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0. Introduction

General sequential or non-sequential decision problems were formu-
lated and deeply investigated by A. Wald [5]. But, he did not consider
the time lag between taking a sample from a population under con-
sideration and observing it. Any decision problem, however, will be
formulated as a decision problem without the time lag of this kind, if
no intermediate action by the decision maker is not considered between
taking and observing a sample.

Recently, T. W. Anderson [1] pointed out that in some actual se-
quential decision problems the time lag between taking a sample and
its observation cannot be neglected and thus delayed observations should
be taken into account for the choice of an optimal decision procedure.
He also mentioned the difficulty of treating such a sequential decision
problem with delayed observations and, instead of attacking the problem
theoretically, he evaluated the effect of neglecting the delayed obser-
vations.

The main purpose of the present paper is to characterize Bayes
solutions of general and special sequential decision problems with delayed
observations. In section 1, we shall formulate general truncated se-
quential decision problems with delayed observations. In section 2
general problems are specified by imposing restrictions on the cost of
observations and probabilistic properties of observations. Further, in
section 3 the parameter and decision spaces are restricted to reduce the
problems to dichotomous sequential decision problems with delayed ob-
servations. In section 4 theorems and lemmas concerning the discussion
in section 3 are established. Finally, in section 5, we shall deal with the
problem which was originally treated by T. W. Anderson [2].
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1. General truncated sequential decision problems with delayed
observations

In this section the truncated sequential problem with delayed obser-
vations is given in a general form and a constructive characterization
of the optimal decision procedure is presented.

Notations and definitions:

(i) Elementary sample space: (Z,.[, P;), 0e®

Z: a space of elements z; _L: a o-field of subsets of &; P,: the
probability measure defined on the measurable space Z(.L) for each
parameter value € @; ©: the space of parameters # which is a measur-
able space with a o-field & of subsets of 6.

(ii) Sample space: (%, B, P,), 06

For given positive integers N and m, let {g.(2), 1=1,2, ---, N+ m}
be a sequence of measurable functions defined on Z(.L) such that g.(z)
gives a measurable mapping from the measurable space Z(.L) into a
measurable space X,(B;) for 1=1,2, ..., N+m, where B, is a o-field of
subsets of the space X;,. We now define the space ¥ as the product
space X, X -+ XXy,n and B as the product o-field generated by { B,
t=1,---, N+m} which is denoted by B=B(B,X -+ X Bysm). Then,
the vector-valued function g(z)=(g(2), - - -, gx+n(2)) is a measurable func-
tion from Z(.L) into X(B); the probability measure on X(3) induced
by this function is denoted by P, for each 6¢€86.

ASSUMPTION 1.1. For each #¢6, the probability measure P, is
absolutely continuous with respect to a o-finite measure g on %X(3B);
dpP, _ 2, .
dp

(iii) Cost function: C(J, )

Denote by J the set {0,1,2,---, N+m}. The cost function C(j, )
is defined on J XX and is a bounded non-negative real-valued measurable
function of z for each j € J such that, if 52,y and z,=y, i=1,---,7,
then C(7, x)=C(j, ¥). We also assume that C(j, )=C(j’, x) for 7>j'.
(iv) The space of terminal actions: A>a

A is the space of terminal actions a and is a measurable space with
a o-field A of its subsets.

(v) Loss function: L(4,a)
The loss function L(#,a) is a bounded non-negative real-valued
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measurable function defined on the product space @ X A (B(F X %)). Now,
we shall introduce an intrinsic metric in the space A with the help of
the loss funection. The intrinsic distance between two elements @, and
a, of A is defined by

(1.1 R(a,, a,)=Sup|L(9, a,)— L(6, a)l .

Throughout this paper we shall consider as the s-field 2 of A the small-
est o-field which contains all open subsets of A in the sense of R(a, a,),
(see Wald [5]).

ASSUMPTION 1.2. A is compact in the sense of R(a,, a,).

Further we shall introduce a convergence definition in @: We shall
say that P, converges in the regular sense to P, as 1—oo if for any
positive integer » (1<r<N-+m) we have

1.2) lim P,(B,)=Py(B.)

uniformly in B, € $=B($, X --- X B,). Also, we can introduce a metric
into © by defining the distance between 6, and 6, as (6, 6,)=Sup |P,(B,)
B

—P,(B,)] where the supremum is taken over the same range "of B, as
for the definition of the regular convergence.

ASSUMPTION 1.3. O is separable in the sense of the metric r(6,, 6,).

(vi) Space of prior probability measures: &3¢

The space of prior probability measures £ is the set of all proba-
bility measures ¢ defined on the measurable space 6(F).

(vii) Space of terminal decision functions: D>d

The space D is the set of all measurable functions d which map the
product space JxZ% into A such that if z,y€X and z,=y%, ©=1,2,---,
j+m, then d(j+m, 2)=d(j+m,y) for all de D, where z=(2,, x,, -,
Txim)y Y=0 Yo ***, Yv+n) a0d i, y: €X; 1=1,2, -+, N+m.

(viii) Class of stopping rules of sampling: S>S

The stopping rules with which we are concerned throughout the
present paper are defined as follows: a stopping rule of sampling, S, is
a partition of the sample space X such that (a) S is a class of N+1
disjoint measurable subsets of ¥ whose set-theoretical sum is %: Thus
it will be denoted by (Sy, S, +++, Sy); (b) if ¥d>2,y, z.=y, 1=1,2,---, 75
for some 57 (1<j<N) and S;>x, then S;>y.

DEFINITION 1.1. The space of sequential decision functions with
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delayed observations of size m is defined as the product space SxD.

Remark 1.1. For a given (S,d)e SxD, we can determine a se-
quential decision procedure for the sequential decision problem with
delayed observations of size m. Suppose that S =(Sy, -+, Sy) and the
observed value x has been known to belong to S;, which means that a
decision is made by sequential observation of the first ¢ elements of
the vector x. Then, according to the stopping rule S, it is required for
the experimenter to stop taking #;,,.; and the succeeding z’s as samples
and thus to make a terminal decision on the basis of observed values
%1, &3, - -+, ¥ and the delayed observed values ..y, -+ -, ;. , immediately
after the delayed observed values are obtained. In this case the terminal
decision function d gives a terminal action d(i4+m, ) which by (vii)
depends only on z;, 25, + -+, Ziym .

When the loss and cost functions are given, we can define the risk
function of a sequential decision function (S, d) € Sx D, which is denoted
by o0, S,d): if S=(S,, S, -+, Sy),

a3 o0,8,d=3 | (CG-+m, 2)+L0, di+m, )} i) dua) .

ASSUMPTION 1.4. p,(x) is measurable on XX 6(B(B X F)).

The Bayes risk of the sequential decision function (S, d) with re-
spect to a prior probability measure £ € £ is defined by Se 00, S, d) d&(6)

and is designated by p(¢, S,d). Then, by (1.3) and the above assump-
tion, we have

a9 o6 8,d= 3| | (OG+m, 0)+L0,di+m, )pe) du@) 420
LEMMA 1.1. For any j+meJ and any d € D

A8 |, 10 dG+m ) p) du@) d50)= || BLLO,d(i+m, 2)dP (@),

where E; L(6, d(j+m, x)) is the conditional expectation of L(8, d(j+m, x))

g;ven §ef and x€X and P; is a probability measure on X(B) defined

(1.6) PAB):SBP,(B) d¢©) for any Be 3.
PROOF. Let us define B(Z X B) to be the smallest o-field of subsets

of ©xX¥ which contains all rectangular subsets AXB where A €< and
BeB. If we define, for any rectangular subset A X B,



SEQUENTIAL DECISION PROBLEMS WITH DELAYED OBSERVATIONS 233
(L.7) WA X B)= SAP,(B) d£(6)

then it is easily seen that the set function v thus defined can be uniquely
extended to a set function v* on B(F x B) which satisfies v¥(Ax B)=
v(AX B) for any rectangular subset AXx B e F X B, and is a probability
measure on the measurable space O X X(B(F X B)). Let us now consider
a measurable mapping £;,.(4, ) from @x X to the product space %,Xx

- X%;,,=XY9* with the o-field B(B,X -+ X B;1n)=BY*™ which is
defined by ¢;..(6, x)=(xy, -, Tj4m)=2*™ where x=(x,, - -, Ty, m). The
induced probability measure on X“+™ by ¢,,.(0, x) is denoted by ' and
clearly for any B'e BY*™ we have

1.8) ,,,(B/)zs o, PA®) (@) dE(O)

" Ci+m

= Se Pa(j""")( B') ds(g)
— SB' d P&+ (gl+m)

where P/+™ (or P&*™) is the marginal prdbability measure on X9+™ of
P, (or P.). For any B'e BY+™ let us define

-1
J+m

(1.9) u"(B')ES (L0, d(G+m, ) d¥(0, ) .

Obviously v” is a measure on X“*™ and is absolutely continuous with
respect to the probability measure »'. Therefore, by the Radon-Nikodym
theorem there exists a measurable function, say f(z“*™), which is
uniquely determined except a set of probability measure zero (PY*+™)
and satisfies

(1.10) v'(B')= SB' f(@9+m™)y dPyI+m

The f(xY*™) is defined as the conditional expectation of L(8, d(j+m, x))
given t;,,=2Y*™. Now, noticing that L(@, d(j+m, x)) depends on # and
only the first j+m elements of x, we have

(1.11) F@m)=E,LO, d§+m,a)  ae. (PI™).

If we take S; as B’ where S, is the projection of S, to Z+™, we have,
from (1.9), (1.10) and (L.11),
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@) |, L6 dGtm, ) de) dee)

F+m i

= S— E,[L@, d(7+m, x)] dPe(Hm)(x)
Sy

=\, BlL(6, d(i+m, ©)] dP@)
since d(j+m, «) depends only on z;, - ++, Z,m.

Remark 1.2. We can easily see that

(1.13)  E,L(6, d(+m, z))]= SG L0, d(j+m, 2)) d&'(0| &, %1, + -+, T;4m)

except a set of probability measure zero (P&“*™) where z,, - -, #,,, are
the first j+m elements of x and &'(B|¢, 2y, -+ +, X;4m) for Be F is the
conditional probability measure given z;, ---, #,,, and &.

Remark 1.3. As is easily seen, the probability measure P/(B)
(B e B) is absolutely continuous with respect to the measure g on X
dP, _
5= p) o).

By virtue of the lemma 1.1, (1.4) is rewritten as

and so we define p(x)=

119 oS d)= 31| (CG+m, 2)+ELO, di-+m, )o@ duta) .

Let us now define an intrinsic distance between terminal decision
functions d, and d, as follows:

(1.15)  s(d;, d)=Sup Max || (L@, di(G+m, o)
—L(8, (5 +m, 2))]p(2) dp(z) |

Thus the space of terminal decision functions D becomes a metric space.
It is easily seen that E,[L(8,d(j+m, z)] is continuous in de D with
respect to the topology induced by s(d,, d,).

ASSUMPTION 1.5. The space of terminal decision functions D is
compact with respect to the topology induced by the distance defined
by (1.15).

This assumption is not so restrictive (see [4]). Under this assump-
tion there exists a terminal decision function d* such that in;n 0§, S, d)

=p(&, S, d*) for any pair (£, S)e X S.

DEFINITION 1.2. Let us define for any £€5 and any €%
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(1.16) fim,o(2)=Inf B[ 1(0, d(5 +m, x))] .

Since the space of terminal actions, A, is compact by the assumption
1.2 and A={d(j+m, x)|d e D} for any j=0,1,-.-, N and any =z €%,
there exists an a;,, . such that

(1.17) Fim,o(®) = min B [1(8, a)]=E[L(0, ay.n,:)] -

Here, we should note that the minimizing value a;,,, . is regarded as a
function of the posterior probability measure & produced by the prior

probability measure & and the observed values z,, - - -, Z;.m , hence we
can write a;,,.=a(¢’). Since
(1.18) i@ =ELO, a@))]

§ €&, we can consider that the minimizing function a(¢’) is a function
defined on 5. ‘

Let us now introduce a distance definition into 5. The distance
between two elements of &, say &; and &, is defined as

(1.19) U, €)= Sup || a2 dz,0)] .

The topology induced by this distance definition will be called the regular
topology. Then we can define a measurable space 5(®) with the small-
est o-field &, which includes all open set in the sense of the regular
topology.

ASSUMPTION 1.6. The minimizing function a(£), ¢ €5, defined by
(1.18) is a measurable mapping from EZ(®) onto A(Y).
If we define, using the minimizing function a(¢),

(1.20) d**(j+m, x)=a(&'(- | &; j+m, x))

for j=0, -+, N and z € X, where &'(- | ¢; +m, ) stands for the posterior
probability measure on (<) induced by the prior probability measure &
and the observed values #,, - - -, ,,,, then d** is really a terminal de-
cision function. For the £'(-|& j+m, x) is measurable in z by the
assumption 1.4 and a(¢) is measurable by the assumption 1.6. Thus, it
easily follows that

1.21) (&, S, d)=p(§, S, d**)=p*(, S) .

Remark 1.4. Although the assumption 1.6 seems restrictive, it will
be usually satisfied at least in the case of actual decision problems.
For example, if the minimizing value a of E.[L(4, a)] is uniquely de-
termined for each £¢ &, then it is easily shown that the minimizing
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function a(¢) is a continuous function of ¢. Of course, the assumption
1.6 is satisfied in the more general situations.

The next stage is to prove the existence of an optimal Bayes se-
quential sampling scheme, say S*, for a given &€ 5. The process of
the proof is quite similar to the one for the sequential problems without
delayed observations (see [3]).

DEFINITION 1.3. For any £¢5 and integer j (7=0,1,---, N) let
us define a function U,x) on X by

(1.22) Ufx)= S [C(G+m, V™) +% (@ ™)] dPI* (@541,

Bjprxx&jom

...’a;j+m|x1’ ...,xj)

where PY*™(B|x, ---,%;) is the conditional probability measure on
Xj X+ X%, given § and 2, -+, 2;.

Remark 1.5. Since C(j+m, x) and 7% (x) depend only on z,, 2, - - -,
%,.m, the conditional expectation of C(j+m, x)+7%(x), Uix), depends
only on %, X3, --+, ;. U,x) is clearly measurable.

DEFINITION 1.4. A sequence of functions {«,(x)} 7=0,1, ---, N is
defined in the following successive manner :

ay(x)= Uy(x) and
(1.23)
a,(@)=min { Uj(x), Ej;1.(X)|2)}  for j=0,1,2,.--,N—1

where

(1.24) E”(a’“(X)lx)ESae @is1(@yy * 0y Byy Xj40) AP (@40 | @, -+ -, 35)
j41
(=the conditional expectation of a;,, given ¢ and

xl, "',xj) .

Let us now define a stopping rule by means of {U;(x)} and {a;(x)}.
Defining S¥ to be the set of z € ¥ such that U(x)>ai(x) for ¢=1,2, ---,
j—1 and U,x)=ea,(x), we have a stopping rule S*=(Sf¥, S¥, ---, S¥).
Considering that «;(x) and U;(x) depend only on z,---,%;, we can
easily see that S* satisfies the property of a stopping rule which was
given by (viii).

THEOREM 1.1. The stopping rule S* defined above is a Bayes solu-
tion for the prior distribution & in the sense that

(1.25) p*(§, %)= miél p*¢, S)
S€
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where the function p*(&, S) is given in (1.21).
PROOF. For any stopping rule S=(S,, S, - -+, Sy) € S, we define
(1.26) Tr+1ESr+1U"' USN /r=0, 1, cey, N—'l

(1.27) g(r)z’ig a,-(:v)dPe(x)+S a(@)dP(x) r=1,2,---,N
j=0 JS; T,
or

(1.27y’ = ?3 Ss, (%) dPe(x)+S (%) dP(x)

Try

in particular,
(128  gN)=3% Ss, az) dP(z) and 9(0)=S£a.,<w) dP(x) .

Since whether z belongs to T,., or not depends only on the first r
elements x,, -, 2, of z and E,.[a,,,(X)]|x] also depends only on these
values, we obtain

(1.29) S 2@ dP@) = Ea n(X)|2]dP(@) .

r+1 r+1

The validity of (1.29) can be assured along the same line about the
conditional expectation as in lemma 1.1. From (1.27) and (1.29) we
have

130 gr+D= 3 0@ dP@+] EdanX)|s1dPw).

r+1
Since a, ()< E, o, 4.(X) | 2] if x € T,,,, we get
(1.31) gr+1)=g(r) for r=0,1,-.., N—1

by comparing (1.27)" and (1.30). The function g(r) is, thus, an increas-
ing function of . By the definitions of U,(x) and p*(&, S), we have

(1.32) € 9= U@ dPm
j=0 8y
and, since a;(x)< U,(x) for any z € X, we obtain
N
(1.33) P62 3 | a@) dP@)=g(N)
and consequently by (1.31)

(1.34) p*(, 8)29(N)29(0)= Sa () dP(x)=p*(¢) .
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If, however, S=S* and T,,,>, it follows that

(1.35) a(x)=E,|a, . (X)|x],
hence, from (2.24)’ and (2.27)
(1.36) g(r+1)=g(r) r=0,1,-.-., N—1.,

Therefore, by (1.34) and (1.86) we have
p*(¢&, S)zp*(§)=p*(¢, S*)  for any SeS,
which is what we wanted to prove.

THEOREM 1.2. The function p*(&), defined in (1.84), is a comcave
Sunction on 5.

PrROOF. For any &, and ¢; and any a (0=ax1), let é=at,+(1—a)s;.
Then, for any (S,d) € SXD, we have, by (1.4), p(&, S, d)=ap(¢,, S, d)+
(1—a)p(é:, S, d), consequently,

o, S,d)=za Inf p¢,S,d)+(1—a) Inf p(&, S”,d")
1

(S’,d’)GSxD S",d")ESXD
and hence

p¥(€)= 1Inf p(§, S, d)zap*(€)+(1—a)e*($) .
(8,8)ESXD

Remark 1.6. It is interesting to note that, in spite of the existence
of delayed observations, the results obtained in this section are quite
similar to the ones for the corresponding sequential decision problem
without delayed observations (cf. Blackwell & Girshick [3]).

In the formulation of the problem in this section, we did not as-
sume the independence of the random variables g,(z), - -, gyin(2). We
were, therefore, limited in taking advantage of the Bayes theorem. In
the succeeding section, however, we shall use this theorem extensively
under the assumption of independence of the random variables to be
observed.

2. Constant cost and identically, independently distributed obser-
vations

In this section we shall impose two additional assumptions on the
general truncated sequential decision problem formulated in the previous
section.

ASSUMPTION 2.1. Forany €6 {g(Z)} i=1,2,.--, N+ m are identi-
cally and independently distributed with the common probability density
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po(x) with respect to a measure g on ¥ where ¥,=%,= ... =%y,.; B,
=By= -+ =By

ASSUMPTION 2.2. C(j+m, x)=(j+m)c, where 5=0,1,2, ..., N and
c>0.

For any given sequential decision functions with delayed observations
of size m, (S, d) e SxD, we have

@) 060,85, d)= 3 [G+me+Lo, di+m, ) T phe) dpe)

= 3 G+mePS)+ 3 || L0, dG+m, o) T pded dpte)

@2) o6, S, d)= 3 G+mePS)+ 3 | Lo, dii+m, 2)

x 1T i) du(w) d&(0) -
Now by the lemma 1.1,
(2.3 1\, 260 di+m, 2) 1 pite) dutw) dso)

=, BulL@, d-+m. 2D p@) TT, dpte)
where
2.4) p@=, T pdw) d20)
@5)  EuLO,d+m )= L6, di+m,2)) &0z, -+, 240)
and
T pita dz6)

@6 dE0lm -+ ma =1 | T pie) 4200

it |, T n)de0>0,

8 i=1

arbitrary otherwise.
LEMMA 2.1. Under the assumption 2.1, we have
(2'7) pgj+m)(xj+1’ ey Ljym I Lyy 0y wj)

j+m
=\, I peyde@l, -+, 2)

PROOF. Let t(4,2Y*™) be a measurable mapping from 6X
XI+(B(F X BI™)) to XP(BD): 46, z9r™)=(x,, - -+, &,), that is, the
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value of ¢ is equal to the vector which consists of the first j element
of z¢*™, Then, t(B)=60XBX%;,,X --- X%,,, for Be B9, Define

A=O0XEX +++ XE,XA
where

A€B(BjuX ++» XBjim) -
Since ANt(B)=6XxBx A, we have for any such A

(28) ﬂ*(A n t_l(B))= SB sBprngn)(xly Tty xj-l—m) d#(xl) te dlu(xjwn) dé(ﬁ)

I

S 6 S B [ S i ijj: 260 dﬂ(xi)] ;lj; Do(:) dpe(;) dE(6)

(by the assumption 2.1) .

Since

@9  dCls -, 5)=1Tpdz) 20 /| 1T piw) d20) ,

(2.8) can be rewritten as

prant @)=\ { [ 1F piw) duw)] 012, -, 2) 001, -+, )

Xdp(x,) « - - dp(;)
(2.10)

prant@)={ | [\ 1T pde) de015, -, 2]
X i:-lj:d/‘(xi) P(@s, - -+ 1)) }i[ dp(@:) .

From (2.10) we conclude that the conditional probability of A (or A)
given xy, + -+, x; is ,

L, IF e a1, -+ 9] T dute

8 i=j

and consequently the corresponding probability density function w.r.t.
uX coe Xpis
AEATAL

m

J+m
[, I pimy deo1a, -, ).
8 i=5+1

Thus the lemma is proved.

DEFINITION 2.1. The conditional probability measure given a prior
probability measure & € 5§ and observed values xy, ---,x; is defined by
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the Bayes theorem. It is denoted by &(; xy, ---,%;) or &(B) for
Be 4.

LEMMA 2.2. Under the assumption 2.1
86 a, e r, 050) =865 2541)
where &; 1is given by &(&; xy, -+ -, ;).

PROOF. Let {;,,=8&(¢,; x;,,). For any Bed,

e [ = pEwdso /| e o .

Since
J 7
a,0)= T p2) d50) /| 1T piw d20)

we have

tnB)=( T nio e /(1o deo)
=£,,.(B) . Q.E.D.
As in the previous section, we define
(2.12) Inf B[40, d(5 +m, 2))]=7% (2)
=E[L(@, d*(j +m, x))]

where the existence of d* is insured by the compactness of D, the conti-
nuity of E;.[L(@, d(j+m, x))] in d and the assumption 1.6. Since % (x)
depends on z and ¢ through the functional form &(&; x, -+, %;m), We
can write

(2.13) R (@)=7*§; 1, -+, Tjsm)] -

The functions Uj(x), defined in the previous section, take the simpler
forms :

(2.14) U@)=(G+m)c+Er*[E(E; 21, -+, @5y Xji1y =+ 05 Xiym)]
or
=(j+m)c+ET*[e(Ej; Xj+17 ft Xj+m)] j=0’ 1; 21 ) N

where
;=82 -+, ) .

Therefore, Uj(x) is regarded as a function of &; and hence it may be
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designated by U,(¢;). It should be noted that U,+(N—j)e=Uy 7=0,1,

.-+, N—1. The functions a;(x) or a;(¢;) §=0,1,2, ---, N are defined by
2.15) ay(@)=ax(Exy)= Ux(¢y) for any &ye&
' a (@) =a,(&,)=min {UAE,), Ba;ulé(Es; Xy} -

Now, if we define

(2.16) eE)=Er*[§(&; Xys1y +++) Xysm)]
and in general for j=1,2,---, N,
(2.17) ¢(&)= min {¢&), ¢+ Ep;_.[§(5; Xy_;:0)]1} .

Then, we have
(2.18) a(§)=(N—j+m)e+p, ) §=0,1,---,N.

As has been shown in the previous section, the optimal stopping
rule S*={S¥, S¥, ---, S¥} is specified by {U,(x)} and {a;(x)}. Owing to
assumptions 2.1 and 2.2, however, we can characterize the optimal stop-
ping rule in the space of prior probability measures 5. The optimal
stopping rule is completely determined by a sequence of subsets of £,
{E%} =0,1, ..., N such that §%¥cE%_,C ... C5¥ and each 5% is defined

as
(2.19) F¥={& e & such that ¢;(§)=¢y(%)} .

By {&%} =0, ---, N, the optimal decision procedure proceeds as follows:

[0] (i) If &e &%, the observations are made on random variables Xj,
X,, -+, X, and the optimal terminal decision is made on the basis
of these observed values. It is defined by d¥(z,, - -+, 2.) such that
for each (x4, -+ +, Zn)

@20) | LO.d@, -, 5) dEO=HECE 31 -, 3]
where &,=§(; 2, -+, Z,). (2.20) is also written as
(2.21) |, L, 2D den(@)=7*Cn) -

(ii) If &¢ 5%, the random variable X,,, is taken as a sample to
be added to the samples X, ---, X,

Remark 2.1. The existence of df(x, ---,x,) or d¥¢.) and its
measurability are insured by the assumptions introduced in the previous
section.
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[1] If the case [0] (ii) has occurred, we first compute &==8(&; x;) on the
basis of the prior probability measure &, and the observed value x; of
X.
(i) If &€ 5%, then the optimal terminal decision is made on the
basis of & and the observed values @, ---, #n, of X, oo, Xon
which have been taken as samples. The optimal terminal decision
afEi xyy oy Bnyr) oF dF(ény) is given by

(2.22) [, 00, dtCn) demin=r*Enr)

(i) If &¢5%.,, the random variable X,,,, is taken as a sample to
be added to the samples X, ---, X,..,.

In general, the procedure can be written down as follows: ILet 4 be a
positive integer (1<i<N),

[¢] If the case [¢—1] (ii) has occurred, we first compute &=2&(&_,; z.)
on the basis of &_, and the observed value z; of X;.
(i) If ¢, e5%_; then the optimal terminal decision is made on the
basis of & and the automatically following observed values, say
Zivy*** Tiym Of Xipy, oo+, Xiy,. The optimal terminal deecision

adF(Es Tivy +* +y Tipm) OF dF(&isn) is given by
(2.23) [, LO, 4800 decon®=74E1rn)
where

Eiam=8(50 Typry + v, Zism) -

(i) If &¢ 5%, then the random variable X;,,.,, is taken as a
sample to be added to the samples X, ---, X;,,, which have already
been taken.

This procedure is repeated as long as the posterior probability measure
§; does not belong to 5¥%_;, i <N. However, if we have reached to i=N,
following the above procedure, we have to make the optimal terminal
decision by the decision rule d¥ such that

[, L0; @8y ) devn®)=4Ensn)
where
Evim=8(w; Tysrs ** *) Tyim) -

The optimality of the sequential decision procedure defined above is
easily proved as a special case of the theorems 1.1 which was given in
the more general form.
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THEOREM 2.1. Under the assumptions 2.1 and 2.2, the sequential
deciston procedure defined above is optimal for the sequential decision
problem with delayed observations which was formulated in the previous
section.

THEOREM 2.2. The function (&) defined by (2.13) is a concave
function of € 5.

The proof is quite similar to the one for the theorem 1.2, so it is
omitted.

THEOREM 2.3. Ewery & j=0,1, ---, N 1s closed, but not necessarily
convex where the closedness is based on the regular topology inmtroduced
into the space E in the previous section.

PROOF. The closedness easily follows from the continuity of ¢,(§)
and Ep,[&(¢; X,)] 7=0,1, ---, N as functions of £&. The statement that
E¥ j=0,1,.--, N is not necessarily convex will be clarified in the sec-
tions 8 and 4. This is a typical character due to the existence of de-
layed observations.

3. Truncated and non-truncated dichotomous decision problems

In this section we shall treat a dichotomous decision problem which

'_is obtained from the problem treated in the previous section by imposing
- further restrictions on the parameter space, action space and loss func-

tion. The restrictions are as follows: The parameter space © consists
of only two elements 6, and #;; the action space A consists of only two
elements a; and a,; finally the loss function is defined by L(6,, a;)=w;.,
L(6,, a)=wy and L(6,, a,)=L(6,, a,)=0 where w;, and w, are positive.

Remark 3.1. Due to the finiteness of the spaces @ and A, all as-
sumptions given in section 1 are clearly satisfied.

The problem is to obtain the optimal sequential decision procedure
for a dichotomous decision problem with delayed observations of size m.
The difference between the usual truncated or non-truncated dichotomous
sequential problem and ours is the existence of delayed observations in
the latter: In our model it is assumed that the m additional observed
values are obtained if we wait for them after we have stopped sampling
according to a stopping rule. We also assume that we always utilize
these additional observed values for our terminal decision.

Since ©={4,, #;} in our problem, any prior probability measure &
over O is determined by £({6,}), say 7, and therefore it is parametrized
by the parameter , 0=7=1.

Let us first consider the problem truncated at N+m. In order to
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analyze the problem by “backward induction”, consider first the case
where the maximum number of observations with observed values z,,
%y, ++*y Xy, =+, Twsm have been made. If the prior probability of 4, is
7., the posterior probability of 4,, Pwimn=2(00; L1, *+ +, Lyym), IS given by

(3.1) 7]N+m=?ol\i]:u Do, () / {770 ﬁmpol(wz)'l'(l_’io) NiT:TZn paz(xi)} .

In this case the conditional expected loss for choosing the terminal action
a, plus the cost of observation is

3.2) (N+m)e+wy(1—751m)

and, similarly, the conditional expected loss for choosing the other
terminal action a, is

(3.3) (N+m)c+wlgv1v+m .

Thus, comparing both conditional expected losses, we obtain the follow-
ing optimal (Bayes) terminal decision procedure: Choose the action a,
if wo(1—7yim) SWi)yim, otherwise choose the action a;. Then, the con-
ditional Bayes risk of this procedure is

3.4) min {(N+m)e+wu(l—7y4n), (N+m)e+wiunyim}

Let us now consider the case where random variables Xj, ---, Xy
have already been observed with observed values x, a,, ---, zy respec-
tively, but Xy,,, ---, Xy,n have not yet been observed. In this case
we shall say that we are at the Nth stage. Since, at the Nth stage,
Ivem =90 X1, *++, Ty, Xys1, +++, Xyim), the Bayes risk (3.4) is a random
variable. Further, since 7y=%(7; %, ---, Zy), We can write 7y, .=
7y Xys1y * s Xyim). The expected value of the Bayes risk evaluated
at the Nth stage is a function of 7y and is denoted by Uy(yy):

(3.5)  Uy(yy)=E min { (N+m)et+wall—9(pn; Xyi1y +++y Xyim)] }

(N+m)e+wup(pn; Xuy -y Xyim)
=(N+m)c+einy)

where

(3.6) ei(yy)=Emin {wu[1—9(x; Xyis, = +) Xyim)ls

Wi (7w Xy ++ ) Xyim)}

In order to proceed backward, let us suppose that we are at the N—1st
stage, that is, we have observed Xj, ---, Xy, with the observed values,
say %y, -+, y_1, but the succeeding m random variables Xy, « -+, Xy m_:
have not yet been observed. Then, there are two choices: (i) the one
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is to stop taking a sample any more and wait until the observation
of the additional sample Xy, .-, Xy.n_, is completed and follow the
optimal Bayes terminal decision procedure based on all observed values;
(ii) the other is to take one more sample X,,, and to follow the optimal
decision procedure which was already described. In the case (i), the
conditional Bayes risk given X,==z,, .., Xy_,=2y_, is denoted by
Uy-1(gw-1) :

le[l_v(vN—l; XN; Tty XN-1+m)]

3.7 Uy_i(gy-)=(N—1+m)c+ E min {
( ) " (7]N ) ( ) wﬂv(’]N—l; XN; Ct 0y XN—1+m)
=(N—14+m)c+@y(nx-1)

where ny_,=5(y; %1, &3, -+ -, Ty_,). In the case (ii), the conditional Bayes
risk given X,=x,, -+, Xy_,=2%y_, is expressed by

3.8) (N+m)e+Eoln(ny-1; Xx)] -

Therefore, the best way to decide whether to stop taking a sample or
continue it at the N—1st stage should be solely based on (3.7) and (3.8)
as follows: If (8.7) is not greater than (8.8), that is,

3.9) Pl(pv-1) S c+Eop(ny-1; Xy)]

we should stop sampling immediately; on the other hand, if (3.7) is
greater than (3.8), that is

(3.10) (9w -1) >+ Epln(y-1; X))

we should continue to take a sample. Therefore, we can write the con-
ditional Bayes risk at the N—1st stage, ay_,(yy_.), given X,=x, ---,
Xy_1=2%y_, as follows:

(8.11) ay-1(7y-1)=(N—1+m)c+ ¢ (ny_,)
where we define
(3.12) e(r-)= min {@y(yx-.), ¢+ Eedp(yx-.; Xx)1} .

We, thus, have expressed the conditional Bayes risk at the N—1st stage
by using the conditional Bayes risk at the Nth stage, which is easily
seen from (3.5), (8.11) and (3.12). Further, conditions (3.9) and (3.10)
which determine the stopping rule at the N—1st stage are rewritten
respectively as

(3.13) 01(x-1)=¢u(hx-1)
and

(8.14) o(nx-1) F epx-1) -
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Let us now define functions ¢; in the same manner as in section 2:
(3.15) @i(ny-)= min {@y(ny-s), ¢+ Epi[9(y-i; Xy-in)]}

for 1=2,8, ..., N, where ny_i=%9(7; 1, -+, Ty-;). In this way all ¢’s
are defined by proceeding backward from the Nth stage to the starting
stage of our sequential decision problem. In accordance with the suc-
cessive determination of ¢;, the optimal stopping rule and optimal
terminal decision procedure are determined successively as follows:

[N—4] Stopping rule: Suppose that observation has been continued
with observed values #,, ---, £y_,: that is, we are at the N—<th stage.
We first compute 7y_i=9(n; &1, * * +, Ty-1) =9(Px-1-1; Tw-1). The stopping
“rule at this stage is: (i) Stop taking a sample if ¢(7x_)=¢d(y~y_.) and
(ii) Take Xy_iim+: as a sample if ¢i(py-:) #@o(ny-:).

[N—4] Terminal decision procedure: When [N—4] (i) occurred, we
have to wait until the additional observed values, say, y_i1, ***) Ty—iim
on Xy_is1, +++y Xy_ism are obtained. Thus, the posterior probability 7y_;,m
is computed by 7y_isn=2%(x-i; Tx—is1 ***, Ty—i+m) and then the terminal
decision is made according to the following rule: Choose the action a,
if wy(1—9y_iym) SWuny-i+m and choose the action a, otherwise.

So far we have given formally the optimal decision procedure for
the dichotomous case of the truncated sequential problem with delayed
observations. One of the main purposes of this section, however, is to
give a concrete characterization of the optimal sequential decision pro-
cedure. We will see later that the optimal stopping rules for some non-
truncated sequential decision problems with delayed observations are
completely characterized by the sequential probability ratio test just as
the one for the sequential problem without delayed observation is
characterized. For this purpose the following three propositions will be
used. The proofs of these three will be given in the succeeding section.

PROPOSITION I. The function ¢y (y) defined by (3.6) is a concave
function defined over the closed interval [0, 1] and ¢y(0)=¢,(1)=0 (for
the proof, see the theorem 4.1).

PROPOSITION II. For 7 1<4<N, Ep, ,[5(7; X)] is a concave function
of  0=9=1, where X is a random variable with the density function
705, (%) +(1—7)py(x). Further, for any ¢, 1<i<N, define the set of 7,
H,={y|pfn)<c+Ep,i[9(n; X)], 0<p=<1}. Then, it is shown that H; con-
sists of mutually disjoint subsets such that

(2) H=H.+H,
J —
H,= jE;Hu H,= 3 H;
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where H,NH,=¢ and {H,} or {H,} is a set of mutually disjoint sub-
sets H,; or H, of [0,1]

(b) each H,, or H, is connected and closed,

(c) for any positive integers 7 and j’ with 1<j<j’<J,, we have <y’
for any » € H,; and any 7' € H,;

(d) in the similar way, for any positive integers k, &' (1 k<K £K),
we have »'<y for any 7' ¢ H, and any 7 ¢ Hy,

() H,>50 and H,>1,

(f) for any positive integer ¢ and i’ with 0<i<i' <N,

(3.16) H.,<H and H.cH.

Now, H, and H, can be represented by closed intervals [0, 2] and
[7:, 1], respectively. Then we can see that the sequences {%,} and {3}

t=1,2, ..., N are monotone decreasing and increasing, respectively. If
we are concerned with the non-truncated case of the above problem,
we will have infinite sequences {7} and {7} ©=1,2,---. From the

monotonicity and boundedness of these, we can see that there exist two
limits :
3.17) lil_g.} 7,=7 and liLIB 7,=7.

Remark 3.2. If we are concerned with a dichotomous sequential
decision problem without any delayed observation, that is, m=0, then
we always have J;=K,=1 for ¢=0,1,---, N, while in this case the
function ¢y(y) is defined simply by min {wy(1—7), wyp} instead of the
form given in (3.6).

The optimal stopping rule for our truncated sequential decision
problem with delayed observations is completely characterized by {H:}
1=1,2,---, N. Let us assume that the prior probability of 6, is 7.
The optimal stopping rule is described as follows :

[0,i] If » € Hy, no sample is taken except Xj, -+, X, ;

[0, ii] if 9 ¢ Hy, X, is taken as a sample to be added to X, ---, X,,.
In case [0, i] occurs, we wait until the observations on X, ---, X,, are
completed and then compute »(y; z,, - - -, #,)=7, for the observed values
x’s of X’s. The decision a, is chosen if wy(1—7,)<wy, and the deci-
sion a, otherwise. On the other hand, if the case [0, ii] occurred and
the observed value, say x,, of X; has obtained, (y,; #;)=7, is computed.
Again, two cases occur:

[1,i] If 5 € Hy_,, no additional sample is taken.
[1,ii] if 5, ¢ Hy_,, X,... is taken as an additional sample to the sample
Xy, -+, Xy which have already been chosen. In the case [1,i] we
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compute 9, =9(n; y, *+ +, Lny1), using the observed values =z, -« -, Tpis
of X, -+, X, and choose the terminal decision a; if wy(1—29m1) SWinir
and the terminal decision a, otherwise. On the other hand, in case [1, ii]
oceurs, 7,=9(y; %;) is determined after the observation on X, is made,
with the observed value x,. This value of 7, is used to decide whether
an additional sample X,,, should be taken or not. In general we can
write the procedure as follows: When we have already observed X,
-+, X; with observed values z;, ---,x; (:=0, .-, N—1), we first com-
pute p,=n(no; @, - -+, @) or (n:.—1; x;) and get the following rule:

[7,i] If 7, € Hy_;, no additional sample is taken,

[4,ii] if 7, ¢ Hy_;, Xiiny: is taken as an additional sample to the sample
already chosen. In case [7,i] occurs, the terminal decision a, or a, is
chosen according to wu(1—7i1n) SWiim OF Wy(1—%i4n)>Wi)ism, Where
Niem=90; Ty =+ *, Titm) OF P(Piym—1; Lirm) for observed values z;’s of Xi’s.
On the contrary, if the case [1,ii] occurs, 7., =%(y:; ;) is computed
with the observed value z,,, of X;,; and we can proceed with this 7;,,
to the next stage where ¢ is replaced by 72+1 in the above procedure.

Finally, if we have observed X, ---, Xy, we wait until the additional
sample Xy, -+, Xy.n is observed. Computing 7yin=25ny; Tys, =+,
Zyim), We can choose the optimal terminal decision by the procedure :
Choose a; if wy(1—79y,n)<Wuyy+m and a, otherwise.

Thus we have shown that the optimal decision procedure for the
truncated sequential problem with delayed observations is completely
characterized by the sequence of subsets of [0, 1], {H;}, :=1,2, .-, N.

Let us now turn to the non-truncated case. In this case the optimal
decision procedure takes a simpler form. Let us define H =101I_Ii and
H =¢01E . Then, the optimal (Bayes) decision procedure for the non-
truncated sequential problem is described as follows: When we have
already observed X, .-, X; with observed values z, ---, x; (=0, 1, 2,
---), we first compute 7, =x(n;x, -+, 2;) or (pi_,;x;) and get the
following rule:

[¢,i] If »,€ HUH, no additional sample is taken,

[¢,1i] if 5 ¢ HUH, the random variable X, .., is taken as an additional
sample to the samples X;,,, ---, X;,» which have already been chosen,
but not yet observed. The way to choose a suitable terminal decision
in the case [7,i] and the way to move to the ¢+1st stage in the case
[%,ii] are the same as for the truncated case except that we always use

HUH instead of {H;}, i=1,2, ---, N. Of course no truncation is con-
sidered in the present case.

PROPOSITION III. If there exist positive numbers e, and e, which
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satisfy e, <p, (x)/p,(x)<e, for any « such that p,(x)>0, then there exists
a positive number c¢* such that, for any positive c<c*, the optimal
stopping rule of the non-truncated sequential decision problems with
delayed observations with the cost ¢ per each observation is completely
characterized by the sequential probability ratio test.

Under the condition of the proposition III, we will show in the
following section that H=[0, 7] and H=[7, 1] where 7 and 7 are defined
by (3.19). Then, the proposition III easily follows if we rewrite the
conditions: 0=7.<7, 7=<n.=<1, 72<9<%, Wu(l—7isn)SWynirm and
Wyl =7i4m) > Wishism, ©=0,1,2,---. In fact, defining l(z,, ---, 2:;)=

i i
I 2s,(2,) / JT Ds(x;) and considering the definition of 7;, we have the
Jj=1 =1

above conditions:

7(1—1,) (L —1)
limy"°9xi§——v lim,"'yxig-v—tv—o_
(@ ) 1 —2)n e ) 1—2)n
(1 —2) 7(1—2,) Way(1—17)
= T &l -, )< BT L@y, + vy Tiym) = 222 70)
(1__17)1]0 (4 ) A=), v+m(Zy ) Weo
and

L@y -+, 2pm) < 220210 ponectively.
WMo

In conclusion, we should emphasize that, at least when the condition of
the proposition III is satisfied, the Bayes stopping rule as well as the
Bayes terminal decision procedure for the non-truncated dichotomous
sequential decision problem with delayed observations are completely
characterized by the sequential probability ratio just as the Bayes de-
cision procedure for the non-truncated sequential dichotomous decision
problem without delayed observation is characterized by the sequential
probability ratio test.

4. Theorems and lemmas

In this section lemmas and theorems are proved to establish Pro-
positions I, IT and III which were stated in section 3. In what follows,
the sample space or the product sample space will be simply denoted by
R or R™.

THEOREM 4.1. The function ¢\(n) defined by (3.6) is a concave func-
tion over the closed interval [0, 1] and ¢f(0)=p(1)=0.

PROOF. By the definition of ¢3), for € [0, 1]
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(4'1) ¢0(”)=E min {wﬂ[l_?(v; le ) Xm)]! wm’](’]; X-l! Tty Xm)}
where

X, e, Xn)
4.2) (X, -+, X)= 700 (X, -0, X
: (Ko > X F A —7)p0(Ker - -+ X)

and
pﬁi(‘Yh ] Xm)'—- ;Ll;pai(Xj) 1:21, 2.

Since the joint probability density function of X;’s for a prior proba-
bility of 6,, say 7, is 9p, (2, - - -, Tn)+ L —9)ps, (21, -+ -, Tn), We have

(43) g ={ min (wall=g(n; 2., -+, 2], Wty @ -+, )
X[, s @)+ (=)o, -, )] T dpe@2)
= | min (un(=n)p (e, ) 2), warpo(a, -+, 2} TT du)
For any s 72 and 2 such that 07, 5, 2<1, we have
e+ (=2 ={

walkyi+ (L= mlpy (s, -, @)} [T du(a)

n min {w2l[1_z771_(1 _1)0211102(371; Tty xm)y

= min (i1 =)+ A= DL~ lpy s -+, 32),
waldy+ (L= Dnlpn (@, - -+, 7)) 1T du(z)
2 [min (ond(L=n)pn (@0, -, @), ko -+, )
+min {wy(1—2)(1—7,)pe,(2y, -« -, Tn),
wal—2po @, - -+, 2} 1T die(w)
=Ap(71)+ (1 —Deeo(72)

Remark 4.1. For the proof of the above theorem, the independence
of Xj, ---, X,, is not necessary. This theorem gives the postulate I in
section 3.

LEMMA 4.1. If o(y) is an arbitrary concave function defined on
[0, 1], then we have, for any positive integer k,

(4.4) e(n)Z Eoly(y; Xi, - -+, Xi)]
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where the expectation 1is taken under the assumption that the k-dimen-
sional random variable (X, ---, X;) has a probability density function
700 (%, -+, T)+(L—7)Do(1, - -+, 3:). The strict inequality holds when the
Sfunction ¢(y) is strictly concave and the probability distribution of (X,
-+, X,) does not concentrate on one point.

PROOF. From the concavity of ¢(y), it is shown that, for any
70 € [0, 1], there exists a straight line through the point (7, ¢(7,)) such
as the curve {(y, ¢()), 0=<9=<1} lies beneath the straight line. Suppose
that its equation is y—¢(p)=a(p—mn,). Then, we have

(4.5) y=e(n) or  e(n)talp—n)=e(y) .
If we define a random variable Y by the equation
(4.6) Y=o(p)—an+ay(p; X, -+, X »

then by (4.5) we have, with probability one,

YZolp(n; Xi, -+, Xi)]
or

4.7) (o) —an+an(ne; Xy, « -+, X)Zelpp; Xy, + -, X)) .
Therefore, taking the expectation of both sides of (4.7), we obtain

(4.8) o(p)—an+aEp(n; X, « -+, Xo) Z Eopln(ne; Xi, - -+, Xi)]

and since Ex(p; X, ---, Xi)=7n, we finally have the inequality (4.4).
The strict concavity insures the strict inequality in (4.5) and (4.7).
Thus, the last statement of the lemma is valid. Before going to the
theorem 4.2, let us state its content in a restrictive form, which is the
following lemma.

Lemma 4.2. If ¢(y) is a concave function defined on [0, 1] with the
continuous second derivative ¢"(y) on [0, 1]®, then the function Eo[y(y;
X, -+, Xu)] for any positive integer k is a concave function in 7 defined
on [0, 1], where the expectation is taken wunder the assumption that the
k-dimensional random variable (X, ---, Xi) has the joint probability
density function 7p, (2, « - -, T)+ (I —7)po (21, - - -, x:) for each 7.

PROOF. Let us designate Eo[yp(y; X, --+, Xi)] by @(y). Since we
can write

@9  om)=| laln;z s mllpe o, )
+ A —)pu, (1, -+ -, %)) ﬁ[ldy(wi)

@ o''(p) for =0 and 1 should be interpreted as [D*(Dt¢(y))l=0 and [D~ (D~ ¢(n))ly=1.
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it is seen that the derivative of @(y) exists and is obtained by the dif-
ferentiation of (4.9) under the integral sign, which is allowed in the
present case. Thus we have

OGRS | FS RN GRS

+A =Py, -+ -5 T+l @1 -+ -, X))
X [P0 @1 - 8= Puf@s -+, 0] 1] dpe)

Now, from the definition of #[-], we have

d . _ Do(®1, * + 5 T)Do,(E1, =+ k)
(4.10) ——nlp; 2, -+, @)= 1 3 .
d')? ” ' * [”pﬂl(xlv ct xk)+(1_77)p02(x1y ctty xk)]z

Therefore, we obtain

411) V)=\ {¢ly; @, -, @ Po®y -2, TP, -, )
@11) o'@) SRk{so[?)(n R et L

+oln(y; o1 « -+, T)[De (@1, <« -, TL)— Do (24, - - wk)]} J:[d#(wi) .

Again, by the assumption that ¢"(y) is continuous on [0, 1], we can
obtain @”(y) by the integration of the derivative of the integrand of
(4.11). That is

@12 om)={ iz -, 20

R
(Do (@1, * * + 5 Te)Po, (X1, * -+, x)) d
1 2 d X;) .
[P0 (21, * -+, 2e) + (1 —7)Po (@1, -+ -, T 11 éwt)

Since ¢"(5)<0 for 5 ¢€(0, 1), it follows that @”(y)<0 for ¢ (0,1). Thus
the lemma has been proved.

Remark 4.2. If ¢"(p)<0 for ne(0,1) and if the k-dimensional p-
measure of the set {(wy, -+, %) | Do, (@1, +, &) Po,(X1, -+ -, ) >0} is not
zero, then we have @”(3)<0 for » € (0, 1).

The concavity of Eg[yp(y; X;, -+, Xi)] can also be established when
the concavity of ¢(5) alone is assumed. For this purpose it seems con-
venient to use the following lemma.

LEMMA 4.8. A mnecessary and sufficient condition for a function
f(x) to be a concave function defined on [0, 1] is :

(1) f(x) is continuous on [0, 1].
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(2) D f(x)* and D*f(x)* exist for x € (0,1). Further, D~ f(x) exists
or —oo at x=1 and D*f(x) exists or +oo at x=0.
(3) D f(x)zD*f(x) for any z € (0, 1).
and
(4) Dtf(x)=D f(x5) for any pair x,, x, such that x, <z, and x,, x; €
[0, 1].

ProoOF.

(i) The proof of necessity

For any x €(0, 1), consider a monotone increasing sequence {y;} such
that 4, €[0,1] 2=1,2, --- and Eim y¥;=x, and also a monotone decreasing

sequence {z;} such that z;€[0,1] 7=1,2,--- and }im z;=z. Since f(x)

is concave, we have

(4.13) f@z 275 fy)+ 2=V g (z))
o Zi—Yi 2i—Y:
or
(4.14) fx)—f(y:) > J(z)—f(y:) > f(z)—f(x)
=Y 2,—Y 2,—x

and the left and right terms of (4.14) are monotone decreasing as y,—%
and monotone increasing as z,—x, respectively. Thus, the existence of
D~ f(x) and D*f(x), and the continuity of f(x), that is, (1) and the first
past of (2) immediately follow. Also, the inequality (8) is an immediate
result. The proof of (4) runs as follows. For any pair z,, x, (x,<x,,
2, %, € [0, 1]), let us choose ¥ and z such that x, <y, 2<x,. Then, from
the concavity of f(x) we have

(4.15) fy)—f(xy) = S(@)— f(ay) > S (@) —f(2) .

Yy— Lo— 2y Le—2

Now, since the left term is monotone increasing as y—x,+0 and the
right term is monotone decreasing as z—x,—0, we get

(4.16) D f(z)z f————(“;) :f; @) > D f(ay)

which was to be proved.

& D—f(x) and Dtf(x) are defined by

D—f(z)—_-hlim f(Lhz_f(_‘”l D*f(z)= lim f(a:+h}:—-f(x) )
—-=0 h—+0
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(ii) The proof of sufficiency
From the conditions (3) and (4), we obtain

(417  D*f(z)zD fw)ZD*f(y)2D ()2 D" f(y) 2D f ()

where 0=z, <y, <9#:<%:<1. Therefore, both D-f(y) and D*f(y) are
monotone decreasing functions defined over (0,1] and [0, 1), respec-
tively. Hence, they have at most a countable number of discontinuity
points. It is easily shown that D~ f(y) and D*f(y) are left-continuous
and right-continuous, respectively. From this fact and the inequalities
(4.17), we can conclude that D~ f(y)=D"*f(y) except at most a countable
number of points in [0,1]. Therefore, for any pair z,, x, with 0<z, <z,
<1, we have

(4.18)  flz)=rflz)+ S”Dt f@)dz  (Lebesgue integral) .

71
On the other hand, as is easily seen, it holds that
(4.19) (@y—a) D™ f(2) < S?D*f () de < (2, —x,)D* f (1)
From (4.18) and (4.19), we have
(4.20) D fw)sL@=I@) <p+f(z) .

Ty— Xy

By (4.17) and (4.20), for any « such that 0=z, <<, =<1, we get
(4.21) (7 D*f@) dexD* @) LO=L2)

Lo—X —&

since D*f(x) and D~ f(x) are monotone decreasing. Finally, from (4.18)
and (4.21), we obtain

(4.22) Sf(x)— f(x) < f(@)—f(x) for 0<x,<w<:,<1,
Ty—& T—x

which implies the concavity of f(x). The extension of lemma 4.2 is

now given in the following theorem and its proof is performed by ap-

plying lemma 4.3.

THEOREM 4.2. If ¢(y) 18 a concave function defined on [0, 1] and
D*¢(0) and D~¢(1) are finite, then, for any positive integer k, E¢[n(n; X)]
is also a concave function defined on [0, 1], where X=(X,---, Xi) 1s
considered to be a k-dimensional random variable with a probability
density function np,(x)+(1—7)p.(x); D, (%) 8 the joint probability density
function of Xi, ---, X, with respect to a o-finite measure g over R*
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when 0, is the true parameter, i=1,2. Further, D*Ep[yp(y; X)] and
D~Eo[5(y; X)] take the forms given by (4.27) and (4.28), respectively.

PROOF. Let us denote E¢[p(y; X)] by @(). @(») is expressed as

@28 ot)={ olytr; Mm@+ Q- dpo)

To assert that &(y) is concave, we shall prove that the conditions (1),
(2), (3) and (4) of lemma 4.3 are satisfied by @(). The condition (1)
is obviously satisfied since functions ¢(y) and %(y; ) are continuous in
» and the integral of (4.23) is uniformly convergent, as is easily seen.
Let us prove the condition (2). If 0=y, 7+4<1, we have

(4.24) ¢(n+42-—¢(77) =SR;¢ { elp(n+4; w)j—so[v(n; x)]

X7 (&) + (L= 1)pn @)+ ol + 4 2)(po)—po@)] dp(z)

Now,

(4.25) 9(n+4; 2)—n(n; z)
_ Do, () s,()4
[(7+ Dpo () + (1 — 27— D)o, (%)] [17D0, () + (L —7)Ds,(%)] ~

Therefore, for any « such that p,(x)p,(x)>0, 4=0 implies

(4.26) 7(n+4; 2)—5(7; )20

and the derivative of %(»; z) in 7 is given by (4.10). Since, by the as-
sumption that D*¢(0) and D~¢(l) are finite, the integral and lim or

4—-+0

lim can be exchanged for (4.24), we have
4--0

() — + . D0, (€)D6,(%)
wzn Do) {Delatr; )l BuERE

L9075 D)1 ()~ po(a))] dp(z)

for » € [0, 1) and for 7€ (0, 1]

. -o(n)=\ 1D ; Do, ()0, (%)
4.28)  D0(y) Skk{ olotri ) PO

+ol7(7; D, @)~ 1 @)} du@) -

Thus, the condition (2) has been proved. Since ¢(3) is concave, it holds
that for any x € R*, D*p[p(n; x)]I=<D ¢[5(y; x)]. Thus, from (4.27) and
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(4.28) we obtain condition (3), that is, D*@(»)<D~®(y) for »e€(0,1).
Finally we wish to prove that the condition (4) of lemma 4.3 is satisfied.
Suppose 7, <7, and 7, 7, € [0,1]. Then, by (4.27) and (4.28) we have

(4.29)  D*@(7)—D"9(y,)

- Dielp(n;®)] D gly(n; 2)]
S R¥ { [ 7711701(06) +(1— ’71)2002(113) vzpal(:v) +(1—7o)ps () ] pvl(x)pvz(w)

— [ol2ts 20— olnt; 21| @)~ D] ditz) -

For an arbitrary x € R* such that p,(x)p,(2)>0, we have 3(y;x)—
7(n; 2)>0 by (4.26) since 7,>7,. For such z, the total number of
discontinuity points of D*¢(y) in the interval ((y;; x), 7(7:; %)) is at most
countablly infinite since the function D*¢(y) is monotone decreasing on
[0,1]. Consider first the case where the discontinuity points are finite
and denote them by {{} ©=1,2, -+, n(y, 7, ) where n(yy, 7, ) is the
total number of discontinuity points of D*¢(y) in the interval (»(y; ),
9(ne; x)) and {;<liyy, 1=1, -+, nny, 75, £)—1. Also let us denote n(y,
7, ) simply by n* and for convenience define {,=n(7;; ) and (=
7(n,; ). Since D*¢(y) is continuous in each open subinterval ({;, (i),
we have, for some 6, € (0, 1),

(4.30) o(Ci11) —0(8) =D*[Ci+0.Ci 11— C)1(Cis1—C) ©

Thus

(4.31)  oln(n:; )] —eln(n; BN =@(Cner1) —@(C) = ?ZLL ((Gi+1) —¢(E))
= 5 DA 0 — =) -

Let us now define a sequence {7}, corresponding to {{;}, by the equa-
tions

432) = 2P, (@) i=0,1, -+, n*+1.
7@Ps, (%) + (1 —29¢)D0,(2)

Clearly, no,=7, and 7ue+y=7;; in addition

(4.33) 20 <Pwy< *** Nars) -
We, then, have
(4.34) D o[y(y:; 2)] __ Doly(y:; @)]
' 7711’01(517) +(1— ﬂl)pa,(w) ﬂzpal(x) +(1- ’72)170,(“7)
- { D oly(yc; %)) _ D~ elyp(nesn; #)] }
i=0 UoeeyDo (€) +(L—7w)P0(®)  DesrnyPo,(€) (L =70 11))Po ()
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= D olp(nu; 2)]—D*plp(ne ; ®)]
=1 DetyDe, (%) + (1 —29¢0>) D6, ()
it { Dolp(ye; %)) . D o[9p(nu1ny; ©)] }
7Pe, (@) + A —79w)Pe(®)  YeisnPe,(®)+(1— Na+n)Pe(X) )’

T i=o

where the proper inequality holds if and only if »*=1, since by the
definition of 7, we have

D e[9(nay; 2)]—D*olp(yey; ©)1>0 .

Using (4.31), (4.32) and (4.34), we obtain the following inequality con-
cerning the integrand of (4.29):

(4.85) The integrand of (4.29)

= Drolp(nw; 2)]
= 04 (%)Ps,(%) = { 7600 (%) + (1—71) D0, ()

D olp(nsny; )]
D400, (@) + (1 —7¢041)) Do, (%)
_D *o[9(0; %)+ 0901135 %) — 2By TN cs+1— 7)) (e, (€) — Po,(ﬂ?))}
[7¢>00 () +(1— 7)) e, (%)) ¢ +1yPe () +(1— Nei41)Pe,(2)]

(4.36)
—  (D*oln(nay; )] — D el9(ney; )+ 04y ©)— 270y %))]
~men@ 5 | ToPol®) + A~ 70)Pe @)

D oln(nay; 2)+045(0c 11 ) —7(n0ay; z))]— D~ e[ 9(+15 )] }

ﬂ(i+1)pal(a7) +(1— 77(t+1))pa,(x)

+

since it holds that
1 3 1
D450, () + (1 —9c141)) Do, (%) NeyDe, (%) + (1 —7¢0>) D0, (2)

— — (40— 7w) (Do, (%) — Do, (%))
[7c>De () +(1— Ny)Pa,(2)] [7c+1P0 (%) + (1—7641)Pe,(%)] )

Noting that (yw; £) <9(w; €)+0:HMu1; ©)— 97y ©)) <P(7a+n; ®) and
applying the condition (4) of lemma 4.3, we get

Doln(nes; ©)12 Deln(e; )+ 0dgl1en; 2)— 700 )]
= D*oln(nay; )+ 04910405 ) —9(n0; ®))]
=D o[9(usn; )] -

These inequalities imply that the right-hand side of (4.36) is non-
negative ; therefore the integrand of (4.29) is non-negative. Consequently
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D*@(y,)—D~P(3,) is non-negative. Thus, the condition (4) of lemma 4.3
has been proved for the case where n(y,, 7,, «) is finite. When n(y,, 7,, x)
is infinite, we can prove the same conclusion by a similar procedure,
although we then have to consider possible accumulation points of {;}
or {7}, which makes the description of the proof a little more compli-
cated. The proof for this case, however, is omitted in this paper.

Remark 4.3. Proposition I of section 3 is a special case of theorem
4.2. In fact, in the proposition ¢(y) is a concave function given by
min {wy,(1—7), wep} 0<7=<1; furthermore, Xy, -+, Xy,n are assumed
to be independent and identically distributed, which is more restrictive
than the assumptions of theorem 4.2.

COROLLARY 4.1. Under the conditions of the theorem 4.2, we have
(4.38) D*®(0)=D*¢(0) and D~ 9(1)=D¢(1) .

The following corollary is also easily derived from theorem 4.2 and
lemma 4.1.

COROLLARY 4.2. Suppose that X, X, ---, X, be independent and
identically distributed with probability demsity function p.(x) or p,(x)
and o(y) be a concave function, with finite D*p(0) and D~¢(1), defined
on [0,1]. Then, Eplyp(y; Xi, -+, Xi)] k=1,2,---,n are all concave and
Eolp(y; X, -+, Xl = Eoln(y; X, -+, X, Xew)] for k=0,1,---,n—1,
where we define p(n)=1.

PROOF. Under the condition that X,=x,, ---, X;,=2,, we have
elp(n; i, -+ -, 2)]=0(n) Z Eolp(y:; Xirr)]  (lemma 4.1)
where 7.=%(y; «,, - -+, ). Then, taking expectations of both sides with
respect to X, ---, X;, we obtain

Eoly(n; X, «++, Xo)1ZEoly(n; X, « -+, Xiy Xir)] -

Remark 4.4. Proposition II of section 3 is obtained from the above
corollary. For the derivation of the proposition, geometrical or graphical
considerations are quite useful.

Let us now consider ¢(7)=min {wy(1—7), wyp} 0=<7=1 and the cor-
responding function @(») which is defined by (4.23). Since

Wy if 0<p<—Wu
Way+ Wiz
Dto(y)=
—wy if — Y =7<1
Way+Wyp



260 YUKIO SUZUKI

wy if O<ps— P

Wy + Wy
(4.39) Dp(n)= w
—w, If —=2 <yl
) " Way+ Wiy 7

D+p(0)= lim D~¢(y) and D p(1)= lim D*e(y) ,
7—++0 710

we have, by (4.27) and (4.28),

(4.40) Do()=| PuOPD) 1y 2)ps ) i) | @)

o wn[
B 7P, (%) + (1 —7)D0,(%)

+ S Wy [ _ p'x(m)p ’a(x)
B®)u B3 7P, () + (1 —7)P6,()

+(1—7(7; ) (P4 (&) — Pu#)) | du(@)

and

ws [ Do (2)Po, (%)
BDu B 700, (%) + (1 —7) P4, ()

+ 707 %), (@) 0 @)) | dp(@)

S Wy [ P "1(x)p 92(37)
PO pp,l(x) +(1- ﬂ)pri,(x)

+(1—7(7; ) (21®) —Pu @) | du@)

(441) D0)=|

where
BoG)= el ot )< 0
(4.42) B®(y)= {x |7l x)zﬁ} ’
BY)=o1200; 2)> Wqﬁlw;} '

Replacing %(7; ) with its defined form, we obtain the following simple
forms:

(4.43) D+¢(n)=wug X D0 (%) dﬂ(w)—szg Do () dpe(x)

By B®uB®n)

and

(4.44) D‘(D(’]):wug @ Pr®) dy(x)—quB(,)mp,,(x) du() .

Wy
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Thus

(45)  DOG)—D'O)=| , (WaP(@)+unp, (@) du@)

When x € B®(p), that is, 5(y; )= Wu | we have p,,z(m)=—wLp,1(x)

War+ Wie Wy(1— 7))
and therefore for » € (0, 1)
- _ — Wya
(4.46) D06)~D' 0= | ., pu@) due)
or
_ _Wau SB(z)(ﬂ)pﬁz(x) du(x) .
Thus we get

LEMMA 4.4. Suppose w,; and wy are positive. Then, a mnecessary
and sufficient condition that D~®(p)—D*@(n)>0 is S (2)()1),1(90) dp(x)+#0
B (n

or equivalently SBm(”)p,z(w) du(x)+£0.

Remark 4.5. The above discussions will be used in the section 5.
The following discussions are concerned with the proof of the postu-
late III.

LEMMA 4.5. If there exist positive numbers e, and e, such that

(4.47) eo="Tnf Pu®)  gup Pu®) _,
Do, (%) Do, (%)

where the infimum and supremum are taken for x such that p,(x)>0,
then there exist positive numbers b, and b, such that 0<b,<b <1 and

Wy for 7 € [0, bo]

(4.48) Eso[v(n;)Q."',Xm)]={wm(1_,,) for 7 e[y, 1]

where ¢(n)=min {wyy, wy(1—7)} for 0<9=<1.

PRrROOF. Define b, and b, by

b=max{ Sup ;x,---,wm)é—&—}
0 7] ’7(77 i W+ Wy

(4.49)

b=min{ Inf (X, Tm _Z_-ﬂ——-},
1 7| 7(n; % ) Wi+ Wy
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the supremum and infimum being taken for (x,,---,2,) such that
ﬁpoi(xj)>0, i=1,2. Then, since by (4.47)
j=1

e
ner+(1—7)

76y

—_< ( ;x9“'7xm<
et (—y) ST )

for any € [0,1], we can easily obtain

0< Wt <by<b< W <1
er (Wi + wey) +wy(1 —er) o e (Wit wy) + wy(1—el)

From (4.49), we can see that, as long as 5e€[0,b] or ye[b, 1], the
range of the random variable »(y; X, ---, X,,) is contained within the

interval [0, ﬂ———] or [ﬁ—, 1], respectively. Now, since ¢(3)
Wiy~ Wy Wi+ Way Y

—wyy for pe [o, —wﬂ—-] and p(y)=wy(1—7) for 7 ¢ [_wm_ 1], we
Wiz T Wy Wiz + Wy

have the results. Using lemma 4.5 and corollary 4.2, we can get the
following theorem to establish the postulate III of the previous section.

THEOREM 4.3. Suppose that the condition (4.47) is satisfied. Then,
there exist ¢* and n* such that for any ce€ (0, c*] the Bayes sequential
stopping rule for the sequential dichotomous decision problem with delayed
observations, constant cost ¢ and independent observations takes a simple
form : that is, in terms of the motations defined in the section 3,

(4.50) H=[0,2] and H,=[7.,1] for nzn*.
Further, there exist 1 and 7 such that 0<7<7<1 and
(4.51) H= F_'ioH,.=[0, 7, IT=§OFI"=[7;, 1.

Thus, the mom-truncated Bayes stopping rule is completely characterized
by a sequential probability ratio test.

PrOOF. To show explicitly the dependence of the functions vi(n)
t=1,2, .-+ on the cost of observation ¢, let us write ¢,(y, ¢) instead of
¢{n) which was defined by (3.6) and (3.15). As we have already seen
(corollary 4.2), for any ¢ € (0, o)

(4.52) (0, )= @iy, e)=c  for 5e0,1], 1=1,2, ... .
Thus there exists a limiting function, say ¢.(, ¢), such as

(4.53) lim g,(, Q)=¢u(y, ) .
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Then, clearly it is a concave function of 7 for any fixed c. We can also
see from the definition of ¢;’s that

(4.54) ei(n, €)= @iy, ¢’)  for e>c .

Therefore, we can conclude that ¢.(y, ¢) is monotone increasing in ¢ and
further we can show that

(4.55) lim p.(7, ©)=0 .

Using the b, and b, of lemma 4.5, let us define c* as follows :

som(bo, 0)§wxzbo
(4.56) c*=max { ¢| o7, )<@iy)  for 7€ (b, by)
and  @.(by, c)Swu(1-by)

The existence of positive c* is assured by (4.54) and lemma 4.5. For
any ¢ such that 0<c=<c*, n* is defined by

@i(b, ¢) S wysby
(4.57) n*(c)=min { 1| @y, c)<pin)  for e (b, b))
and @by, ¢)<wy(1—b,)

Hence, n* is defined as a function of ¢ whose existence is verified from
(4.53) and 0<c=<c*. It is also seen that n*(c) is monotone increasing.
Thus, n=n*(c*) always implies n=n*(c) for ¢ € [0, c*]. For ¢* and n*(c)
thus defined, we can show that, for any ¢ (0<c=c*) and n (n=n*(c)),
there exist exactly two roots, say 7, and 7,, of the equation ¢y()=g¢.(y, ¢)
such that 7,<7, and

o <eun,¢)  for 3<%, or 1>,

(4.58) B
?0(7)) > ¢n(77) C) for 7.< Y < D »

This follows from the partial linearity of ¢ (3) given by (4.48) and the
concavity of ¢, and ¢, as well as the definitions of ¢* and n*. Thus, if
we regard ¢ as the constant cost of observation, then, by (4.58) and

the definition of H, and H, (postulate II), we have (4.50) for n=n*(c).
Furthermore, since {%,} and {7.} are monotone decreasing and increasing,
respectively, there exist lim 7,=7% and lim 7,=7; consequently it follows
that H=[0, 7] and H=[7,1]. The last part of the theorem was already
stated in the previous section. Thus we have proved the theorem.
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5. Related problems

First we will give a brief review of the paper written by Anderson
[2]. He raised a problem concerning choice of observations. It is stated
as follows. In establishing statistical means to decide between two
hypotheses H, and H,, the experimenter may have the choice of ob-
serving a variable X alone or of observing two variables X and Y.
While observation of two variables is more informative than observation
of the one variable, it is also more expensive. The question is whether
it is worthwhile for the experimenter to pay the greater cost necessary
for the two variables. He must make a decision whether to observe Y
before the observation on X is made, where X and Y are assumed to
be independent. We will call the above problem Problem I. In par-
ticular T. W. Anderson was interested in the problem whether the Bayes
procedures of the above problem take a simple form or not. We call
this problem Problem II. He ensured that Bayes procedures take a
simple form if X and Y are Gaussian with known variances. However,
he also raised an example for which Bayes procedures do not take a
simple form. His conclusion is, therefore, that the nature of the solu-
tion to Problem I depends on the distributions of X and Y. Let us
first formulate Problem 1.

Problem: A statistical hypothesis H, is tested against another
statistical hypothesis H;.

Notations
fAx): probability density function of X when H, is true.
gy): probability density function of ¥ when H; is true.
W, : loss for rejecting H; when H; is true.

C : cost of observing Y (or the difference between the cost
of observing X and Y and the cost of observing X alone).
» . a prior probability of H; (1—7 is the corresponding prior

probability of H,).

Defining ¢(y)= min {(1—7)W;, yW,}, we obtain the Bayes risk, when
X alone is observed, in the form:

D(7)=Eg¢ly(z; X)] .

On the other hand, the‘ Bayes risk, when X and Y are observed, is
¥(y)+C, where ¥(7)=E¢[y(7; X, Y)]. Since X and Y are independent,

@{‘-j’so{’?(v; X, =& {,350[11(77; X, Y)]
=E0[n(n; X)] .
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By lemma 4.1 and theorem 4.2, we have that @(») and ¥(y) are con-
cave and 9(9)=¥(y) 0<7=1; further we have &(0)=90(1)=¥(0)=%(1)=0,
D*o(0)=D*¥(0)=W, and D @(1)=D¥(1)=—W,. Problem II can be
extended to the following problem—Problem III: Under what con-
ditions @(y)—¥(5)+C changes its sign at most three times for any
non-negative C.

Noting that, for any positive C, @(0)<¥(0)+C and @(1)<W(1)+C,
we can see that, if @(y)—¥(5)—C changes its sign exactly three times,
the set {7;@()=¥(n)+C} is an interval, which makes the Bayes de-
cision procedure for Problem I simple.

Since @(n)—¥(n) is non-negative and 9(0)—¥(0)=0(1)—¥(1)=0, the
unimodality of @()—¥(5) is equivalent to the statement that @(n)—¥(y)—C
changes the sign at most three times for any positive C. Thus, the
Problem III reduces to the problem what conditions on the distributions
of X and Y ensure the unimodality of @(5)—¥ (). Let us define several
notations :

G(z| H;): distribution function of the random variable % when
2
H; is true (i=1, 2).

H(z| H;): distribution function of the random variable S(X) oY)

FA(X)g(Y)
when H; is true (i=1, 2).

Define

W, w.
——G(z| H, t_G(z|H)=G(z| W, W,
W, | H)+——r W Wl | H)=G(z| W,, W)

W | W2 (ZI 1) W | Wz (zl 2) (ZI 1 2)

THEOREM 5.1. A necessary and sufficient condition that @(n)—¥(y)
is unimodal is that G(z| W, W;)—H(z| W,, W,) changes its sign exactly

once.

PROOF. By theorem 4.2, we have

RETA F@) fiz)
Da)=\ (D elnty; 2] SO

+olatr; D(£@)— Ho))] dul@) .

Since ¢(y)= min {(1—7)W,, s W,}, we have
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W,
W,  for p<— T
: o ISWoEw,

D*oly) = f Wl
| =-w > .
2 O TS w,

Thus, as is given by (4.40),

+ _ Si(x) fu(x)
Do(y)= WlSB(l) 7 fi(x)+ (1 —1) fu() ()
B £0) £i2)
ms 5@ys® g fi(x)+(1—7) fo(x) (@)

+ W, 7003 D) fi0)— fla) o)
+ Wzg 3@y p® [1—7(7; 2)(fi(®)— filz)) dp(x)

where

W _ <P < W, @ . )= W,
Bo=(alpt <) BO= (el 9=l

W, }
Wi+ W,

B®= 1;1; | 1}(77; x)>
We can easily check the following :

Ji(x) fox) . _ s
7 fi(x)+ (1 —7) fulx) +29(7; #)(fi(x)— fox))= Si(x)

fl(x)fz(x) —-(1- M —J? = f, .
7 fi(®)+ (1 —7n)fx) (1—2(; ) (fi(x)— fi(@) Si)

Thus we have, as is given by (4.43),

D0)= W, £i@) du(@)= Wi\, ., (@) du(o)
- = ) w-o( P )]
In a similar way, we have
D+W(n)=W1H<—WiW1,§’7—)IHI) —Wz[l—H(~VV—2%—I;—l)—|H2>] .

Now
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D{9()—¥(y)} =D*®(3)—D*¥(y)
=WG( g | ) wie (L= | )
- [T ) w1 ]

As is easily seen, the unimodality of @()—¥(5) is equivalent to the
requirement that D*{®(n)—¥()} changes its sign exactly once from
positive to negative when 7 runs from 0 to 1, which implies our theorem.

Remark 5.1. In the above proof we utilized the fact that @(3) and
¥(y) are concave on [0, 1] and that &(y)—¥(y) is non-negative for
7 € [0, 1].

We can easily check that the necessary and sufficient condition is
satisfied for the first example by Anderson in which X and Y have
normal distributions with known variances. Also we can easily assure
that this condition is not satisfied for the example treated in section 3
of Anderson’s paper.
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CORRECTIONS TO

~ “ON SEQUENTIAL DECISION PROBLEMS WITH
DELAYED OBSERVATIONS”

YUKIO SUZUuki

The author is indebted to Professor K. Miyasawa of Tokyo Uni-
versity for drawing his attention to the incorrect statements in theo-
rem 2.3 and its proof of the above titled paper (Ann. Inst. Statist. Math.,
18 (1966), 229-267). In the theorem “but not necessarily convex ” should
be deleted and in its proof “The statement that 5% j=0, ..., N is not
necessarily convex will be clarified in the sections 3 and 4. This is a
typical character due to the existence of delayed observations.” should
be deleted. Then the theorem and its proof are correct.

The author now considers that it is suitable to add the following
remark after the rectified theorem and its proof:

Remark 2.2. A typical character of £% j=0,---, N due to the existence
of delayed observations will be clarified by Proposition II and its justi-
fication in the sections 3 and 4.

Other corrections :

(1) z¥n(x) in expressions (1.16), (1.17) and (1.18) should read r*.(x).
(2) H in expression (4.50) should read H,.

(3) H, in expression (4.51) should read H,.
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