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Summary

A class of c-sample (¢=2) non-parametric tests for the homogeneity
of location or scale parameters is proposed and their various properties
studied. These tests are based on a family of congruent interquantile
numbers, and may be regarded as the c-sample extension of a class of
two sample tests, proposed and studied by Sen [15]. A useful theorem
on the asymptotic distribution of the proposed class of statistics is
established. With the aid of this result, the asymptotic power-efficiency
of the proposed class of test is studied and comparison is made with
other test procedures. Location-free scale tests are also considered.

1. Introduction

Let X, - -+, X... be n; independent and identically distributed random
variables constituting the 7th sample, drawn from a population having
a continuous cumulative distribution function (cdf) Fi(x) (:=1, ---,¢);
all these ¢ samples are again assumed to be mutually independent. It
is desired to test the null hypothesis

(L.1) H,: F|(z)=---=F(x)=F(z) (say),

against translation or scale type of alternatives, which we may pose
as follows.
In the translation type of alternatives, we let

1.2) Fyx)=F(x+6;), i=1, ---, ¢

where 6y, ---, 8, are all real and finite. We are then interested in testing
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H, in (1.1), against the class of alternatives

(1.3) H:supl6,—8,;/>0.
.0
Again, for scale type of alternatives, we let
(1.4) Fix)=F([x—plfo), =1, ---,¢c,
where g is any real quantity and 4, ---,d, are positive constant.

Then, we frame the null hypothesis H, as in (1.1), against the class of
alternatives

(1.5) Hj : sup |6,—d,]>0.
@5

In spite of quite significant growth of the literature on non-parametric
methods in the various types of two sample problems, the development
of the theory in the general case of ¢ sample problems seems to be
comparatively inadequate. Only a few non-parametric contenders of
standard parametric procedures are available in this case. Mention may
be made, in particular, to the works of Kruskal and Wallis [10], Mood
and Brown [11], Terpestra [18], Kiefer [7], Dwass [6], Bhapkar [2],
Despande [5], Sen [14], Puri [12], among others. Most of the works
relate specifically to the c-sample location problem, and the efficiency
aspects of these tests have been studied by Andrews [1], Bhapkar [2],
Sen [14], and Puri [12], among others. The c-sample scale problem
seems to be rather inadequately investigated, and the two tests con-
sidered by Sen [14] and Terpestra [18] can not be regarded as very
satisfactory from the power-efficiency standpoint. Very recently, Puri
[18] has considered a class of c-sample scale tests of the Chernoff-Savage
[3] type and has also studied their asymptotic efficiency. Kiefer [7] has
considered the multisample analogue of Kolmogorov-Smirnov and Cramér-
von Mises tests, which are applicable for testing any divergence of the
¢ different cdf’s. The extended class of quantile tests by Sen [14]
has also been shown to be applicable in this situation, with slight
modifications.

The object of the present investigation is to provide a class of
c-sample non-parametric tests which are applicable for testing the
homogeneity of either locations or scales, and to study the asymptotic
power properties of these tests. Certain asymptotic power-equivalence
relations of our tests with the extended Chernoff-Savage type of tests
(considered by Puri ([12], [13])) are also established here for both location
and scale alternatives.

2. Preliminary notions and the proposed test

Let us arrange the n, first sample observations in order of magnitude
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and denote these ordered variables by X, -+, Xiny. Also for the
sake of convenience, we let

2.1) Xiwy=—o and Xl(n1+l) =o0o.

Let us then define (as in Sen [15]) a set of (n;+1) non-overlapping and
contiguous cells {I;:75=0, ---, ny} by

2.2) L X(»p<e=Xigim 7=0, -+, m,.

Also, let 7, ; denote the number of observations of the kth sample belong-
ing to the jth cell I;, for k=1, ---,¢,5=0, .-+, n,; so that

Y
jX_]ork,j=nk for k=1, ---, ¢;

2.3) 1, for j=0, ---, m,—1
7 j={

0, for j=mn,.

Finally let us define a sequence of real numbers {a(j, n), =0, ---, n}
for each positive integer 7, and assume that this sequence satisfies the
following three conditions.

(C. 1) For each n and all j=0, ---, n,

@4) |, n)<K {‘j “)(’”“—j)}"’“, for some 550, K>0.

(n+1)
Then, let
@,= 3 a(j, m)/(n+1),
(2.5) =

o, = 3} (a4, m)/(n+1)} .

It, then, follows from Sen [15, p. 118] that @, and ¢ are both bounded,
even when n—oo,

(C. 2) @, as well as g; converges to some finite limit as n—oo,
and we denote by

(2.6) a=lima, oi=limd,

n=c0

(C. 3) For each finite n as well as when n—oo, g is positive,
that is,

2.7 a; >0 for all n, and 4;>0.

Condition (C. 3) implies that a(j, ») is not a constant.
Let us now define
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nl .
Sy = j% a(g, n)res/m, k=1,---,¢,

(2.8) .

N= ;E Ny
and

Sy= S a(, n)( 3 7es) /N
St )/

= kz:i NuSw,e/N.

Then, our proposed test is based on

(2.10) TN=!ké=ln,,[SN,k—§N]’/a§nl.

In the particular case of two samples, the test based on T reduces to

the two-tail test based on Sy, alone (considered by Sen [15]). It may
be noted here that if we write

(2.11) b(j, n)=a(j, n)—a(j+1, ny for j=0, .-+, m—1,
=a(n, n,) for j=mn,;
(2‘12) Rk,!': %rk,h j=0, ARFY (1) k=11 LR

it is then readily seen that
(2.13) Swa=— S b(j, 1) Buyy k=1, -+, c.
Ng =0

Now, if we consider the pooled sample of size n;+m,, comprising the
first and the kth samples, and denote by I, - -+, li,., the ranks of the
n, first sample observations, then we have

(2.14) lk’j=j+Rg,j._1, for j=1, LI n1+1,

where conventionally, we take l; n+n=7+n. Hence, it follows from
(2.12), (2.13) and (2.14) that

1 @, k=1, ---,c.

@.15) Sye=— SVb(f, M)l —- T
Ny 7=0 n,

k

The first term on the right hand side of (2.15) represents (apart from
the factor 1/n,) a weighted sum of the ranks of the first sample observa-
tions with respect to the kth sample, and the second term is a non-random
constant. Further, it can be readily shown that T, defined in (2.10)
can be expressed as a positive definite quadratic form in Sy, + -+, Sy,e
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each of which is a weighted rank-sum of the first sample observations
with respect to the corresponding sample being pooled with the first
one. Hence, the test based on Ty has been termed here as c-sample
weighted rank-sum tests.

It may be noted further that if the weight-function {a(j, %)} be
chosen appropriately then Ty or Sy . reduces to some well-known statisties.
For example, if we take a(j, n,)=j/(n,+1), for j=0, -- -, n,, Sy reduces
to the usual Wilcoxon statistic for the kth sample with respect to the
first sample, for k=2, --.,¢. Again, if we let

1 if j<[n/2]

2.16 3 ={ ;
( ) (g, m) 0 otherwise,

([s] being the largest integer contained in s); Sy . reduces to the median
test criterion by Mathisen (cf. [14]) for the kth sample with respect to
the first sample, and Ty reduces to the median test considered by Sen
[14]. The class of c-sample interquantile test considered by Sen [14]
also belongs to the type of tests proposed here.

3. Null distribution of Ty

The statistic Ty is based on (c—1)n, random variables {7, ;, j=1,
cee,my, k=2, .--,c}. Let us first consider the joint probability function
of these integer valued random variables, under the null hypotheses
(1.1). If we denote the usual multinominal coefficient by

3.1) ( N ):L,
(CUREEFE 2NN CYEEN %

it can be shown following a few simple steps that the joint probability
function of {7, k=2, ---,¢, j=1, ---, m,} is given by

(3.2) (o) JT( A )

Togs 22 Tej

c LY
where >} m,=N, D)7 ,=n, k=2, ---,c.
k=1 Jj=0

Thus, if the probability function (8.2) be evaluated completely, the
null distribution of Ty can be traced by direct computations, and this
makes Ty to be exactly distribution-free. However, the labour of this
numerical evaluation of the distribution of Ty increases prohibitively
with the increase of m,, ---, %, and ¢, and we are practically forced to
adopt some simple limiting form of the distribution of 7T, which has
been accomplished in the next section. It has been shown there that
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under the conditions (C. 1), (C. 2) and (C. 8), Ty has asymptotically a
X' distribution with ¢—1 degrees of freedom. Thus, in large samples,
the test based on 7y may be carried out using the tail of a ¥* distribu-
tion with (¢—1) d.f.

We consider here the first two moments of Sy, k=2, ...,c and
the expectation of Ty, as these will be subsequently required. It follows
by more or less straight forward computations that

SN,I':a'nl"' {a(nlr nl) ;dnl}/nl,

(3.3)
E(SN,klI{O}zdnl, for k=2, ---,¢;
o
(3.4) Cov(Sy.i ; Sy,o|Hy)= e {nk+5k;::nl+1) }
k,q:z’ . .,c;

where d,, is the Kronecker delta.
Hence, by simple algebraic manipulations, we get that

{atn, n)—, )" 1 }

(3.5) E(TNIH0)= (6—1)(n1+1) + (N-—’nl) l: e it

(m+2) N
=(e=1)+0(nr™),

by condition (C. 1).

4. Joint asymptotic normality of Sn,k, k=2, :--, ¢
Let us define
uk,j=Fk(Xl(j+l))—Fk(Xl(j))’ j:O’ s,y k=1, -, ¢;

ny .
ak(X1)= Ea(], nl)uk,j, k=1, I 7 ;

4.1)
LUX)= ,2 aX(g, e, ;—[@( X)L, k=1, -+ -, c.
Also, let
(4.2) Uy i=0[Sy—a( X))/ S5 (X)), k=1, ---,c.
Finally, let us assume that asymptotically n, %y, - -, n, are such that
4.3) lim n,/N=12,: 0<4, -+, <1, élkzl,

THEOREM 4.1. If Fi(x), ---, Fx) are all continuous and if {a(j, n,),
1<j<n} satigfies conditions (C. 1), (C. 2) and (C. 3) given in (2.4)
through (2.7), then Uy=(Uy,, -, Uy,) has asymptotically a c-variate
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normal distribution with a null mean wvector and a wunit dispersion
matrix.

PROOF. To the random variable X, ., we attach a counter function
&(Xy,.| X)) defined in the following manner:

4.4) A Xx, .| X)=0a(g, n,) if X, €1,

for 7=0, ---, n,, a=1, ---, n, k=1, ---, c.
Then, conditioned on X,=(X,, ---, Xin),
(4.5) {$(Xi.| X)), @=1, -, m}

forms a sequence of independent and identically distributed random
variables, and for different k(=2, - - -, ¢) these (¢c—1) sequences of random
variables are row wise stochastically independent. Then, let us define

(4.6) X, o X)) = {$(Xio | X0) — (X))} (X)),

for (X:l, s, Ny k:l’ s, G and let
(4.7) P(Xy)= g:gb(XE,AXI)/n,,, k=1, - c.

Now, it is easily seen that nY’¢.(X))=Uy., for k=1, ---,c. Then from
(4.6), we have

E[p(Xs..| X)| Xi]= E[$(Xi, .| X)]=0,

(4.8) VIg(X:..| X)) X:1=1,
E{|¢(X:..) X)'| X1} < Kn{”*~?, uniformly in X;

for a=1, ---,n, k=1, ---,¢c.

For any given X,, ¢,(X)) is fixed, while ¢y(X)), - - -, ¢.(X,) are mutually
independent random variables. Let now #'=({,, ---,%t) be a vector of
real and finite quantities, and let p(f) denote the joint characteristic

function of {n}?¢(X)), k=1, ---,¢}. Then, we have
W(H)=FE {exp[i = tkn}c”gzk(X,)]}
4.9)
=E {exp[itm}’p,(X,)] IT [{explatiny *$(X)] X, 1}

Now
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E{explitanigu(X)]| X1}
—]T E{expli(te/ni)p(Xea| X1)]| X: }

(4.10) [E {1+ it

1/2

G g
P Xu| X)) — o, P Xu| X))

4 Gt (it)* (X | Xy) exp [L(0ute/ni ) (X | X1)] , Xl} ]nk,

ny
0<o,<1), k=2, ---,¢

Using (4.8) and after some simplifications 1t can readily be shown that
(4.10) reduces to

4.11) exp [~ L th+Rua(®)],

where |R, y(t)|=0(t}/n!) for any real and finite ¢, and uniformly in X,.
Thus, from (4.9) and (4.11), we get that

(4.12) uty=exp {1 16} [Blitat 3,00} + RO,
where for any real and finite ¢, R¥(f)=0(n;*)—>0 as n,—>o. Now

w5 () =i 8 ald, mhfm — 3 ald, m)w,} /S (X)

(4.13) = % {”m 3, a6, ”‘)__ z: al, m)] /o, ]
# ;:}1) n* 3] a*(ﬂ y MUy, g,

n,—1
where a*(j, n)=[a(j, n)—(1/m) 3} a(d, m))/au, for j=0, -+, m. Thus, it

is readily seen that

2 (i, m)="2FLan,, n) -3, o, =000i),
=0 1 1
419 3 [e¥G, m)l'=(mt DIL+0(n),

B laX(, m)l =0(ai ), for 7>2.

Again, it is easily shown that
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@15) E w1} ={11 93} /ot 9 wo=pto-1)- -0+,

k
where .&(=0) are non-negative integers, .= 31 .%, and a, - - -, & are
j=1

any k(=1) numbers from (0,1, ---, n,). Hence, using (4.14) and (4.15) and
proceeding precisely on the same line as in the proof of lemma 3.2 and
the results in (4.14) and (3.15) of Sen [15], it can be shown that

we ([ 33046, ma Hi @081 oenr),

E {[n}’” ;%Oa*(j, 'n,)uu] }zO(n;"), for k=01, - ;
p3

e
and hence, n}* j}_}oa*(j , MU, ; has asymptotically a normal distribution

with zero mean and unit standard deviation. Again,
4.17) ZiX)= 3@, m)—@X)Y,

and from the asymptotic normality of n'? fia*(j , MU, 5, We get, follow-
ing a few simple steps that

(4.18) n?|a(X,)—a., | is bounded in probability.

Also

V{3 e, n]

(4.19) = 330G, m)fm A D+ 2)— (306, D)
=0(n7™), by condition (C. 1);
and hence
Mg __1 1.7
(4.20) 2, nl)[uu n, +1] 0.

Consequently, from (4.17), (4.18), and (4.20), we get that
(4.21) LAX) L 0 — 5250,

Hence, from (4.13), (4.16) and (4.21), we get, on applying a well-known
convergence theorem by Cramér [4, p. 253] that n‘”gZ(Xl) has asymptotical-
ly a normal distribution with zero mean and unit standard deviation.
Thus, from (4.12), we get that
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(4.22) () =exp {—% 5 ti} +Ry(t),

where Ry(t)—0 as N—oo, for any real and finite £. Thus, {nY¢.(X)),
k=1, ---, ¢} has asymptotically a c-variate normal distribution with a
null mean vector and a unit dispersion matrix. The proof of the theorem

is then completed by noting that Uy,=n}’¢«(X)) for k=1, ---,c.

THEOREM 4.2. If Fi(x)=---=FJ(x)=F(x) is continuous and if
{a(4, n,), 1<5<n,} satisfies the conditions (C. 1), (C. 2) and (C. 3) in
(2.4) through (2.7), them Ty, defined in (2.10), has asymptotically chi-
square distribution with (c—1) degrees of freedom.

PROOF. From Uy we transform to a new vector valued variable
Vy by means of an orthogonal transformation, where we take

(4.23) V= ;Z"'l (/1) Uy, i
and Vy,, - -+, Vy,. arbitrarily. Let us also apply the co-gradient trans-

formation to t and denote the transformed vector by z. Then the
characteristic function of Vy can be shown to be (using (4.22))

k=1

(4.24) exp {—% 3 fi} +RBy(z),

where Ry(z)—0 as N—oo, for any real and finite z. Consequently, it
follows from a well-known theorem on the limit distribution of a con-
tinuous function of random variables (cf. Sverdrup [17]) that

(4.25) ) Vie= ké:l Uki— V.= kZ; [Ur,s—(m/N)"Vy, I

k=

has asymptotically a chi-square distribution with (¢—1) d.f. Also, when
F,=...=F,, we have

(4.26) FUX) = yf(Xl)—P* ai, for all k=1, ¢c.
Hence, from (4.2), (4.25) and (4.26), we get that

e P e _
(4'27) k2=2 V?V,k_—’ lcglnk[SN'k_SN]2/03"1= TN°

Consequently, Ty has asymptotically a chi-square distribution with (¢—1)
d.f.
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5. Asymptotic non-null distribution of Ty

We shall now consider the limiting distribution of 7, under a
sequence of alternative hypotheses which relate to heterogeneity of
locations and scales, and for which the power of the test based on Ty
lies in the open interval (0, 1). Thus, in this section, we will take ¢
sequences of distributions, each converging to a common distribution,
in the following manner:

(5.1) Hy: F, y(z)=F(x+ N"[a,+Bi2x]), k=1, ---, ¢,

where a=(a;, -+, a;) and =(8,, - -+, B,) are real and finite vectors, at
least one of them being non-null, N is the total sample size, and F} y
replaces Fy, k=1, ---,c.

Also, let # be the class of all absolutely continuous cumulative
distribution functions with continuous density functions, which are as-
sumed to be positive over the range of variation of z, and for which
either (a) the range of z is finite, or (b) if it extends to infinity in at
least one of the extremities (say right), it satisfies the following two
conditions:

(i) Smoothness condition. Let

(5.2) f(x)=—ﬂ1_;§(_"’)_1_ and  g(z)=2108 [;;F(w)].

Then, in the right hand tail, f(x) and #(x) are both monotonic. Obviously,
Sf(x) is | while ¢(z) may be 1 or | or a constant.

(ii) Gradient conditions. x¢(x) either tends to a non-zero limit
a(>0) or it is non-decreasing in the tail and tends to oo as z—oo.

If the range extends to —oo in the lower extremity, we assume
that similar conditions hold for f(z)=F"(x) and #(x)=f(x)/F(x).

It may be noted that the gradient condition is satisfied by all cdf’s
having a finite éth order moment, for some >0, and in fact, we have
the following lemma.

LEMMA 5.1. If for any absolutely continuous cdf F(x), x¢(x)—0 as
x—>o0o, then F(x) has no moment of any finite order.

The proof of this lemma along with that of the following lemma is
given in the appendix.

LEMMA 5.2. If X, <---<X, be the order statistic in a random
sample of size n drawn from a population with the cdf F(x), and if
F(x)e &7, t_he'n, Jor all real and finite (a, p)

Sf(@+n" la+pa])/f(x)=1+0,(1),
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Sor all x € [xq;, Tl

Let us define {b(j, n;), 0=<j<m,} as in (2.11) and assume further
that the following condition holds:

(C. 4) For all 0<j<n,, if we let m,—oo subject to j/(n,+1)—u
0<u<1, then

(5.3) mb(F, 1)—>b(u),

where b(u) is continuous and integrable with respect to w.
Let now .%,C.% be a subclass of cdf’s F(z) €. #, for which

(5.4) S:b(F(x))x f’(x)dw]<oo, if B is non-null,
and
(5.5) Slb(F(x))f’(x)dm|<oo, if g is null.

Let us then define

(5.6) 0=\" (@t ppF@) @), k=1, -, c;
5.7) A= lim (m /N : 0<Ay -+, 2<1, 31 =1,
and

(5.8) 4= "Z’i}llk(ﬂk—é—)’/oi.

Then, we have the following theorem.

THEOREM 5.3. Under the sequence of alternatives {Hy} given by
(5.1), Ty has asymptotically a mon-central chi-square distribution with
(c—1) degrees of freedom and the mon-centrality parameter 4 (defined in
(5.8)), provided {a(j,n); §=0, -, m} satisfies the conditions (C. 1),
(C. 2), (C. 8 and (C. 4) (which are stated in (2.4), (2.5), (2.6), (2.7)
and (5.8)) and F(x) € F,.

PROOF. Let us define .&%(X,) as in (4.1) and prove that under the
conditions stated in the theorem

(5.9) |y;(xl)_y§(xl)|_f_> 0, for all k=2, ---,c.

To prove (5.9), it follows from (4.1) that it is sufficient to show that
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(5.10)

;éoa“(j, M)tk ;—e )| —> 0, for all k=2, ---, ¢; ie.,

G |3 (@G -1, m) =2, W Fra(Xio) = FunXKip)} = 0,

for all k=2, .-, c.

It now follows from (2.11), (5.1), (56.3) and lemma 5.2 after some
essentially simple adjustments that the left hand side of (5.10) or (5.11)
reduces to ‘

(5.12) s 1Ib(Fn(f'J)) (a¥+BEx)| f(2)dFa(2)+0, (1), e<oo,
N 0

3

where af =a,—ay, B¥=p—p1, k=2, ---, ¢ and where F,(x) is the first
sample empirical edf. Consequently, by (5.5) and (5.12), we get that
(5.11) is valid and hence, from (4.21) we obtain

P P
(5.13) H(X)— X)) —> a..

Also, it follows more or less similarly that

G.1a)  N™@X)-8(X)) —— |(aF +620)f@HFE)AF()
=0,—6,, for k=2, ---,c¢.

Now, looking at the statistic k§j] V%, defined in (4.25), and substituting

the expression for Uy as in (4.2), we get that

ch_}z V?v,k= éz nk[SN,k —,§N—— (ak(Xl) —a, (Xl))]g/ yi(xl)

(5.15) [ _
—_ gznk[SN,k—SN_N—llz(ek—01)]2'

o) i

Since, 20 V%.: has (by theorem 4.2) a chi-square distribution with (c—1)
k=2

degrees of freedom when N is large and (5.7) holds, it follows from a
well-known theorem on the limiting distribution of a continuous function
of random variables (cf. Sverdrup [17]) that

(5.16) (1/a2) 23 1a(Ss—Sn)

has asymptotically a non-central chi-square distribution with (¢c—1) d.f.
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and the non-centrality parameter 4, defined in (5.8). The proof of the
theorem is then completed by noting that Ty converges in probability
to the statistic given in (5.16).

It may be noted that there is some similarlity of the regularity
conditions pertaining to the asymptotic chi-square distribution of Ty
and extended Chernoff-Savage type of statistics (cf. Puri [12]). However,
the comparison of these regularity conditions follows more or less on
the same line as in the two sample case, considered by Sen [15], and
hence, is omitted.

6. Asymptotic efficiency of Ty-test

Since, it has been shown that under H,, T, has asymptotically a
chi-square distribution with (¢—1) degrees of freedom, and under H,,
it has a non-central chi-square distribution with the same degrees of
freedom and the non-centrality parameter 4, defined in (5.8), it follows
that if Sy is any other test-statistic having a similar distribution-property
(both under H, and Hy), the ratio of the two non-centrality parameters
will give us the usual measure of the asymptotic efficiency of one test
with respect to the other. .

We consider first the location problem, and state the sequence of
alternatives {Hy} as

(6.1) Fy x(@)=F(z+a;/N"), k=1, ---,¢.

In the parametric (normal) case, it is known that the usual analysis
of variance test has some optimum properties, and the test eriterion
(') has asymptotically a non-central chi-square distribution (under H,)
with (¢c—1) degrees of freedom and the non-centrality parameter

AO = é Zk(a,, "&)’/0"
where
] ¢
o= Sm’ dF (2)— [SxdF(m)] and a= 3 .

Hence, it follows from theorem 5.3 that the asymptotic efficiency
of Ty-test with respect to the F-test is

6.2 2| s sws]

which does not depend on ¢, the number of independent samples. Also,
we note that if we let b(F(x))=(d/dF)J(F(z)), where J(F(x)) has been
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defined by Chernoff and Savage [3] for their test, then (6.2) becomes
identical with the expression for the asymptotic efficiency of their test.
Hence, proceeding precisely on the same line as in Puri [12], we can
present the expression for the asymptotic efficiency of T'y-test for various
suggested or known weight functions {a(j, n,), j=0, - --, »;}. For brevity
of our discussion here, these are therefore not done in detail.

Let us next consider the scale problem. Here {Hy} relates to the
sequence of alternatives

(6.3) Foy(@)=F(z[1+8/N"), k=1, ---, ¢.

In the parametric case, Bartlett’s test for the homogeneity of
variances is the mostly used test. This test criterion has asymptotically
a non-central chi-square distribution (under Hy) with (c—1) degrees of
freedom with the non-centrality parameter 4* given by

4 c — —_ c
*= —B), B= kP
dr= o D ABB), B

where 7y=ufpii—3, pre= S[m _ E@)JdF(z), k=1,2, 3, 4. Thus, the asymptotic

efficiency of Ty-test with respect to Bartlett’s test turns out to be

(6.4 TAZI" s (e S (@da

402

which is also independent of ¢ and hence, all the efficiency values obtained
in the two sample case by Klotz [8], Sen [15] and others, remain valid in
the general class of c-samples. Here also, by letting b(F(x))=(d/dF)J(F(x)),
where J(F(x)) is the Chernoff-Savage type of weight-function, we are
able to have the same asymptotic power efficiency for both the classes
of tests.

It is thus seen that even in the c-sample case, the weighted rank-sum
tests (proposed here), based on the first-sample weight functions and
the weighted rank-sum tests based on the pooled sample weight func-
tions, (considered by Puri [12]) are both asymptotically power equivalent
for both location and scale alternatives, if the same weight functions
are used in both the cases. From computational aspects, the ordering
of the observations appear to be less tedious in any single sample, than
in the pooled sample and hence, Ty test, proposed here, appears to be
computationally preferable. The evaluation of the critical value of Ty
for very small samples also appears to be relatively easier here.

7. Location-free scale test

Suppose now we are interested in testing the homogeneity of the
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scale parameters of the ¢ populations, without assuming the equality of
the associated location parameters. In the case of two samples, Sen
[15] has considered this problem and imposed the regularity conditions
of Sukhatme (see Sen [15], p. 131) on the underlying edf’s and the
estimates of the population location parameters, under which the weighted
rank-sum scale tests when thus modified, will be asymptotically distribu-
tion-free. In the c-sample case also, the same regularity conditions apply
to the population cdf’s and the estimates of the location parameters,
for which the modified scale-test will be asymptotically distribution-free.
For the intended brevity of our discussion, this is not considered in
detail.

8. Appendix

PROOF OF LEMMA 5.1. From (5.2), we get on writing ¢(x)=¢'(x) that
(8.1) 1—F(x)=e*® and f(x)=¢(x)e ™.

We are to prove that for any >0, E(x’) does not exist. Since w@(x)—0
as ¢—oo; given any 6>0, we can always find a value of z, say «,,
such that for #>2,>0, z¢(x)<d5/2. Then for x>z,

$@)— ()= p@)o< 2 log (o]

or
S = g {6"“’6).’»:/2} — kx"/z,

where k is a finite quantity. Thus, from (8.1), we get
2’[1—F(x)]| =2’ =ka?/*—~>oc0 as x—>co.

Consequently, for x=a®
Swm‘dF(x) =2’ [1— F(x)] = ka*?

does not converge as x—oo, and hence, E(2’) does not exist. This com-
pletes the proof of the lemma.

PROOF OF LEMMA 5.2. If the range of x is finite and f(2)>0 in
this domain, the proof is trivial. So we consider the case where the
range of x tends to co on the right. The case with the infinite lower
extremity will follow similarly.

By virtue of the smoothness and gradient conditions, we assume
that there exists a value of z, say z, such that for all r=2,
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(i) f(x)is | and ¢(x)(>0) is | or 1 or a constant;
(ii) x¢(x) —>a as © — oo or x¢(x) is 1 and it tends to oo, as & — oo,
(iii) F(x)=p, 0<p<1.

As the lemma follows trivially for any fixed value of #, we require to

‘prove it only for tail values of xz. Thus, we require to show that for
all xo<$§X(n)

B.2)  {gle+n""[a+pz])/p(x)} exp {—[p(z+n""[a+pz])—H(x)]}

=1+0,(1).
Let us now define a sequence of values of x, say {«¥}, such that
(8.3) 1—F(x})=cn ", 6>0, ¢=1.

It is then easily seen that
8.4) P{O [X<i)>x,’!‘]} 50 as n—>oo.
1

We now classify Fl(x) according to the nature of ¢(x) as follows (cf.
Sen [16]):

Type I : @(x)>oo, xp(x)—>o0 as x—>oo,

Type II : ¢(x)>c<oco, xp(x)—>o0 as x—>oo,

Type III: ¢(x)—>0 but xé(x)—>co as x—>oo,

Type IV: z¢(x)>a<<oo as x—rco.

Let us first prove that for the first three types of cdf’s
(8.5) zrd(xF)=o0(n"?), x¥=o(n"?).

For type I cdf’s, E(xe*) exists for all 0<t{<1, and this implies that
rp(x)e~¥D—>0 as x—>oo. Thus, for any fixed ¢, x¢(x) is at most of
the order [exp (1—{)¢(x)]. Since, ¢(x¥)=(1+05)logn—loge (by (8.3)),
we get on choosing ¢ appropriately that

(8.6) zxp(x¥)=0(log n)=o0(n"?.

Also, ¢(xr)—co as x—oco, and hence zF=o(n'?). For type II cdf’s,
#(x)—>c<oo as x—oo(c>0), and hence, it follows similarly that x}¢(x¥)
=o(n'?), x¥=o0(n"?). For type Il cdf’s, ¢(x)—0 but xp(x)t —> oo as
x—oo. Thus we can always select a value of x, say x,, such that for
all x>,

xé(x)Ze,>(1+68)(2+9), §>0,

where 4 has been defined in (8.8), and where F(x)=p,<1. Then, for
any fixed x;, we have choosing » appropriately
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SIZ d(x)dx =c, log (x}/x,)
or

log (x;*/xl)gciw(w:)—sp(xl)]g cisb(wf:) < il—j—?l log 7

1
ie. x¥=0(n"C+P)=o0(n"?) .

Further, as ¢(x) >0 with z — oo, z¥d(x¥)=0(n"?). Consequently, from
the monotonicity of z¢(x) t for x=x,, we get that for type I, II and
III cdf’s

8.7 n~a+pr)=0(1) ,
for all z,<x<x¥, and hence,

- Pe+n o+ pr]) — P(x)

Vet Bx) v e “1 ., ,
(8.8) - &+ m~ (o + Pa) yo(y); y=x+n""a+Bx)y, 0<7<1.

=0(1), uniformly in z,<ax<x¥.
Hence, from (8.2) and (8.8), we get that for all z,<zx=<x¥

f@tn" latpa)) _ s@+n""latpz]) o 1y
(8.9) ) ) [1+o(1)]

Now the monotonicity of f(x)| and zé(x)t implies that

Slfx)=1, YW <1, according as y=1.
wp(x)

These two contrasted inequalities along with (8.9) imply that for all
r<r<lxk

Fatn " latpal) _1 . oy
(8.10) @) +o0(1)

For type IV cdf’s, it is easy to show that (8.8) holds for all positive
x, since x¢(x) —>a as x —oo. Further,

pr+nat+pe]) _ ydly) =«
8.11 = . L
(810 ) ab(@) Ty

where y=x+n""[a+px], and hence it is easy to show that (8.11) can
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be made arbitrarily close to 1, for large x, and it has the limit 1 as
2 —>oo. Thus, from (8.9) and (8.11), it follows that (8.10) holds.

Essentially the same proof applies to the lower extremity also.

Hence, from (8.4) and (8.10), the lemma follows.
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