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1. Introduction and summary

Assume that a random sample of size N has been drawn from a
multinomial population with an unknown and perhaps countably infinite
number of classes. That is, if X, is the jth observation, and M, the
1th class, then

P{XJGM}=I)¢%0 ’i=1,2,"'; j=1,2,---,N
and i p;=1. The classes are not assumed to have a natural ordering.
i=1
Let n, be the number of classes which occur exactly r times in the
sample. Then i rn,=N.
r=0
Defining the entropy of the population by

(1) H(p,, p,, ---)=—§‘1pzlogp¢

we can show that for the cumulative distribution function F'*(x) defined
by

(2) F*x)= 31 Np;e~*?1 / ( > N, e‘”"f)
Npjs= j=1
we have
ee ~L . ﬁ e
(3) H, -+ )~ Em)|~ e log () ar+(a) .

In addition, in Harris [1], it is shown that the moments of F'*(x),
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t, s, + -+, are approximately given by

4 T~(r+1)! En.;) ,
(4) b Ry
where

E(n,)~—- 3} (NpY e

Let ) ... be the set of cumulative distribution functions with

Hyr#gr o

F(a—0)=0, F(b)=1 and
S” o dF@)=p,, §=1,2, k.

It is clear that F*(x) must be an element of FfY) ..., for every k.
Hence, for every £k,

min —E—(I:I,"—‘) r ¢”log ( N ) dF(x)

0,N —0oo
F € %EI‘I, Illzy e By z

is an asymptotic (in N) lower bound for H(p, p;, --+). In general, the
supremum will not exist.

In this paper, the minimum is explicitly computed for k=2, thus
obtaining what may be regarded as an asymptotic “ Tschebycheff type
inequality ” for the entropy of the population.

In particular, if the set of cumulative distribution functions
SN ... consists of only one element, then the solution to the minimiz-
ing problem must be F*(x). Similarly, if “most of the information
provided by the moments” is concentrated in g, g, -+, p, then the
solution to the minimizing problem should provide an approximation to
H(pl’ Doy * ')'

This suggests the following application. Replace the expected values
in (4) by the observed values by defining

m,= (r+1)! n,.y ’
n

and thus estimates of the moments of F*(x) are obtained. Then let
Fwol, ...m,y be the set of cumulative distribution functions with F(a—0)

ml, 'Illva, ..

=0, F(b)=1, and
S” o dF(x)=m,, §=1,2,--+k.

Since p,, P, - -+ are all assumed to be unknown, F'*(x) is unknown
and an asymptotic lower bound to (3) may be found by minimizing
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S& e log (-1—:—> dF(x)

over the set Fn') .m,. This process uses only the information con-
tained in the first k+1 occupancy numbers mn,, ny, * - -, %%y, and is par-
ticularly useful, when the sample information concerning the parameters
Py, Py, -+ - is concentrated in the low order occupancy numbers. This
occurs, for example, if as N— o, p; >0, 7=1,2,---, in such a way
that 0<Np,;<2, where 1 is approximately k1.

The maximum likelihood estimator H is a good estimator of
H(p,, Py, ---) if there is an integer M, such that for N sufficiently large,
Np, > o0, 2=1,2, -.-, M and in addition, for sufficiently small ¢>0,

3 pilog pi<e .
i=M+1

It will perform rather poorly when the p,’s are uniformly small. On
these heuristic grounds the above procedure is suggested for this case.
We will exhibit this for uniform populations in several examples given
in this paper.

In subsequent papers, the problem of non-parametric estimation of
entropy for arbitrary discrete populations will be discussed as well as
the uses of entropy estimates in non-parametric testing of hypotheses.

2. The computation of the lower bound for entropy

In Harris [1], it was shown that for ~*=0(N) as N-—» oo,
(5) E(n)~— 3 (Np)y ™,

where the approximation is valid, in the sense that either both sides are
negligible, or the ratio of the two sides approaches unity.
In particular,

(6) E(n)~ 3} Np,e™ ;

hence
1 - N\ gr*z)~L S1ev 1 ~Np
N E(nl)s_”e"log( - )dF (x) N Eie  log ( v, )Np,e 5

=H(ply Dz - ') .

Let h(x)=e"log (N/x). Then we wish to determine Fy(x) € §{ 7, such
that
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(7) . " MeyaF@ =] nw)dFe) .

Since h(0) does not exist, we consider instead t.'%, where ¢>0, is
arbitrary. Then k(x) is bounded on [¢, N] for every ¢>0 and it is well-
known [1] that Fe(x) defined by

(8) min S” h(z) dF(x)=S°° h(x) dF«(z) ,
Flo) € iy )~ -
is obtainable as a diserete cumulative distribution function with at most
three jumps, say at x, @, %;, ¢<x,<x;<%;<N. Hence, there exists
3
Zl’ 22, 2320, 1:2 lt’:l, With
=1

(9) { 21214 22,4 A2y =m,
A2+ 2,25+ A xs=m, ,
such that
0, z<wm
(10) Fi(e)= 4, el

M+, 2wy
1, z==x

whenever m,=m?, a condition which we will assume throughout the
remainder of this discussion. Without loss of generality, we may assume
that m,>m?, since otherwise Fi(x) is a cumulative distribution function
with exactly one jump, and (8) has a trivial solution.

It can be shown that 4,=0, i=1, 2, 3, if and only if

11 (=1 Yoz, —my(w+x;)+ml) =0, 1=i<j=3.

In addition, from Harris [1], there exist real numbers «, a;, a; such
that z,, =, and x, are roots of

(12) 9(z) =3} ez —h(z) =0 ,
and
(13) j;aixf—h(x)go ,  e<z=N.

From (11) and (12), we also have that for e<x; <N, 1=1,2,3;
(14) g'(x:) =+ 2a,2;,—h'(2:)=0 .
To solve (9), (12), (13) and (14), observe that there exist numbers
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613 52’ 63’ 0<51<52<53<N, Su(:h that

<0, 0<x<d,,
h(x){ >0, 0, <x<0; ,
<0 1 53<$§N,
and
>0, 0<x<d,
hlI {
@ <o,  s<osN

with
6, —0 , N-—> oo

52=(N—2)+0<%> . Nooo

53=(N-1)+O< ) ., Nooo

1
N
and h/(x) is strictly decreasing on (0,4,) and (3, N). We now establish
the following

LEMMA. If e<x,<x,<N (0<e<3d,), the following conditions cannot
be satisfied simultaneously

(15) iﬁz'aixi <h(z), eSx<N
=0
16) Sag)=h(z), §=12.

PROOF. Assume (15) and (16) hold. Let p(x)=;:,“i”i . Then

aan K(x;)=p'(x;) , Jj=12.

Let L=(, d,1, L=(d, ), ,=(0,, N). Assume a;>0. Then if x,¢1I,
since p(x) is strictly convex and h(x) is strictly concave in I, by (16)
and (17), we have p(x,)>h(x,) for some z,€l;, contradicting (15). If
z,€I,, then p'(x))>0, hence p(N)>p(x;)>0=h(N), contradicting (15).
If z,el,, then e<w,<w,<d,, and by (16) and Rolle’s Theorem, there
exist &, &, ©,<&<&<x, such that g¢”(¢,)=0, j=1,2. This, however,
implies that A”(¢;)=2a;, j=1, 2, contradicting the monotonicity of A"(x).
If a,<0, the argument is similar. The case a,;=0 is trivial. We now
obtain Fy(x).

THEOREM 1. There exists a unique cumulative distribution function
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Slh(w) dFyx)= min S:h(x) dF(z)

F(.Z') € %Eml my)
given by
Nm,—m
0 , St L3 .
x< N"— ’m1
(18) Fyx)= (N; —m,) ’ Nm,—m, _ <N
(N—my)*+ (my—m?) N—m,
1 " =N,

PROOF. By the above lemma, we have x,=¢, ¢<z,<N, x3=N.
From (11), we have

(19) Nm,—m, <m< Mmy—mMye
N—m, my—e

Thus, by (9), we have

Nz,—my(N+x,)+m,
(@, —e)(N—¢)

_ —(EN—m(N+¢)+my)
B A s s B

(s, €)=

and
lim 2(z;, &) = Nay— m(N+ o) +m, ,
s—0 sz
. _ Nm,—
1;.[}1’1 zz(xg, 5)— —x;(—N_—xz)— .

This gives a parametric family of cumulative dlstrlbutlon functions

F,.(x). Since hm h(x)=c0, we must have A(x,, ¢)= O( e )) —0,

since otherwise E(x) would not satisfy (8). Hence lim 4(x,, e)=0 and
«—0

le_mz

—m,

that zx(xz, 5) O(

Ty — as e—0. Since A(x,, e)h(c)=0 for every >0, it follows

7 )> as ¢ — 0, establishing the theorem.

Finally we have:

THEOREM 2. The required lower bound for the emtropy is

2" M@ dF@)

— & (N’— ’l'nq)2 le 1 N(N— ml)
N (N—m)'+(my— )exp( Ne—m > % Nmi—m,
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Remark. Krein [2] has studied minimization problems similar to
(8). However, Krein’s methods require that 1, x, x?, h(x) form a Tsche-
bycheffian system of functions on [¢, N]. A necessary condition for the
above (see Pélya and Szego [3]) is that the Wronskians

1 z 2 hz)
01 20 W)
= ’ <z=N,
V@=10 0 2 wwl| ==V
00 0 R

be non-negative (non-positive) on [e, N]. This condition is clearly not
satisfied in this case and Krein’s methods are therefore inapplicable.

3. The estimation of the entropy of uniform populations

Let
1 j=1,2,---, M
b= M
0 otherwise .
Then,
0 x<N/M
*(z) =
@) {1 o= N/M
where

N—o>o, M—oo so that N/M—21>0.
In addition,
Em)~Mrer  r=1,2, ..
r!
and |
”1_:27 'r=1, 2, T .
In this case,

% E(n,)g"; h(x) dF *(z) =¢~*h(2) =log M

as required.
In addition, the class ${Y, contains only F'*(x), so that the solution

of (7) provides an estimate of H(pi, p,, - --) rather than a lower bound.
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, In the replacement of gy, p; by the sample quantities m,, m,, it may
happen that m,<m}. This, of course suggests that F'*(x) is degenerate,
and in such cases, we take m,=m?.

By way of contrast, the maximum likelihood estimate H is poor
under the limiting process employed here, since

E(#)= ;;5 E(n,) %r—log(i]'v)

and for M=1000, N=100, we have E(n,)=90.48, E(n,)=4.52, E(n;)=.15
obtaining

E(H)=4.271

and H= log M=6.908.
The examples given below are intended to exhibit the application
of this procedure in estimating entropy.

Erxample 1. Three random samples were chosén with M=1000, N=
100. The data are summarized below.

Sample §1 Sample § 2 Sample #3

0, 85 94 92
Ny 6 3 4
ng 1 J— —_
m, L1412 .0638 .0870
my .0706 — —
%Sh(x)dﬂ(x) 6.4246 7.3714 7.0726
Hp,, -, px) 6.9076 6.9076  6.9076
H 4.4890 4.5636 4.5497

Example 2. Three random samples were chosen with N=1000, M=
1000. The data are summarized below.

Sample £1 Sample # 2 Sample £3

Ny 373 341 377
Ny 199 179 169
Ny 62 70 60
Ny 8 17 25

5 1 2 - 1
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Ng 1

N 0

my 1.067
Mmy .997
—%Sh(w) dFyx) 7.419
H(p,, -+, pu) 6.908
H 6.364

1
1
1.050
1.232

6.683

6.908
6.294

0

0
.897
.955

6.486

6.908
6.329
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In samples #2 and #3 of example 1 and in sample #1 of example

2, my;<m} in those three instances.

These examples suggest strongly the superiority of %Sh(x) dF(x)

as an estimator of H in comparison with the maximum likelihood esti-
mator H. In fact, the trivial observation that H can never exceed

log N can easily be made.
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