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Summary

The time dependent behaviour of the two server queueing system
with recurrent input and negative exponential service times is studied
here using certain recurrence relations for the underlying queuelength
process. The service times have a varying mean depending on the
number of busy servers.

1. Introduction

Multiserver queues with recurrent input and negative exponential
service times present several difficulties in their investigations. The
equilibrium behaviour of such systems from the imbedded Markov chain
point of view has been given by Kendall [3]. The time dependent be-
haviour has been treated only in the special cases when the inter-arrival
time and service time distributions have the properties of a negative
exponential distribution. Karlin and McGregor [2] and Saaty [4] study
the system M/M/s and Arora [1] considers the queue GI/M/2 when the
inter-arrival time distribution is ‘phase-type’, each phase having a
negative exponential distribution. Their approaches have been through
the classical methods of solving the difference-differential equations for
the transition probabilities. When the number of servers increases or
when some other complications or generalities are introduced into the
problem, clearly we need other methods which can be easily handled.
The method presented here seems to be one of them.

In the queue GI/M/2 which we consider the inter-arrival times have
an independent arbitrary distribution and the service times are distrib-
uted negative exponentially with a varying mean depending on the
number of busy servers. This modification of the service mechanism
takes care of the practical situation in which, when only one of the
servers is busy, the service of the single customer is either slowed due
to some reason or accelerated with the help of the idle server (an ex-
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ample of the latter case is that of two repairmen who help each other
when one of them is free).

Let t(=0),t,t, ---, be the epochs of arrival into the system and
the inter-arrival times u,=t,—t,_; (n=1,2, ---) be distributed as Pr{u,
<z} =A(x) (0£x<0); let

(1) o=\ exp (—00dA0)  (Re (O)20)

be its Laplace-Stieltjes transform (L.T.) and mean a= —¢'(0)<oco.

The customers form a single queue in the order of their arrival
and the one at the head of the queue goes into service when any one
of the servers becomes free. The distribution of the service times is
the same for both the servers and therefore the customer arriving
when the system is empty may choose any one of them. Let v, (n=1,
2, --+) be the service times of the customers. When both the servers
are busy these have the distribution

(2) Pr{v.<z} =1—exp (—ix) (0<2 < 00)

and when there is only one customer in the system, v, will be distrib-
uted as

(3) Pr{v,<x}=1—exp (—4x) 0=x<cx).
For the sake of convenience we write
( 4 ) g= 22/22 .

Define Q(t) as the number of customers in the system at time ¢ in-
cluding those who are being served (queuelength) and let Q(¢,)=Q(t.—0),
(n=0,1,2, ---). In the following sections we shall derive transforms
of the several probabilities connected with the queuelength process Q(%).

2. Transitions in a busy period

We define busy period as the interval of time during which there
has been at least one customer in the system. In such a period let
(5) °PP@E)=Pr{Qt)=j, t.<t<tn,, QE)>0(r=1,2,.-.,n-1)|Q(0)=1}

(¢,3,n=0) .
Consider the case n=0; no arrival occurs after {,=0 and in time (0, ¢),

1+1—7 (1+1=5=0) customers get served. Writing down the probabil-
ities of the possible transitions we have
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(6) exp (— 2zt)f‘—2§7u—A(t)1 G2i-1, §22)
(7) il —A(t)]S: exp (—24c) g_ff)lf)—' 22dr exp [—A(t—7)]
PO= (iz1, j=1)
(8) [1—A(t)]S: exp (—zzr)%f__f)l’)’_;zzdru—exp [—2(t—2)]}
(i=1, 5=0).

When n>0, let = (0<z<t) be the time at which the first arrival takes
place after the one at t,=0. Accounting for the transitions before and
after r, we have

vpee (2ir)+- PGy s
(9) CPPH)= 25 exp (— 211)(—+T—)—dA(r) "PG-H(t—1)

+S ,Soexp (=28 D1 5218)1) —22ds exp [ — Az —$)|dA(r)

SPGYt—7) (121, §=0).

Define the transforms

2p0)={"exp (—00)'PP®E  (Re (0)>0)
(10) A6, )= 3 #70(0) (2l <1)
2,6, 2, 0)=3 "2, 2) (o] 1)

Taking transforms of (6)~(8) we get

. _ [—¢(6+22—222)]2°* .
(11) 290, 2)= 12—z (1=2)

(12) 200, 2)= 215 exp [— (0+A)t][1— A(t)]dtS exp [— (22— 222)c 4 Ayz] de

=(1_,,_z)—1[1—¢(0+22) _ 1—¢(0+22—21z)]
0+, 0+21—22z

and
(13) 200, 2)= 21S: exp (—Ot)[L—A(t)]dt S' {exp[—(22—222)c
—exp [—(24—22z—2,)c—A:t]}dr
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_1—¢(0) _  1—¢(0+2) [1—¢(04+22—242)]0
0(1—2) (04+2)1—0—2) (1—2)(1—0—2)(0+21—222)

Let A and B be the transforms of the two terms respectively of (9)..
We have

0 o (2201 51 ot (2R
(14) A So exp (-2i0)5 32 ETaae)

- S“’exp (—0t)-"PS-D(t—7) dt

t=1
= g(6+21—242) ) 27~25(0)
r=2
— 21 (04 20— 222)[ 278, 2)— 25-(0)]
and

(15) B=21 S: exp (—Ot)di S’ exp (—Ae)dA(c) PG5t —7)

=0

. S exp [—(24—24z—1;)s]ds
=(L—0—2)"@5(0) | exp (—0¢) {exp ()
—exp [—(24—242)7]} dA(7)

=(1—0—2)"'[¢(0+ 1) — (6 +22—242)]21572(6) .
Combining (14) and (15) we get

(16) Q9(0, z)=z""P(0+22—222)251(0, z)

_ [A—0) p(6+22—242) —2 (0 + 2y)] Q0-()
21—0—2)

(jZO, n=1: 2: v °) .

The transform with respect to n is obtained by multiplying (11)~(13)
and (16) by appropriate powers of » and summing over n. This proce-
dure gives after rearrangement of terms

A7) 92,0, 2, 0)=[r—wP(0+21—222)]*
. [") {20(0+2)—(1—0) §(0+22-222)} <, o Q5(0)

l—6—2
i—
[1—¢(0+22—222)] 2 ‘] (722)
0+22—22z
2 11—¢(0+22) _ 1—¢'(0—I-22—22z)}]
1—0—2 0+ 0+21—24z

4 (i=1)
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0—¢@))z _ [1—¢(0+2)z
0(1—2) (0+2)(1—0—2)
+ [1—¢(0424—222)]02 ]
(1—-2)(1—0—2)(0+22—222)

(7=0) .

To determine this transform completely we consider the equation
(18) 2=w(0+22—242) .

Clearly, this has only one root 7=7(f, ») in the unit circle |z] <1 if Re
(#)=0 and |0| =1 (For proof, see Takics [5] Lemma 1). The left hand
side of (17) is a regular function of z in this domain and therefore the
root 7 must also satisfy the terms inside the square brackets on the
right hand side. Substituting 7 in it, equating to zero and simplifying
we obtain

" Yo—T)1—0—T)
(0+22—247)[1 — 06— wp(6+ 2,)]

(422)

—r—w 1 1=¢(0+2) P
[1—0 —og(0+2)] {w(0+21_22,)} (4=
(19) 30 2(0)=

e (A=7)" [L—s —ag(o+ ) [ =0T =40

S CEES R 0
0+ w(0+22—247)

(9=0).

These and the transforms (17) determine the transition probabilities in
a busy period initiated by 4(>0) customers. For the distribution of
the busy period we need to study the case :=0. Then we have

0 (122)
(20)  °PP@)=4 [1—A@®)]exp(—it) (7=1)
[1—A(®)][1—exp (—4t)] (5=0)

and
@1) °P0‘,")(t)=S:exp(—lzr)dA(r) PG(t—c) (520, n>0).

Taking transforms as before and using (19) we get
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rj—z(w—r)(l_a—‘r)¢(0+22) -
“ (0+22—2")[1—0—wd(0+2,)] (1=2)

(23) [1—0—wg(0+2)]™

(ol @onp04h) |y
0+2, 6+24—2ar
[1—o—o@(@+2,)]™!
i { [(A—=7)(1—0) —ood(0+2)][1—¢(9)]
01—7)
Aol | _oo=ng(o+2) |
0+ (L=7)(0+22—247)
(47=0) .
The distribution of the busy period can be easily derived from (23).

Let T be the length of the busy period and N(T) the number of ar-
rivals in it. Let

Ms

W 2(0) =

3
Il
o

(24)

(25) gP@)dt=Pr{t< T<t+dt; N(T)=n};
we have
(26) g(t)dt ="Pg(t)A,dt

and therefore

@) 10,0)=5 0" S: exp (—0t)g™(t)dt

=4 §;0 W 25(6)
— Ay {(1—0)[1—¢(0+22)] _ (0=7)p(6+2) }
1—o—wp(0+2) 0+ 4, 0+21— 241

3. The busy cycle

The time interval between the epochs of commencement of two
consecutive busy periods is known as a busy cycle. Clearly this con-
sists of a busy period and an idle period. As these two distributions
are not independent in this system, we derive the distribution of the
busy period as follows. Let

(28) R,:(")(t)—_—‘Pr{Q(tn):O, tnéty Q(tr)>0 (’r=17 2, ttty n_l)'Q(O)zi}
(n=1, 120).

Analogous to equations (8) and (9) we get the recurrence relations
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29) dRO@E)=dA(t) S: exp (—217) g‘_’ )1')" : 2idz {1—exp [— At —7)]}

@) AR =5 exp (—210)-EA_ g A(dRE-I(E—7)
r=2J0 1 —-r )!

(i+1

(228)*!
—-1)!

-dA(Z)dRIP(t—7) (n>1).

2ids exp [—2(z—8)]

+S‘ S exp (—22s)

t=0 §=0

Taking transforms of these probabilities we get

Gl) (0,2 0)= % g 07 S: exp (—0)dR™(t)
(Re (6)>0, |2]<1, |0|£1)
=[z2—wg(0+421—242)]*
{ [(1—a—2)p(0) — (1 —2)p(0+ 25) + o6 + 24— 222) |0z

(1—2)(1—0—2)
_ _[A—0)g(0+22—220) g6+ )0 wn['gn)(g)}
l—06—2 n=1
where
(32) re@)=\ exp (—odE®) .

A discussion about the root 7 of the equation (18) which should satisfy
the terms in brackets on the right hand side of (81) leads to the re-
sult

= i . (L—a—T)axh(8)— (L—T)axb(0-+ 2)+oT
G AT e et

The transform (81) is now completely determined.
For the busy cycle we need to start with the arrival of a customer.
We have

(34 dR{"(t)=[1—exp (—4t)]dA(?)

(35) dRS(t)= S: exp (—Ar)A@ARS Dt —7)  (>1).
From these relations we get

(36) re, o)= % o S: exp (—6t)dR(t)

= w¢(f)— (1—0o—")[1-— w¢(0)]w¢-(0+ A) ]
A-7[1—0—w¢(6+2;)]
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In our further discussion we shall suppress n and setting o=1 we
shall denote the transforms (17), (22~24), (27), (31) and (36) as
2,0, z), 2,(0), 11(8), I'(8, z) and I'(f) respectively.

4. General transitions

Suppose Ty, T, - - - are the epochs of commencement of busy periods
and T, the instant at which the process starts. These epochs T, (r=
0,1,2,---) form a set of remewal points of the queuelength process
for which the busy cycles Z,=T,—T,_, (r=1,2, ---) are renewal periods.
If the process starts with the commencement of a busy period all re-

newal periods Z, (r=1, 2, ---) have the same distribution R(t)=§;] R™(t)

whose L.T. is given by (36). Whereas, if Q0)=:>0, Z, (r=2,3, ---)
will have the distribution R(t) and Z, will be distributed as R(t)=
i‘, R{™(t), whose L.T. is given by I'(, z) of equation (31) (also see re-
marks following (36)).

Consider the renewal process {S.}, S,=Z,+Z,+---+Z, (n=1,2, ---).
Let N*(t) be the number of renewal points (T, T}, --+) in this process
so that N*(t)=max{n|S,<t}; also let U,t)=E{N*()}. From renewal
theory we have

1

(37) U#0)=| exp (~00dU )=

when the process starts with a busy period; if at T,, a busy period is
in progress we have

I,z

(38) U0, 2)=3] z""S: exp (~0NAUW =100

Substituting for I'() from (36) (see remarks following this equation)
we get

_ A=Dl—o—g0+4)]
39 *(6)=
@9 O = 3@A—T A=) — o6+ )]

Similarly substitution for I'(4, z) and I'(f) gives the transform (38).
Define the general transition probabilities

(40) P, (1)=Pr{Q(t)=71Q(0)=1}.

To derive these probabilities we proceed as follows: Consider the last
renewal point z in (0,?). Accounting for the possible transitions before
and after z, we can write
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(1) Py(t)=| dU) *Puft—)

(42) P, (t)="P,(t)+ S:dvm Pyt—c)  (G21).

In (42) the first term takes care of the posSibility that, when 7>0, the
initial busy period is still in progress at time ¢. From these relations
we have

43) ¢0,(a)=8: exp (—0)Py(t)dt  (Re (6)>0)
= Up*(0)2,,(6)
and
“4) 4,0, z)=g zt-lS: exp (—0)P,(t)dt  (Re (6)>0, |z|<1)
=0,0, 2)+ U*(0, 2)2,,(0) .
In particular, using (39) and (24) we get

’ 141 —T)(L—a—T)H(0+2,) .
9 a2 = @A) —cgii] =2

(46) 1-7
[1—¢@I(A—=7)A—0)—a¢(0+45)]

N A=91—¢0+2)] _ A-1)p(0+4) -_
hl0)= { 0+2 gr2a—2ir } =1
@7 1 1-7

0 [L—g@OIA—T)1—0)—ag(+2,)]

(A=a)[1—¢(0+2)] _  ap(0+2) .
{ 0+ 2, FEGTMTTT } (7=0) -

S. Particular cases

The approach adopted in the preceding discussion may also be used
with obvious modifications for the system GI/M/1. Results are already
available for this queue (see, Takacs [5]). Here we shall consider the
two server system when the arrivals are in a Poisson process and com-
pare the equilibrium behaviour and the expected queuelengths for the
values of ¢=1/4, 1/2 and 1. It may be noted that the case ¢=1/2 re-
fers to the ordinary system M/M/2 and the case o=1, to the system in
which the inter-departure times (when busy) have the negative ex-
ponential distribution 22 exp (—24t)dt (0<t< o), thus reducing it to the
system M/M/1.
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Let the arrivals be in a Poisson process of parameter gt so that

o(@)=p(0+ ). Therefore we have

(48) r=1(0)= {0422+ p—[(0+ 22+ p)*—84p]/}(42)" .

As a consequence of the equation (18) we also have the identity
(49) 0+22—22r=p(1—1)r".

Using these results we derive the following special cases.

(1) o=1/4: We get

—_2(3—41)
(50) 6= 60+31—2p
and
2 (1—1)(8—41)(0+p) (j=1)
O[3(1—7)(20+2+2¢)—2¢] -
(51) $os(6)= o
1 23 —4n)(0+p) (j=0).

0 OB(1—1)20+2+21)—24]

(2) ¢=1/2: We get

_ 21-2n)

(52) 16)= Y v
and

7 (1=1)(1—27)(60+p) (7=1)

O[1—7)(0+ A+ p)—p] -
53)  gul0)= o

1 _ (1—2r)(0+p)  (§=0)

0 6[A—-T)0+A+p)—p] '

(3) o=1: We get

(54) I(e)=2arp™!
and
r(L—T)0+2) .
R e (421
(55) $0s(6)= 1 1040
A Ul o0 4 T
7 o (7=0).

Let P; be the probability that the queuelength is j as t - .

The




THE QUEUE GI/M/2 221

steady state probabilities can then be obtained from the relation P;=
10151 04,;(0) (assuming the existence). Let E(Q) be the mean queuelength

and

o=p/24, the traffic intensity of the system. For the special cases

given above we have

(56)

o B Py(3>0) EQ)

1l 1-p ( 1—p >4p1 4p

4 1+43p 1+3p 1—p)(1+3p)
1 1-—p ( 1-p )2,,1 2p

2 14+p \143p (1-p)(1+p)
1 1-p  (1—p)’ ﬁ
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