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Summary

This paper offers plans mainly for 2™ factorial fractions with (6=
m=10), each of which possesses the following properties: (i) the general
mean and all the main effects and two factor interactions are estimable,
assuming the higher order interactions to be zero; (ii) the number of
assemblies involved is kept at a minimum, with the condition that the
available number of degrees of freedom for error is not too few; (iii)
the fraction is subdivided into blocks (size 8 for 6=<m=<7, size 16 for
8=m=10); (iv) the estimates of the main effects and interactions can
be obtained without any special adjustment needed for eliminating the
block effects; ( v) structurally, the fraction possesses a partial balance;
and (vi) subject to the above conditions, the fraction has been chosen
so that for any pair of effects, the correlations between the correspond-
ing estimates may not be too large. (In each fraction, the general mean
has zero correlation with the other effects.) Furthermore, the inverses
of the matrices involved in the normal equations have also been pre-
sented so that a complete analysis is available for each fraction.

Also for high-precision experiments where the error variance is very
" low, but the cost of observation per assembly is very high, a whole
series of 2™ fractions has been presented. These fractions may also be
useful for situations where a good estimate of error variance is available
from past experience. Each of these fractions possesses the property
(i) above. Furthermore the fraction requires only a minimum of v as-
semblies, where v is the number of effects to be estimated. To this an
optional m+1 assemblies could be added for the estimation of error, by
including a dummy factor.

1. Introduction

Starting with the pioneering work of Finney [9], the theory of fac-
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torial fractions has received considerable and increasing attention by a
large number of researchers, and the fractions themselves have found
increasing use in agricultural, biological and industrial experimentation.
For detailed introduction to and up to date information on the subject,
reference may be made, for example, to [12, 16, 10, 7, 8, 1, 11, 2, 15].

In the beginning, the theory largely concerned itself with ortho-
gonal fractions, in which the estimates of the effects of interest to us
are all uncorrelated. However the number of assemblies required in
such fractions is rather large, i.e. they are uneconomic. Attention has
therefore lately (for example, [1, 8, 4, 5, 19]) shifted more to the con-
sideration of fractions which are economic but which may give rise to
correlated estimates. We shall call such fractions as irregular.

Obviously, the properties outlined in the summary are the ones that
in general, one may like to have in a ‘good’ fraction.

An explanation of the term “ partially balanced fraction” is avail-
able in [3, 5], to which the interested reader may refer. Although some
remarks may not be out of place here, a full appreciation of this con-
cept is not necessary for reading this paper and using the designs de-
veloped herein. Suppose for example that our interest lies in all the
two-factor and lower order interactions. Then we call a fraction T
¢ completely balanced’ provided the covariance matrix of the estimates
is ¢ symmetrical with respect to the factors’. To elaborate, let ¢ denote
the general mean, and A; and A, respectively the main effect of the
ith factor, and the interaction between ith and jth factors. Let the

corresponding estimates, obtained from T, be g, A,, etc. Then we re-
quire that the variances of these, and the covariances cov (z, A,-),

cov (A,, Aj), CcoVv (Ai, Aij), CoVv (Ai, Ajk), COoVv (Aij, Aik) and cov (Aij, A“),
be independent of the suffixes 4, j, k, ! (which are assumed to be dis-

tinct). Thus we must have: var (fiu)=var ([1,4), cov (Au, fi,,)=cov (Agg,
2135) etc., though mot mecessarily: var (A1)=var (A,,,), or cov (zil,, Al,)=

cov (A,g, Au). However if the covariance matrix has some other struc-
ture, e.g. like that of the covariance matrix of the estimates for a PBIB
design or an intra and intergroup balanced design or some generalisa-
tions of these two, then we call the fraction partially balanced. Rough-
ly speaking, for a partially- balanced fraction the set of all the effects
of interest to us is divisible into one or more groups (as in an intra and
intergroup balanced design) such that the covariance matrices of the
estimates of the effects within any group, and also between groups has
a structure similar to that of the covariance matrix for a PBIB design.
Indeed, because of this feature, a partially balanced fraction possesses
the same advantage in the ease of analysis and interpretation relative
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to a general unbalanced fraction as a PBIB does compared to an arbi-
trarily chosen design. Needless to say that a PB fraction would be
called for when complete balance is not feasible.

Special efforts have been made to ensure that the correlation be-
tween no two estimates is very large, since it would imply that the
corresponding effects are almost confounded. So far as the authors are
aware, the fractions presented here are better than the corresponding
known ones from the overall point of view outlined in the summary.
Similar investigations are in progress regarding other factorials and shall
be reported later.

2. Some general remarks

Consider a 2™ experiment. Denote by ¢, the assembly (treatment
combination) in which all factors are at level 0, by a; a;, -+ a;, (1=r=
m) the one in which factors %,, 4, - -+, ©- are at level 1 and the rest at
level 0, and let

(1) a'=(}; @y, Ay, * ) Ay Wiy, Qllyy ** +y Qi@ Ciloly, ***;

a0 - Am) ,

be the vector containing all the 2™ assemblies in their natural order.
For simplicity the expected response for any assembly a;a, --- a; shall
also be denoted by the same symbol. Also, as usual, let 4,4, --- A,
denote the r-factor interaction between the factors 7,, 4,, - -+, 1,; let these
interactions be written in the form of a vector A’, having the form (1)
with a’s replaced by A’s. Suppose we are interested in estimating g,
the main effects A(i=1, 2, ---, m) and the 2-factor interactions A;A;
(written A, for short; 1<y, ¢, j=1, 2, ---, m) assuming that the rest
of the interactions are zero. These can be arranged as in A’ in the
form of a vector

(2) Ij:(ﬂ; Al: ] Am; A127 Alsy R} Am—l, m)

of length v=14+m(m+1)/2. It is well known that each element of A
is a certain linear contrast of the elements of a, so that we can write

(3) A=Da,

where D is a 2™x2™ matrix (any two rows of which are orthogonal)
which can be easily written down and need not be reproduced here.
Since (2-™*)D is an orthogonal matrix we readily obtain

(4) a=2™D'A.

Writing A’=(L' : I}), and since we are assuming I, to be zero, we find
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that
(5) a=((2")DiL,

where D! is obtained from D’ by cutting out the last (2"—v) columns.

Now let T be any fraction, let the observed responses of the N
(say) assemblies in T written in the form of a vector be denoted by y,
and assume that

(6) Exp (y)=y*, Var (y)=Iv",

o being unknown. The problem is to find I:, the best linear unbiased
estimate of L, given y. However, in virtue of (5) it is evident that

(7) y*=Q2"EL,

where E'(Nxv) is the matrix obtained from D{ by cutting out (or re-
peating) the rows of Dj corresponding to treatment combinations omitted
(or repeated) from a to get y*. We shall also assume the presence of
blocks. Therefore let

(8) y=y*+HB+e=@2 ™EL+HB+e,

where 8'=(8, B, -+, Bs) is the vector of the b (say) block effects,
H(Nxb) is a matrix of zeroes excepting for a single unity in each row,
and e is the error vector. In the row of H corresponding to any element
y. of y, the unity stands in the column which corresponds to the block
from which 3, comes. The normal equations for 8 and L are therefore

- (@ ™E - - L ] [[@mME]
(9) <. @mME : H] -
H B H

Il

Y.

We shall now investigate the case where no adjustment for blocks is

needed to obtain L. It is useful to recall a definition first.

An orthogonal array of strength d, with m constraints, N assem-
blies and s symbols is an (mx N) matrix M whose elements are these
symbols, such that each of the s* possible vectors of length d with these
symbols as elements occur an equal number of times as columns in any
(dx N) submatrix of M. As an example the following is an orthogonal
array of strength 2, with N=8, m=4 and s=2:

10000111
(10) y—|0 1001011
00101101
00011110
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Here each of the four (2?) vectors < (1) ), < (1) >, ( 8 ) and < % ) occur

twice as columns in any two-rowed submatrix of M. It can be checked
that the array is of maximum strength 3. Notice that each column of
M could be considered as an assembly from a 2* factorial. In general
the columns of the above array M can be considered as the treatment
combinations from an s™ factorial.

We next prove

THEOREM. Let T be a fraction from an s™ factorial, and let the as-
semblies in T be divided into b blocks, such that the set of assemblies in
any block form an orthogonal array of stremgth 2. Then if all 3-factor
and higher order imteractions are assumed zero, the BLU estimates of
the rest do mot change by the assumption of block effects.

We shall take s=2; the general case follows similarly. The result
will be established in view of (9), if we show that EH is a zero matrix
under the stated conditions. Now take some row of E, say the one
corresponding to the interaction A,. Also take (say) the first column
of H, corresponding to 8, and consider this row by column product (say
p). Since the assemblies in this block form an orthogonal array of st-
rength 2, they can be divided into 4 equal parts P,;, the assemblies in
a particular part having the levels (7, ) respectively for factors 1 and
2. The four parts are obtained by taking 4, =0, 1. Now, the unity
occurs in the first column of H precisely at the rows which correspond
to assemblies in one of the sets P,, Py, P, and P, Also, correspond-
ing to this unity, the element in the row of E under consideration is
(+41) corresponding to the assemblies in P,, and P,, and is (—1) for
P, and P, Since the number of assemblies in each P, is the same,
the product p is zero. Thus every row of E is orthogonal to every
column of H, and the result is proved.

From (9), it therefore follows that under the conditions of the above
theorem,

(11) L=@"\EE)"'Ey=@2"\EE) "Dz,

say, provided that (E'E’) is nonsingular, and the vector z is defined as
below. The elements of z are put into (1, 1) correspondence with those
of a, such that the 7th element of a corresponds to the ith element of
z. Let @ be any assembly in a. Then we define the element 2(0) in z
corresponding to the element ¢ in a by

0,if 0¢T

7 ={
ZO=1 total yield of ¢ (for all repetitions of @ in T), if 6 ¢ T.
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The advantage in using z is that one does not need to write down E,
and the computation of D,z from z is the same as that of L from a
for which various simple rules are known. From (11) and (6), we have

(12) Var (L)=2™(EE") 6" .

For any fraction 7T, formulae have been developed in [4] for a direct
computation of (¥E'), and in [5] methods for its inversion have been
studied. In this paper we shall present (EE')"! for each fraction. This
not only provides the variances and the correlations but also makes the

calculation of I from (11) easy and straightforward.

In case the vector I, is not zero, the bias (i—L) can be obtained
in terms of I, using theorem 4 of [3].

We now come to the construction aspect. For a 2™ factorial, con-
sider EG(m, 2). In the classical theory of confounding and (orthogonal)
fractional replication, the total fraction itself is an orthogonal array of
strength 4, generated by an appropriate flat 2 of EG(m, 2). Assembl-
ies lying on suitably chosen parallel subflats 2,, ---, 2, of 2 are assigned
to the different blocks, b in number, such that the assemblies in any
given block form an array of strength 2. If the number of assemblies
is 21 in 2 and 27 in any 2,, then the number of blocks b is obviously
2" where r=7r,—7;. Before proceeding further, it is useful to define
the function n,(r, 2), more about which could be found in [6]. It de-
notes the maximum m, such that a flat of EG(m, 2) can be chosen such
that it contains exactly 2" assemblies, and these assemblies form an or-
thogonal array of strength d. The results

13) ny(r, 2)=2"—1, nyr, 2)=2""1,

have been proved in Bose [2], and are important for our discussion. For
example, the first one implies that if we want a block of size 8 to hold
an orthogonal array of strength 2 with assemblies from a 2™ factorial,
then we must have m<7. Similarly a block size 16 will be good enough
if m<15. This also explains why in our fractions we use block size 8
for m=6, 7, and 16 for 8<m=<10.

The value of n(r,2) is not available for general r, but can be
shown for example, to equal 6 and 8 respectively for r=5, 6. This
means that an orthogonal fraction in 64(=2°) assemblies can be obtained
as a flat of EG(m, 2) for m<8, but not for m>8. Thus the fraction
so obtained, though orthogonal is of a size which is generally too large
compared to v, the number of effects to be estimated. Furthermore,
sometimes even though the size of an orthogonal fraction may not be
too important, the division of the fractions into blocks which are arrays
of strength 2 may not be permissible.
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Hence, in order to obtain fractions of more convenient sizes, one
has to modify the above method of starting from an £ of strength 4,
and then trying to break them into the 2,. One variation that has been
sometimes (for example [14]) used is to take 2* as a fraction, where 2*
denotes the set of (b’ - 27) assemblies lying on 2, 2,, ---, 2,,,, where
b'<b. This set of parallel flats is to be chosen such that the fraction
£* has various desirable properties. However the experience of the
authors is that in general the ¢ parallelism’ of these flats causes high
correlation between the estimates of certain effects. In this paper there-
fore a new approach is used which consists of taking steps in the follow-
ing sequence: (i) on the basis of the value of v, find » the number
of assemblies which we want to have in the fraction; (ii) knowing m,
find » such that b orthogonal arrays of strength 2 with 2" assemblies
from a 2™ factorial exist and b-2" nearly equals #; (iii) find a set of ar-
rays QF, QF, ..., 2F of strength 2 each (which may be generated by
flats in EG(m, 2) which are not necessarily parallel), such that (a) the
total fraction is partially balanced, and (b) no large correlations are
present.

While (iii @) will be illustrated in the designs to follow, a broad
principle for achieving (iii b) could be explained here. Firstly, it is well
known that a flat 2 in EG(m, 2) could be expressed by the equation
Ax=c, where the elements of A(IXxm) and ¢(lx1) belong to GF(2) and
the m elements of x correspond respectively to the m factors. This
flat is called an (m—l)-flat of EG(m, 2) provided that rank (A4)=I, and
it then contains 2™~ points. Now consider the set A* of 2! vectors ob-
tained by taking all possible linear combinations of the rows of A. If
v is any vector, we define the weight w(v) of v as the number of non-

zero elements in v. It is well known that if A is such that w(v)=d+1

for all v € A*, then the 2™ elements of 2 form an orthogonal array of
strength d. The set 2 can as well be considered as a fraction with
2! agssemblies. Considering the case d=2 suppose for illustration that
w(,)=3, w(v,)=4, where the nonzero coordinates in v, correspond to
the factors %,, %, and 45, and those in v; to 7i, J;, %, 7i- Then it is well
known that for this fraction, the main effect A; will be confounded
with the interaction A, A with A;,, etc. Similarly A,;, A;,, are
confounded, as also A;;, and A;,, and A4, and 4,,;..

Now let there be a fraction 2 divided into b blocks, the gth con-
taining an array 2, of strength 2 formed by the above method. Let
a.(ty, 1y, 15)=a(v,) be the number of flats 2, such that v, € A¥, and vix=
¢ is an equation satisfied by the elements of £2,, where ¢ € GF(2). Let
B(w))= |a,—a;|. Then it is found that in general, “iil and fi% are cor-
related if 80, and are either uncorrelated or have relatively small cor-
relation if B=0. Also the correlation increases with the increase in 8
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(roughly proportionately, in the authors’ experience). Same is true of
other pairs like (fiiz, “iiﬂ's)’ etc. In the case of v,, B(v,) is similarly de-
fined, and the above remarks hold for pairs like (Aj1,2, /ijzu), ete.

The technique used in the paper is therefore to choose £ in such a
way that for most out of the set of possible vectors v (of length m) of
weight 3 or 4, f(v) is zero, and is 1 for the rest of them. Having con-
sidered a few such competing 2’s, one is finally selected after an in-
spection of the different covariance matrices.

3. 210 design (v=56, n=80, b=5)

Let the symbols X, X,, ---, X,, X, correspond respectively to the 10
factors, and consider the flat 2, (with 2* points) defined by the follow-
ing six linearly independent equations over GF(2):

(14) 2+ 2+ a,=1 r+o,+2,=1 X3+, +x,=0
2, +x,+x;,=0 2+ 23+ x,=0 e+ +2,=0

The linear combinations of these involving only 3 or 4 x’s are:
Tt o, +xs=1 Ttz a2 tae=1 Ty + 2+ 2+ 2,=0
Tty t+a,=1  x+x;+2,+2,=0 T+ 25+ 25+ 2,=0
(15) 2+ 2+ 2+, =1 Lo+ 2s+ 2+ as=1 T+t +2,=1
T+ 2+ 2+ 2,=0 Lo+ 2+ 2, =1 Tyt 2+, +2,=1
Tyt +x, =1 T+ 2+ 2, +2,=0
T+ 25+ 2+ 2,=0 T+, 2+ xs=1

No linear combination of (14) involves less than 3 2z’s, and hence the
16 assemblies satisfying them form an orthogonal array of strength 2.
We assign these to one block. Let B denote the above set of 22 equa-
tions. Let TB denote the set of equations derived from B after the
#’s have been shifted cyclically, i.e. x'=(&;, X, -« -, %, %,) changed to
Tx'=(&3, &g, * ++, T, Xy, ;). Thus for example in TB, the top left hand
equation of (14) becomes z,+z;+x,=1. By further similar shifts we
get sets T'B, T°B, etc. It can be easily checked that T°B=B, so that
we get exactly five different sets B, TB, ---, T'B, each of which defines
a block. This gives the required fraction.

The cyclical shift T imparts to the fraction properties similar to
that of a cyclic PBIB design. This accounts for the partial balance
possessed by the fraction. Furthermore, in view of the remarks made
at the end of the last section, the equation (14) and hence the set B
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has been so chosen that the correlation between any two estimates may
not be too large. In particular S(v) is mostly zero, and is not greater
than 1 for any v of interest to us.

For ease of presentation, the rows and columns of the matrix (EE")!
for this fraction have been rearranged. In the present form the rows
(and columns) of (EE')™ correspond respectively to (Sy; Sy; Si; Si; Si; So),
where the sets S; correspond to the treatment effects as follows: S,:
(Ay, Ay, -+, Ay, S,: (Ao, Ay, « -+, Ay, Ay), Sy (A, Ay, -+, Ay), S;:
(A, Ay, -+, Aw), S5 (Aw, Ay, -, Ay), Si:(Au, Ay, -+, Ay). The set
S; has 5 effects, and the rest each have 10. Corresponding to this the
matrix (EE’)™ can be partitioned into 36 submatrices having the sub-
matrix M;; in the ith row and jth column block (¢, j=1, 2, -+, 6). For
each M, (i<j), the first row ¢/, is presented below, the other rows be-
ing obtained by successively using the cyclic permutation T, such that
if ¢=(¢, -+, ¢,), then T-'¢=(c,, ¢;, €3y - - -, €,-1). Thus for example the
rows of M;, are given by (c%), (T '¢}), - -, (T°¢), and those of M, by
(¢&), (T'¢k), -+, (T*cs). The ¢, (multiplied by 16-10*) are:

c,=(3192, —254, —314, 64, —180, 362, —180, 64, —314, —254)
c,=(69, —1043, 489, 296, —451, —135, —457, 1191, —348, —234)
cy=(632, 1163, —21, —406, —680, 480, 488, 52, —309, —1400)
cu=(—14, 598, —585, —391, —8, —30, 1085, —673, —495, 825)
¢;=(367, 235, 412, —299, —808, 263, 407, 184, —309, —452)
c,,=(664, —23, 618, —1226, —34)

cn=(4145, —371, 283, —301, —211, 803, —211, —301, 283, —371)
¢ =(—285, —572, —562, 1800, 500, —68, —1553, —720, 1211, 250)
cy=(—1265, 105, 161, 1043, 586, —1816, 11, 87, 337, 1377)
c=(374, —1014, —290, 695, 371, 155, —905, —486, 644, 457)
cs=(—52, —1867, 1091, 247, 581)

e =(5114, 725, —1320, —1347, 51, 1998, 51, —1347, —1320, 725)
cy=(637, 92, —2128, —11, 970, 912, 263, —2180, 395, 1049)
c5=(1304, 404, —590, —1894, —55, 1916, 518, —431, —1232, 61)
c5s=(1015, —94, —927, —2199, 2205)

cu=(4649, —529, —582, —521, —522, 185, —522, —521, —582, —529)
cs=(195, 165, —22, —104, —191, 48, 1131, 27, —1652, —152)
cis=(337, 2447, —2442, —2489, —94)

cs=(3422, 140, —716, —718, 112, 941, 112, —T718, —716, 140)
c=(1182, —929, —506, —929, 1182)

c=(5717, —1353, —506, —506, —1353).
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Notice that the M;;(1<i,j<5) are linear functions of the matrices
K,(1<6<10), where K,(10x10) has 1 in the cell (g, ¢), 1=p, <10, if
(144 —p)=6 (mod 10), and 0 otherwise.

The K, have the property

K.K,=K,K,=K,,

where 1<z<10, and n=60+6"—1 (mod 10). Thus the K, form a com-
mutative linear associative algebra. If (EE') itself is correspondingly
partitioned into submatrices M (say), then the M as well possess the
above properties of the M,;. Indeed, the theory developed in [5] tells
us that because of the above linear algebras being involved, both (EE")
and (EE')™ will necessarily have the same pattern, and that one can
be easily obtained from the other by using the algorithm developed
therein.

4. 2° design (v=46, n=64, b=4)

The four blocks in this design have been obtained by using respec-
tively the equations

(1) U1=0, Uil=0, (2) Uil=0, Ul=0, (3) Uil=1, Uil=1,
(4) Uil=1, Uj1=1 ‘

where 0'=(0, 0, 0), 1’=(1, 1, 1), and U,=U}, U,=Uj, and

™ 931 xg ws xl xﬁ m’ B
U=| o % 2 |, U=| 2, o
_ %y Ty Xy _ _ Xs X3 X4

By writing down the above equations in full and inspecting them, one
easily finds that the main effects are all orthogonally estimable. Also,
the 36 interactions can be divided into 9 sets of four each as follows.
Consider the 12 triplets of z’s obtained by taking the rows of the ma-
trices U, i.e. the rows and columns of U, and U,. These can be con-
sidered as the 12 lines of EG(2, 3), the 9 points of this geometry being
the 2’s themselves. Take the point x,, and consider the four lines pass-
ing through it, viz. (1, 2, 8), (1, 4, 7), (1, 5, 9) and (1, 6, 8), writing ¢ for
z; for brevity. Note that the four lines come one from each U,. Omit-
ting 1 in any line, we get two other points, and we consider the two
factor interaction defined by the corresponding factors. Thus here we
get the ordered set of interactions S,: (4;, A, Ay, Ag), the ordering
being such that the interaction term arising out of a line (i.e. a row)
from the matrix U, has been put at the ¢th place. Similarly for 1<
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1<9, we get an ordered set S; of 4 interactions by considering the lines
passing through ;. Let M, j=1,2, ---, 9) be the covariance matrix
between the estimates of the interactions in the set S; and those in the
set S;. Then it turns out that

R, if i=j,
(16)M,,= R,, if x; and z; occur in the .same row or
same column of the matrix U,
R,, otherwise,
where
a, a;, a; a, | b, b, by b | —a,; —b, by by
R=® 0G| p_ b, by b by . R,= —b, —a, b; by
as a; a; @, by by —a, —b, by by b, b
_Q3 Q3 Gy @_| by by —b; —a, | by by by by

a,=0.4292, a;,=0.1042, a;=—0.1500
6,=0.0292, b,=0.0042, b,=0.0167.

The whole (36X 36) covariance matrix of the estimates of the interac-
tions can now be easily written down. This matrix is obviously highly
patterned, the partially balanced structure arising from the fact that
there are four blocks, one block corresponding to each pencil in EG(2, 3).

5. 28 design (v=37, n=64, b=4)

The four blocks are respectively obtained by the solutions of the
following four sets of equations.

T+t =1 Tt +x,=1 Tyt 2, +xs=1 T+ tx,=1

U=x+x,+x2,+2,=0 U,=1 U=1 U,=0
U=x+2;+xs+x,=1 U,=1 U,=0 U;=0
Ui=u, 42,42+ 2,=1 U,=0 U,=0 Us=1
U=ux,+2+x,+a,=1 U,=0 U=1 U=0

s =Ty + 2, + 2+ 2,=0 U;=0 U;=1 U,=1
Ui=u,+x,+2+2,=0 Ui=1 U;=0 Ui=1

T+ T+ 2=1 2t 2+ a,=1 z+o,+o,=1 T+ 2+ 2,=1
Ttz +x=1 Ttz t+a=1 T+, +xs=1 Ttz +2,=1
T+ a+xs=1  wytata=1 T+ &+ 2=1  dtata=1

In any set the first four equations are linearly independent. No
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linear combination of these involves less than three x’s; those with 8 or
4 «’s being reproduced above. For this fraction, it turns out that the
interactions A,;, Ay, Ay and A, are orthogonally estimable. The re-
maining effects could be divided into the two sets (A4,, A, A;, Ag; Ay,
Ay, Ay, Ay, Ay, Ay, Ay, Ay, Asg, Ay, Ay, Ap) and (4, Ay, A, A Ay, Ay,
Ay, Ay, Ay, Ay, Ay, Ag, Au, Ag, Au, Ai). The estimates of each of the
two sets have the same variance matrix M reproduced below, and be-
tween the two sets, the estimates are uncorrelated. For ease of pre-
sentation, write

M M-
_M; M,

(16)M=

where M,(4x4) and M;(12x12) correspond respectively to the main ef-
fects and interactions in any set. Then

M= L+,

a b
b a

> Qe o
{R oo o

Qe ole o
{R o ol o

M,=

> Qe Qe ole o
|R o &a aole o

o Qleo oo ola, &l o
! oo oo oK &o o

Sym.

S Qe ola ol ola olel &
QR oo oo oo olo o8& &

a=_]l_’ b=_1_’ c= 1

3 12 16’ 24’

TTYYYYrrrryy
M=|YVTcyyssyysso g 1 y=—-1—
vyyyrrzyyrrzrz|’ 12’ 6
rrTxxrTYYYYYy,
That the fraction has a partially balanced structure is evident from an
inspection of M. Since 748, 2)=7, a minimum block size 2! is required

to preserve strength 2 in each block. Also, since 8 such blocks (i.e., n
=48) would provide too few error d.f., at least four seem necessary.
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The figure n=>56 appears to be a good compromise, but since 56 is not
a multiple of 16, one would have to use blocks of size 8. Since each
such block will be an orthogonal array of strength 1 only, the analysis
will become more complicated due to the need of adjustment for block
effects.

A 2° fraction (64 assemblies) can also be obtained by considering
one factor in the earlier 2° fraction as either dummy or a block factor.

6. 27 fraction (v=29, n=56 or 48, b=7 or 6)
The first block B, is obtained by using the equations

Tt ay+ay=1 Ty as+w,=1
2+ 0,=0 T+ s+ a=1

which are all linearly independent. These give rise to the following
further set of equations (involving 8 or 4 z’s):

o+ 25+ 2,=0 2+ &+ x5+ 2,=1
T+a+2,=0 2+, +x+2,=0
-+ +x,=0 x4+ 2,4 x,=0
Tyt 03+ o5+ x=1 T+ T+ +2=0
2+ 25+ 2,4+ x=1 e +a+a,=1

The other seven blocks are then B\T, B,T? B,T® B,T", B,\T®, B,T¢, where
T is the translation permutation on 7 symbols. As for the 2“ design,
T imparts a partial balance to the fraction.

The matrix (EE’)™* splits up into 7 diagonal submatrices correspond-
ing to the 7 sets ST® (¢=0, 1, ---, 6) where S,=(4,, Ay, Ay, Ay) and
the other sets are obtained by using T on the suffixes in S,. The co-
variance matrices for the different sets are identical, being given by

M=(1) UL+J.

The above design allows for 20 d.f. for error. In case fewer as-
semblies are desirable, another fraction obtained by omitting the last
block (BT®) in the above may be used. In this case, (EE’)™* splits into
two matrices M, and M, corresponding respectively to {S;; S,T% S,T*}
and {S,T; S,T%; S,T* S,T*°}, where

“p. p, P a b b ¢ T 0 0 0 07

1 2 3

@M= p p| P="% ¢ b p| 909 0]
Sym. P b ¢ a b —g 0 g O
Sy £ ¢ b b a 00 00
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00 g-—g -0 0 0 O
P= 00 0 O  P= -9 g 0 0 ,
00 0 O 0O 0 0 0
0 0 —g g _ 9 -9 00
2=0.1968, b=0.0476, ¢=0.0413, g=0.0222,
Q@ Q @ Q. 'z T T 0y =z 0
@M= X @&l g Frr g 0@y O
Sym. @, @ Sym. z z —x 0 0 —y.
N Q. _ z —y 0 0 —x_
-0 0y x -0 x 0 y 0 —y —x 07
Q= "Y % 0 O Q= ° 0 —y O Q= 0 —x —y 0
0 0 = vy —y 0 —2 O y 0 0 =z
—x —y 0 0| 0y 0 «_ x 0 0 wy_
0 y x 0 0 0 —y —x|
Q,= —x 0 0 —y Q=% Y 0 0 ’
0 2 y 0 0 —x —y
—y 0 0 —=x_ y x 0 0_

2=0.0625, y=0.0208, z=0.2292.

7. 26 design (v=22, n=40, b=5)

The five blocks are respectively obtained by using the following
five sets of equations:

ot e +2,=0 x,txtoe,=1 x4x+e=1 =tz42,=1 x+x+x=1
ta4a,=0 x+o+e=0 z+x,+x=1 x,+x,+2,=0 o+z,+x;=0
W2+w4+w6=0 w3+w§+x5=1 w1+w4+w5=1 xz+x5+w5=1 x1+x3+xs=0

Each set gives rise to four other equations having 8 or 4 2’s. By ex-
amining the set of all equations so generated, it can be checked that

-the main effects are all orthogonally estimable. The interactions can be

divided into 5 sets and ordered as (A,,, Ay, Ay; Ay, Ay, As; Ay, Ay, Ay
Ay, Ay, Ay). The covariance matrix (EE')™' of their estimates can then
be exhibited as
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Q. R R Ry, Ry

Rl Ql _RZ R4 R‘ B b b _c*
@EEY'=( ) B ~B @ R R, where R=| —c b b,
72
R, R R, @ —R; b —c b

__Ra R4 -R‘ - R4 QS_

Q=@+bdI-bJ, @=(a—ol+c], Q=(at+d)-dJ,
R,=(c+d)I—cJ, R,=(d—b)I+bJ, R;=(b+c)I-bJ,
a=20, b=1, c¢=5, d=4,

and I and J are of order (3x3) each.

8. 2" factorial: general series

Let ¢ denote the treatment combination in which all factors are at
level 0, a; the one in which only the ¢th factor is at level 1 and the
rest are at level 0, and let @, denote the one in which only the <th
and jth factors are at level 0, the others being at level 1. The observed
response to any treatment shall be denoted by the same symbol as the
treatment itself. Further, the sums over the response of certain treat-
ments will be written as

S=31@), Su=_3 @),
Sw= all t,‘? ) @) -

For the 2" factorial fraction, we then consider the v treatments ¢,
a; 1=1,2, ---,n) and @;;(¢<J; ¢, j=1,2, - -+, m). It can then be shown
that all the v effects are estimable, and their estimates are given by

A 1 m3 5 -
#—m[( n*+10n’—29n+24)¢+-(n 7n+10)S,+2SW] ,
P 1 _ 2 - _ _ _ 1
(16) Ai—m[(n 4)(1,;-'— < n—2>S°° S0 Sio]"‘ 2(n_2) ¢

Aij =——i—-[&¢j—'(’n+3)(ai+aj+sw+sjo) + <n_2_2 )¢+ (n—3)2(n-—2) Soo]-
From the symmetry in the choice of assemblies it is clear that the
fraction is completely balanced. Also it could be shown that the cor-
relation between any two effects tends to zero for large n. The variances
and covariances between any two estimates can be easily calculated for
any n from (16). The corresponding expressions for general » are cum-
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bersome and would be omitted here.

This series of fractions, first described in [7], has been selected after
an examination of several other such series of fractions. The fractions
in this series appear to give rise to relatively less correlation between
the estimates, than the fractions in the other series examined. The
fraction provides no degrees of freedom for error, and can not be split
into blocks. However by adding a dummy factor whose main effects
and interactions with other factors could be assumed zero, one gets 1+
[(n+1)(n+2)/2] assemblies, which provides (n+1) d.f. for error.
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