or incorrect decision
was made. Let ¢, be the probability of accepting the <th decision;
k

S'@;=1. Then, for the simple loss function, a decision rule is a Bayes
i=0

rule relative to the a priori distribution P, if and only if, except on a
set of Lebesgue measure zero, ¢,(T)=0, whenever

(9) e {1, P <max {e{rr, Pan}

where f(T,7) is the density function with respect to Lebesgue measure
of the distribution of T=(Y, S), and =0y, 0y, -+, O, 4o, 4y, - -+, 4;) € L.

We now define the prior distribution P. The construction of the
prior distribution is similar to that of Kiefer and Schwartz [4]. Let
&=¢, and §,=(1—-8)/k, j=1,2,---,k. Under H; (:=1,2,---,k),

(10) . 1= Ao—l + 40—1/2771/ A‘-)-l/z .
Let P, (1=1,2, ---, k) assign all its measure to 4,’s of the form
1) =1+ 00

where 6 is a pXq matrix of rank ¢, 1=<¢=p, and to 8,’s of the form
4;7°0,=0or; for j#1, 7=0,1,---,k, and to 6’s (:=1,2,---,k) of the
form 4;'0,=(3, 4;*p)B:;, where 7’s are g-vectors and ; is a (¢+r)-vector;
4, and 4; are given by the expressions (10) and (11). Under P;, the
density (7) becomes
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(12)  Const. |45 ["|L+yy'|"" etr —3[60" A+ 45"y’ 457%(S:+ V. Y3!)
=20 7,Y]—2(3, 45" )B.Y! + (X 7,7))0' 48
+B:BUS, 47V*n)' 443, 47"p)] ,
where the symbol Y| denotes the summation over all j from 0 to k
except for j=1, and where the expression (etr —3A) is included in the

constant (we need only to verify that the same expression comes out
under H, also); A is given by

(13) A=2: (S,+Y,Y)).

Note that in the above expression (12) and in all the expressions below,
4, and 4, are given by (10) and (11), respectively. We now define the
prior distributions of 7,’s, j#1, §=0,1,---,k, B, and 8. Let the con-
ditional prior density of j3; given 7 and & be normally distributed with
mean vector 0 and covariance matrix

(14) Lyr+5, 45770)' (0, 457'79) , p:pXT,

and; the conditional prior distributions of 7,’s given é be independently
and identically normally distributed with mean vector 0 and covariance
matrix

(15) I+, 6:pxq,

and, is independent of 8;. Using the identities
(16) (LAvww)=1,—uw'(l,+un)u
for u:pxgq, and

a7 I +u'u|=|L,+uu'] ,

and taking the expectation of (12) with respect to the prior distributions
of 7,’s and B;,, we find that under H;, the joint density of ¥ and S
given 7 and 4 is

Const. Mo_llw_k_l)ﬂle'l'7]77’|(Ni_1)/2sSetr —%[55’A+A()_1/27777'A(7112(S¢+ Y, Y?)

k
as) —20 X 7,75 =209, 457 n)B. Y + 2L 77 + Bifi] dﬁ:j];[ dar;
j=0

=Const. |47+ L+ py! |V ety — 4[58 A+ A5y 47V (S + YL YY)
—0d8' LY, Y] — (3, 457 n)(3, 45 ) Y. Y!]
=Const. |45+ [, py! |V ety —3[65'S-+ 45y’ 45°S]]
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where
—_ k

(19) §=315;.

We have yet to define the prior distribution .of » and . Let the con-
ditional prior (Lebesgue) density of » given & be given by

(20) Const. |L,+ny/|" ™", N>p+r,

and let the prior density of § be given by

(21) Const, [[,+ 60| ¥-m—*-02 = N>p+q+r+k.

The integrability of these densities follows from equation (3.7) of Kiefer
and Schwartz [4].

Taking the expectation of (18) first with respect to the prior distri-
bution of » and then with respect to the prior distribution of 4, we find
that the unconditional density of Y and S under H; (t=1,2,.-:,k)

(22) ’ Const. (det S;)~"*(det S)~%* .

We now define the prior distribution P, on H,. Under H,, 4,=4,=
«..=4,=4, Let P, assign all its measure to 4,’s of the form

(23) 47 =L+,

where { is a pxs matrix of rank s, 1<s<p. Also, under H,, all
measure is assigned to 6,’s of the form (I,+¢()9;=C7r¥, 7=0,1,2,---,k,
where 7¥’s are s-vectors. The density (7) with »=0, then becomes

24)  Const. |47 etr —}[(C'A—2C é eD +(z:‘. TN 4,C]

where (as under H,) the expression (etr —4A) is included in the constant,
and where N and A have been defined in (8) and (13) respectively. The
prior distributions of £ and 7}’s are yet to be defined. Let the con-
ditional prior distributions of 7¥’s given { be independently and identi-
cally normally distributed with mean 0 and covariance matrix

(25) I+¢l, C:pXq
and ; let the conditional prior (Lebesgue) density of { be given by
(26) Const. |L,+C{/|F-*>2  N>p+s+k.

The integrability of the above density function follows from equation
(8.7) of Kiefer and Schwartz [4].

Taking the expectation of (24) first with respect to the prior distri-
butions of 7¥’s and then with respect to the prior distribution of ¢
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[using identities (16) and (17)], we find that under H,, the unconditional
density of Y and S is

@27 Const. |S|~2 .

Choose s=qg+r. [This implies that 2<s<p, and 1<=q, r<p-1.
However, the restriction that »<p—1 instead of r<p is not a serious
restriction since we have an identity matrix attached with 7y’ in the
representation]. Then for the simple loss function, the form of the
Bayes solutions is:

el Y, 8)=1 if [min|S,|/|Sy+8+- - +S/1ZR;
(1) @Y, 9)=1 if [min|S,|/|S,+S;+---+SI<R, and
det (S;)<det (S;) for all j#i, j=1,2,---,k,

where ¢(Y, S) is the probability of taking the decision D,, i{=0,1, .-,
k, and R depends on £. Since the set of (Y, S)’s which yield ties among
the minimum of the statistics [det (S,)/det (S,+S,+ - - - +8.)] has Lebesgue
measure zero, it is an a.e. unique Bayes procedure. Hence the above
procedure is admissible.

We know that the constant R depends on é. A simple continuity
argument show that when & varies between 0 and 1, the constant R
varies continuously from its largest possible value to its smallest possible
value. In particular, when £=0, ¢(Y, S)=0, and when &=1, oY, S)=1.
For any prescribed R (chosen so as to have the probability of accepting
D, when H, is true Za), by continuity, we obtain the existence of &*
such that the given procedure of (1) defined by the constant R is Bayes
against &*,

Remark 1. The integrability of the prior distributions [equations
(20), and (26)] requires that N; be >p+r. However, if we choose r=1,
we need N;>p+1, ©=1,2,---, k. Hence, the admissibility for the mini-
mum sample size p from populations 7,, - - -, IT, is not proved.

Remark 2. For the special case y7'=al,, a>0 and known, an
admissible procedure can easily be obtained from section 3. The pro-
cedure will be minimax also. This problem was considered by the author
in [6] and [7], where the admissibility was proved only in the restricted
class of procedures—procedures invariant under the additive group of
transformations as well as under the group of all nonsingular triangular
group of transformations. (The procedure in [6] and [7] needs a cor-
rection : All the inequalities in the procedure should be in the reverse
direction. The author is indebted to Professor R. A. Wijsman for point-
ing out this slip.)
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Remark 3. If the hypothesis H; of the problem is changed to:
d,=4, for j#1, and 4Y°4;'4/*=1,+ 7', the statistic used in the procedure
(1) will be a multivariate analogue of Cochran’s statistic (if there is no
control population).

Remark 4. When equal numbers of observations are taken from
each population, the method of finding the percentage points is similar
to that of Cochran [1]. This problem, however, will be considered
in a later paper along with multivariate generalizations of some other
statistics (e.g., the statistic gl;‘«xs),s IS,/ f?,i?k |S,|, a multivariate analogue

of Hartley’s F... test statistic, [2]).
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