ESTIMATION OF A MULTIVARIATE DENSITY

THEOPHILOS CACOULLOS

(Received Dec. 21, 1964)

1. Introduction and summary

Parzen [2] gave the asymptotic properties of a class of estimates
fu(x) of a univariate density function f(x) on the basis of a random
sample X, ---, X, from f(x). f.(x) is of the form

o= B K25

where h=h(n)>0 as n—>o0 and K(x) a bounded function such that
SMK(x)dx:l and |y||K(y)|—>0 as |y|->c0. Our purpose is to indicate

how the f,(x) can be adapted to provide estimates of a multivariate
density. Actually here the extension is carried out in two directions
corresponding to the two general forms of kernels K, as given in Theorems
2.1 and 4.1.

The results concerning the consistency, asymptotic unbiasedness, and
bounds for bias and mean square error of f, follow very easily by using
Theorem 2.1 below and straightforward modifications of those in [2].
With respect to asymptotic normality we give here a stronger result,
namely, the joint asymptotic normality of the estimates f, at continuity
points of f (Theorem 3.5). Finally, the interesting case of estimates
based on product kernels is studied in Section 4.

2. Preliminary results

Motivated as in [2], we consider estimates f,(x) of the density func-
tion f(x) of the following form:

@) A=K (e jarm =l S r (2K,

where F,(x) denotes the empirical distribution function based on the
sample of =» independent observations X, ---,X, on the random

179




180 THEOPHILOS CACOULLOS

p-dimensional vector X with density f(x); K(y) is a kernel which is chosen
to satisfy suitable conditions and {h(n)} is a sequence of positive con-
stants which in the sequel will always satisfy

(2.2) lim A(n)=0;

here, and henceforth unless otherwise stated, the domain of integration
is the entire range of the integrated variable.

Remark 2.1. A more general estimate than f,(x) is
2.3 *y)=— ———— K<_1.__l_, cer, 2o 1P>
2.3) @)= G & , h

where X,=(X;,, ---, X,;), j=1, --+, n, and the h,=h,(n)>0 satisfy
2.4) lim ky(n)=0, =1, ---,p.

For convenience in the exposition, we will restrict attention to the case
of hy=---=h,, and consider the f¥(x) only in conjunction with the
product kernels in Section 4.

The asymptotic properties of f,(x) depend rather heavily on the
following multivariate analog of Theorem 1 A of [2].

THEOREM 2.1. Suppose K(y) is a Borel scalar function on E, such

that

(2.5) sup |K(y)|< oo,
(2.6) IK@)Idy<oo,
2.7 lim || K(y)=0,

where |y| denotes the length of the vector y. Let g(y) be another scalar
Sunction on E, such that

flow)lay<co,

and define

(2.8 0:0) = K () o=y,

where {h(n)} is a sequence of positive constants satisfying (2.2). Then
at every point x of continuity of g
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29) limg.(2)=g(@) | K)dy -

PROOF. Choose >0 and split the region of integration into two
regions: |y|<d and |y|>d. Then we have

gu(x)— y(x)S

= lo@ -1 —g@NK (L )ay|

—_— D
< maxlg@—)—g@)] | |K@Ide+ | 12011
wise |21 S3/h(n) 1wi>s |yl

-

K( h(yn) )’d”

+lo(@)! |

lyI>s

< maxlgw—1)—9(@)| || K@Idz + & sup |21 K(@)I|lo(w)ldy

z|za/h(n)

o < (i)

+Ho@)| | 1K@z,

|21 238/h(n)

which tends to 0 if we let first n—>co (h(n)—0) and then §—0.
For our purposes we also require the following lemmas.

LEMMA 2.1 Let

(2.10) en(ac)=-}f;K( x;X ) .

Then, for every positive inleger r, at every continuity point x of f
@.11) lim k7D E [£(z)] = f(w)gK’(y)dy :

PROOF. By (2.5) and (2.6), K'(y) is bounded and absolutely in-
tegrable, and hence by Theorem 2.1

(2.12) Bl = (LK (2 ) £y

converges to f(x)SK’(y)dy as n—y>oo,

LEMMA 2.2 Let x and x* be two continuity points of f. Then, under
(2.2), the asymptotic covariance of f.(x) and f.(x*) satisfies

(2.13) nh? Cov (fu(%), ful@*))—0
as n—>oo,

PROOF. From (2.1) we can write f.(x) as an average
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(2.14) fn(as)=l > &)
ni=1

of independent random variables

i[5

identically distributed as &,(x) in (2.10). Hence the quantity in (2.13)
is equal to

E [hi ( w;X )K( w*;X )] —h"b;[én(w)]E[En(w*)]-

The second term — 0 as n—>oco by (2.2) since by Theorem 2.1 as n—>o

@15)  Ela@l=|-oK (2L ) @y e)|Kedy

The first term after changing the variables can be written as

(2.16) SK(z)K <z+ ””*h‘ ”)f(x—hz)dz.

To show that this also tends to zero as h—0 note that K(y) is bounded
by hypothesis and K(y)—>0 as |y|—>oco0 by (2.7); hence, it is possible to
split the region of integration into two regions; |2|<F and [z|>R where
R is sufficiently large so that for every ¢, >0 |K(z)|<e, for |z]>R, and
for every &>0 there is an integer N=N(e) such that for all n> N(e)
h(n) makes |K(z+(x*—x)/h(n))| <e for all |z|<R. Since |K(y)|[<M<oo
it follows that the absolute value of the integral in (2.16) is smaller
than

K(Z=Y) fady+ad |1

M

k(22| rwy,

which by Theorem 2.1, tends to 0 if we let n—>oo.

3. Asymptotic properties of fi(x)
Noting that E[f.(@)]=FE[£.(x)], we get from Lemma 2.1

THEOREM 3.1. (Asymptotic unbiasedness of f,). Suppose the kernel
K(y) satisfies, in addition to (2.5) - (2.7), the condition

3.1) SK(y)dy=1 .

Then, under (2.2), at every continuity point x of f,
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lim E[f,(0)] =/ (z).

Remark 3.1. Theorem 3.1 holds even if K(y) is not positive for all
y. However, it is desirable that the estimate f,(x) be nonnegative for
every x and every =, and therefore, in the sequel, we make the more
natural assumption that K(y)=0. This makes both f,(x) and K(y) (cf.
(3.1)) density functions. Moreover, the form of f,(x) as a function of
the (x—X,)/h through K motivates the additional assumption from now
on that

3.2) K(y)=K(—y) for all y.

The following two theorems can be proved in exactly the same manner
as the corresponding ones in [2], by using the results of Section 2.

THEOREM 3.2. (Conmsistency of f, in quadratic mean) If the com-
stants h=h(n), in addition to (2.2), satisfy the condition

3.3) li_.m nh?=0,
then
(3.4) lim E[f(2)— f(@)]'=0

at every continuity point x of f.

THEOREM 3.3. (Uniform consistency of f,). If
(©) The constants h=h(n), in addition to (2.2), satisfy
(3.5) lim nh**=oo ,

(i2) the Fourier transform

Je(u) = Sew'vx(y)d;/y

of K(y) is absolutely integrable, (hence f(x) is uniformly continuous), then,
Jor every >0,

(3.6) lim P[sup| fo(2) = f(#)|>]=0 .

THEOREM 3.4. (Evaluation of bias). If the probability density function
f(x) has continuous partial derivatives of third order im a meighborhood
of x, then the bias

3.7 bIf (@] =E[fu(2)]—f(x)

satisfies
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(3.8) lim hbL£, @) =L@/ @ s E@y= 1 1

say, where

ef@; =313 LD yy,,

Jj=1 ax,ax i
provided the integral in (3.8) converges absolutely.
PROOF. By (2.1), (3.1) and (8.2), (3.7) may be written as

bLF =1/ o)~ F @K W)y

and, expanding f(x+hy) by Taylor’s Theorem, (3.8) follows in view of
the fact that, by (3.2),

Juk@iy=0.

Under the assumptions of Theorem 3.3, an approximate expression
may be given for the mean square error (m.s.e.):

(3.9) Bl )~ f @~ LD Kway+ Lr.

The value of » which minimizes the m.s.e. for a fixed value of n
is easily found to be (c.f. Lemma 4a of [2])

1/(p+4)

(3.10) h=[pur) (@) [ Kwan]
from which the m.s.e.

E'[fn(x)—f(w)]"~(p+4)<4L;)N(w)<%81{2(y)dy>‘Kp“)-

Therefore, f.(x) as an estimate of f(z), is consistent of order n*/®*%, i.e.,
its m.s.e.=0(n"Y®*) (cf. [2] and [3] for p=1).

THEOREM 3.5. (The {f.(t), t € E,} 1is asymptotically a Gaussian process
with independent components). Let t,, ---,t. be any finite set of con-
tinwity points of the denmsity f. If the constants satisfy (2.2) and (3.3),
then the joint distribution of the random variables f.(t,), ---,futs) s
asymptotically a k-variate normal in the following sense: For any real
numbers ¢y, <+, Cy,

lim P[(nk?)*(fo(t)—ELfat)) S0, 1S1<K] =]i @ (%)
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where @ denotes the standard mormal distribution function, and
3.11) si=f )| KWy, i=1, -, k.
PROOF. From (2.14) we have
(R L ()= 33 608
where, for each fixed 4, 7=1, .---,k, and each =, the &,;({) are in-
dependent random variables identically distributed as
sty =h K (LX)

By Bernstein’s multivariate central limit theorem (see, e.g., [1]) as
applied to the sequence of independent and identically distributed random
vectors

an‘:hP/z(EnJ(tl)’ ct Yy énj(tlc))9 j=1, cr, M
it suffices to show that for », s=1, ---, k

(3.12) lim Cov (h*?¢.(t,), h"*€,(t)) =030,

where §,, is the Kronecker delta, and

(3.13) lim n="2p5=0

n—oo
where

0= max E[h**(&,(t)— E[6.0)D] -

1Sisk

Now (8.12) follows immediately from (2.11) and (2.13), and for (3.13)
it is enough to show that

(3.14) l %“l/zE[hmfn(tt)]s%Oy Ii=1, M) k

as n—>oo. But by (2.11), for each ¢, the quantity in (3.14) is approx-
imately equivalent to

(£ )| Ky

and hence (8.14) follows, in view of (3.3) and SK’('y)dy<oo since K is
bounded and integrable.

Remark 3.2. In order to be able to replace E[f.(x)] by its limit

o . e -
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f(x) in Theorem 3.5, so that we can state that vnh?- f,(x) is asymptotical-
ly normal with mean f(x) and variance f (w)SK’(y)dy, it is necessary to

impose some further restrictions on the rate of convergence of 2 to 0
as a function of n. Thus from Theorem 8.5, the bias of f.(x) must
satisfy

(nh?)"*bLf ()]0

as n—>oo, which, under the assumptlons of Theorem 3.4 and by (3.3),
holds if

h=0(n"’) » (p+4) 7' <a<lp.

It is interesting however to note that the above range of a does not
include the optimum a*=(p+4)~' corresponding to the h(n) of (3.10).
Yet, a* being the left end point of the above a« interval, it suggests
choosing h “ just smaller ” than the optimal A. This would make possible
the above normal approximation of the distribution of f,(x) for “large”
n, and, in such case, it is clear how this might be used, for example,
in setting up a test for the hypothesis that f(x) assumes a specified
value. However, the discussion of this and related problems is outside
the scope of our present investigation and we will not pursue it any
more here.

4. Case of product kernels

In this section we indicate how the preceding results extend with
respect to estimates of the form (2.3) in the special case that K(y) is a
product kernel in the sense that

(4.1) Ky)=Ky(y)- - -K(¥»)

where K, is a kernel on the real line E|\. The estimates (2.3) now take
the form

@ el R{ie(E)

The following theorem plays the same role as Theorem 2.1 in the
preceding sections.

THEOREM 4.1. Suppose K(y) is a product kernel in the sense of (4.1)
where, furthermore, K, is a positive bounded and even Borel function
(¢f. Remark 3.1) such that

4.3) |Ewae=1,
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4.4) lim tK(t)=0.

t—oo

Let g(y) be as in Theorem 2.1 and define

(45) 0.0)=lo {f] - K, (28 ) ay

where the h; are positive constants satisfying (2.4). Then, at every con-
tinuity point x of g, we have

}g_; g.(x)=g(x) .

PROOF. For the sake of brevity and clarity, we give the proof for
the bivariate case (p=2) since the general case requires only obvious
but rather laborious modifications.

Let 6,>0, 6,>0 such that the rectangle R: |x,—¥,|<d;, |2;—¥;|<d;
is a neighborhood of z=(x, x;) where g(y,, %)) is continuous. Let I,
denote the integral in (4.5) over R and I} the same integral over the
complement R* of R. It suffices to show that

(4'6) lim In=g(x17 xﬁ) ’
and
4.7 lim I*=0.

n—sco

For (4.6), note that, setting
(4.8) xi—yi=hg_lz,;, ?:=1, 2 ,

we can write

= | | r@re(o-2, a—2dda,

h h
l2,1<8/h; 1251 <dy/hy 1 3

which by the continuity of g and (4.3), tends to g(x,, x;) if we let first
nm—>oco and then é, and §; go to zero.

To show (4.7), split the region of integration R* into eight subregions
as follows;

B;: —oo<y,<®—0; 1=1,2; By: —oo<y;<#;—0;, %3+0,<yy<0;
Ry: 2,4+6,<y <0, —oo Ly, <x3—0; By 2, +0, Sy <00, £,+06;<9p<00;
Ry: —co<y;<®—0y, |th—%|<d; Ri: |th—2|<8, —00<yy<&—0;
R,: 2,40, <y;<o0, |4p—1:|<dy; Ry: |y, —x|<8;, 2:+0:<y,<oo.

Let the integral over R, be denoted by I, =1, ---,8.
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Now consider I;; the I, I, and I, can be treated similarly. We
have by (4.8) also

I~ sup zaKi@)Ki@)| (low, widy. dy
0,0, 2 >h7t 0

-1
29>y 3y

which tends to zero as n—>oo by (4.4).
Finally, for I, (I;, I, and I, can be treated likewise) we have

LIS sup 2K@) | Kiae*@—hada

2,>8,/h
1A 1291 <dy/hy

where g*(y,):Sg(yl, ¥:)dy;. Now, in view of the uniform boundedness of

K(z,) and the continuity of g*(y;) in the interval (x,—4,, x,+4,), ;>0 as
n—>oo by (4.4).

The asymptotic properties of the estimates f(x) can be obtained by
using Theorem 4.1 in the same manner that Theorem 2.1 was used for
Sfu(x) in Sections 2 and 8. Thus, for example, the condition (3.3) in

Theorem 3.2 will be replaced by nf[ht(n)—mo as m—oo, and (3.5) in
=1
Theorem 3.3 by nﬁhﬁ(n)—)oo as n—>oo. Theorem 3.5 holds for f3 if
i=1
we replace h” by hh,---h,; note also that, since K(y)= f[Ko(yi), the
=1

asymptotic variances in (3.11) become o= f(t;)- [SK ?,(t)dt]p.
For an estimate of the bias of f%(x) we have the following analog
of Theorem 3.4, which can be easily established.

THEOREM 4.2. Suppose f(x) satisfies the assumptions of Theorem 3.4,
and h=(hy(n), ---, hy(n)), in addition to (2.4), satisfies

lim Zi((,:,)) =7r,;>0, i’f—'jy ":,j=17 ce, D
n—oo j

then as n—oo

(4.9) b[fz'l(f”)] - 5 Jul2) [ex.rar

where

P
fo):M, ri=>1 ’r%,, re=1, 1=1, « P,
ox? Jj=1

(3

provided the integral in (4.9) converges. Furthermore, it can be easily
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verified, that for fixed m, the optimum choice of h(n), - - -, hy(n) in order
to minimize the approximate expression for the mean square error of

Wx) (of. (3.9)) requires taking h,(n)=hyn)=---=hy(n)=hy(n), say. It
then follows that again hy(n) is of the same order of magnitude as h(n)
wm (3.10).

Finally, we should like to point out that the estimates f3(x) have
a stronger invariance property than the one possessed by the f.(x),
namely, whereas the f,(x) are invariant under the same scale transforma-
tion X;—>¢Xi(c>0) of each of the components X, - - -, X, of the observation
vector X, the fi(x) are invariant under different scale transformations
of the components of X, i.e., X;—¢;Xi(c;>0). This property of fi(x) is
more desirable from the practical point of view, since the components
of X may represent incommensurable characteristics (e.g., height and
weight).
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