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1. Introduction

Consider a congestion system whose behaviour when an incoming
customer finds all the servers busy is governed by the displacement rule
D, and in which
(a) the interarrival times are independent and identically distributed
with distribution function A(t) (A(04)=0),

(b) the desired service times are independent and identically distributed
with distribution function 1—exp(—at) (¢=0),

(¢) there is no waiting for service,

(d) the desired service times and the interarrival times are independent.

This paper derives the efficiency of the system, i.e. the ratio of the
mean achieved service time under the statistical equilibrium to the mean
desired service time for the following D :

(i) to displace that customer who has been at the counter longest,

(ii) to displace that customer whose unexpired desired service time is least,

(iii) to turn away the newly arrived customer if his desired service
time is less than the least unexpired desired service time; otherwise
to displace the customer with the least unexpired desired service
time.

The initial study of such systems when the interarrival time distri-
bution is negative exponential is due to Cox [1]. But his work is
restricted to very simple cases of the desired service time, the number
of servers and so on. Downton [2] has improved upon the work of
Cox [1] by taking general desired service time distribution and general
number of servers. The displacement rules considered by Cox [1] are
(i) and (ii) and those considered by Downton [2] are (ii) and (iii).

2. Known results

For telephone traffic systems with the interarrival time distribution
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function A(f) and the service time distribution function 1—exp (—at)
(t=0), the following results due to Takacs [4] are well-known.

Result 1. The limiting probability that just before an arrival all the
servers (channels) are busy in a system with m (<o) servers is given by

(T
where C,=1 and

_ 17 9k _
(2) C=lZm  =b2 )

¢(6) being the Laplace-Stieltjes transform of A(t).

Result 2. When there are infinite number of servers, the limiting

distribution of the number of busy servers just before an arrival is given
by

(3) Pk=g(—1)r-*(;)c, (k=0,1, ---).

These results are useful in the present study of congestion systems
with incomplete service.

3. System with infinite servers

When the number of servers is infinite we do not have congestion in
our system. However, we derive here the limiting probability that the
rth largest unexpired service time just before an arrival is greater than
z (20), as it will be useful to determine the efficiencies under the dis-
placement rules (ii) and (iii) when there are finite number of servers.

Defining the probability by F,(x) and remembering the fact that
the rth largest unexpired service time is greater than z if and only if
there are at least r unexpired service times greater than x, we have

(4)  F@=32 3 P.(})exp(—Aak) (1—exp (—ra)*
=3 exp(— k) (—1'"Co 31 (& )(—1y~

Il
Ms

exp (—2ka) (11 (¥71)Ce20).

k=r

For Poisson arrivals, taking the interarrival time distribution func-
tion as

(5) A(t)=1—exp(—pt) (t20),
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we get

(6) F,(z)=exp (—4(@)}{ 5 @@)/s ! |
where

(7) #(x)=b exp (—4z) ,

b being equal to p/a.

4. Displacement of the customer who has been at the counter
longest

As mentioned in the introduction the displacement takes place when
all the servers are busy. In this section and the sections which follow
we assume that the number of servers is m in the system. The displace-
ment rule here is to displace that customer who has been at the counter
longest. As noted by Cox [1] this rule is equivalent to the displacement
of a customer chosen independently of the unexpired desired service
time.

The limiting probability that a lost service time is greater than z
can easily be seen to be

(8) Gn(x)=Brexp(—4r) (x=0),

where B,, is given by (1).
The efficiency ratio I, is then given by

(9) I,=1-B,.

Special case
Let A(t)=1—exp(—pt) ((=0). From (8) and (9) we have

(10) Gn(@)=b"(m! j’"g /i) exp (—ax)  (2=0)
and
1) I= {':g':bf/j !} { ,%, b/j 1} -,

The above expression for the efficiency agrees with that given by
Cox [1].




226 D. N. SHANBHAG

5. Displacement of the customer having the least unexpired de-
sired service time

Here the displacement rule is to displace that customer whose un-
expired desired service time is least, when all the servers are busy.

When m=1 the limiting distribution function of the lost service
time and the efficiency ratio are respectively given by 1—Gy(x) (x=0)
and I.. (It should be noted that for the case m=1 we can easily
obtain the corresponding results even when the desired service time
distribution is general.) When m=2 we proceed as follows to derive
these quantities :

It can readily be seen that the limiting probability that the »th
largest unexpired desired service time just before an arrival here is
greater than z (=0) is given by F,(x) if r=1,2, ---, m—1. Further-
more, we have the limiting probability that the lost service time at
an instant of arrival is greater than x (=0) as

(12) Fyw)=|" exp (~2y+2)Fu(w+1) dAG),

because the lost service time at the present instant is >z if and only
if the (m—1)st largest unexpired desired service time just before “ the
first previous arrival ” and the desired service time of the first previous

customer exceed x+ the length of the interval between the present
instant and the instant of “the first previous arrival ”. Hence

(18) Fim)= 3 exp (—ik+Da}(~D=""g(e+DA(F )0 (20).
The efficiency for the present case is given by

(14) I,;: 1 — kg_l(_ 1)k—m+l(k + 1)—1 Sb((k + 1)2) (:fb-——]é) Ck .

Special case
Let A(t)=1—exp (—pt) (t=0), then

(15) F(x)=b(1+b)'exp (—Ax)—b~? exp (ux) ,:g‘,_: 7(14b+s, bexp (—2x))/s !
where
(16) T(u, v)= S exp (—8)*dt .

Furthermore
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b (m—2)!  (m—3)! 2T s1

2+b

+1+b’

where 7(m—2, b)/(m—38)! is assumed to be unity for m=2. These
results are due to Downton [2] ((17) for m=2 has also been given by
Cox [1]).

6. Conditional displacement

In this section we take the displacement rule as the one which
discards the minimum of the desired service time of the incoming
customer and the least unexpired desired service time just before his

arrival.

It readily follows that the limiting probability that the »th 1<r<m)
largest unexpired desired service time just before an arrival is greater
than z (=0) for this case is the same as F,(x) given earlier.

Using this fact we can write the limiting probability that the lost
service time is greater than x (=0) as

= 5 exn (—ae+1)) (-0~ E Y,

because the minimum of the least unexpired desired service time and
the desired service time of the incoming customer is >z if and only if
each is >x. Furthermore, the efficiency ratio can be seen to be

19) I=1- 3 (b+ 1)“(—1)’°-m(7’,‘;11>c,¢ :
Special case

Let A(t)=1—exp (—ut) (¢=0), then
(20) H,(z)= exp {—as—4()} | £ (#())s |
where ¢(x) is as defined earlier. Furthermore,

(21) 1=1—10m, b)—((m+1, b)/b)
(m—1)!

?

where 7(u, b) and b are as defined earlier.
It is interesting to note that (21) is valid not only for the present
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special case but also for the case of general desired service time distribu-
tion when the interarrival time distribution is negative exponential
(cf. Downton [2], [3]).
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