REMARKS ON SUFFICIENT STATISTICS

RYOICHI SHIMIZU

(Received Jan. 13, 1966)

1. Let Ω be an arbitrary set and let $\mathscr{P} = \{f(x; \theta) : \theta \in \Omega\}$ be a family of probability density functions on an open subset \mathfrak{X} of Euclidean *n*-space E^n such that

(1)
$$f(x; \theta) > 0, \quad x = (x_1, \dots, x_n) \in \mathfrak{X}, \quad \theta \in \Omega.$$

and that

(2)
$$\partial f(\mathbf{x}; \theta)/\partial x_j, \quad j=1, \dots, n$$

exist and are continuous in \mathfrak{X} for all $\theta \in \Omega$. Barankin-Katz [2] treated sufficient statistics of minimal dimension. Barankin-Maitra [3] considered "Fisher-Darmois-Koopman-Pitman theorem" — it asserts that the existence of a sufficient statistic leads to an exponential family — for the case

$$f(x; \theta) = f_1(x_1; \theta) \cdots f_n(x_n; \theta)$$
,

where $f_i(x; \theta)$'s are not necessarily identical. These results were obtained under a regularity condition on θ , but as Barankin [1] recognized, and as we shall show below, they are obtainable without any assumption on Ω . Moreover, a global result is obtained for an extension of the above theorem without analyticity of $f_i(x; \theta)$'s.

2. Let \mathscr{P} satisfy the conditions (1) and (2).

DEFINITION 1. Let N be a Borel subset of \mathfrak{X} . A statistic (i.e., a Borel measurable transformation on \mathfrak{X}) S(x) is said to be sufficient in N (for \mathscr{P}) if x, $y \in N$, and S(x) = S(y) imply that $f(x; \theta)/f(y; \theta)$ is independent of θ . A statistic T(x) is said to be necessary in N, if for any statistic S(x) which is sufficient in N, x, $y \in N$ and S(x) = S(y) imply T(x) = T(y).

DEFINITION 2. Let

- (i) for a fixed θ_0 , $g(x; \theta) = \log f(x; \theta) \log f(x; \theta_0)$,
- (ii) for any positive integer m,

$$M(x; \theta_1, \dots, \theta_m) = \text{ rank of } \left\| \left(\frac{\partial g(x; \theta_i)}{\partial x_j} \right)_x \right\|_{\substack{i=1, \dots, m \\ j=1, \dots, n}}^{i=1, \dots, m}$$

(iii)
$$\sigma(x) = \max_{\substack{m \geq 1 \\ \theta_1, \dots, \theta_m}} M(x; \theta_1, \dots, \theta_m),$$

(iv)
$$R_r = \{x_0 \mid \sigma(x) = r \text{ in some neighbourhood of } x_0\}$$

 $r = 0, 1, \dots, n,$

(v)
$$Q_r = \{ \boldsymbol{\theta} = (\theta_1, \dots, \theta_r) \mid M(\boldsymbol{x}; \theta_1, \dots, \theta_r) = r \text{ for some } \boldsymbol{x} \in R_r \},$$

$$r = 1, \dots, n.$$

and

(vi)
$$A(\boldsymbol{\theta}) = \{x \mid M(x; \boldsymbol{\theta}) = r\} \cap R_r, \quad \boldsymbol{\theta} \in \Omega_r$$
.

The following lemma 1 is a direct consequence of the definitions.

LEMMA 1. S(x) is sufficient (or necessary) in N, if for $x, y \in N$, S(x)=S(y) implies (or is implied by) $g(x;\theta)=g(y;\theta)$ for all $\theta \in \Omega$.

LEMMA 2. $A(\theta)$, $\theta \in \Omega_r$, $r=1, \dots, n$ are all open sets. If $R_r \neq \phi$ $(r \geq 1)$, there exist $\theta_1, \theta_2, \dots \in \Omega_r$ such that

(3)
$$R_r = \bigcup_{i=1}^{\infty} A(\theta_k) .$$

 $\mathfrak{X}-\overset{\mathfrak{n}}{\underset{\circ}{\cup}}R_{r}$ is of Lebesgue measure zero.

PROOF. The openness of $A(\theta)$'s is clear. It is also clear that $R_r = \bigcup_{\theta \in \Omega_r} A(\theta)$. (3) follows then from the Lindelöf theorem. Let N be an arbitrary open subset of $\mathfrak{X}-R_0$ and let

$$r = \max_{x \in N} \sigma(x) = \sigma(x_0) = M(x_0; \theta_1, \dots, \theta_r) \qquad x_0 \in N.$$

Then

$$x_0 \in R_r \subseteq \bigcup_{1}^n R_r$$
.

This means that open set $\bigcup_{1}^{n} R_{r}$ is everywhere dense in $\mathfrak{X}-R_{0}$ and hence $\mathfrak{X}-\bigcup_{0}^{n} R_{r}$ is of Lebesgue measure zero. q.e.d.

LEMMA 3. If
$$\theta = (\theta_1, \dots, \theta_r) \in \Omega_r$$
, then $S(x) = (g(x; \theta_1), \dots, g(x; \theta_r))$

is necessary in $A(\theta)$ and sufficient in a suitable neighbourhood $A^{r}(\theta)$ of every point x_r of $A(\theta)$. Moreover, if $T(x) = (T_1(x), \dots, T_s(x))$ is sufficient in some open subset N of $A(\theta)$, and if $T_i(x)$, $i=1, \dots, s$ are real-valued and are continuously differentiable in N, then $s \ge r$.

PROOF. Necessity is clear. From the definition of $A(\theta)$, we have

$$M(x_r; \theta_1, \dots, \theta_r) = M(x_r; \theta_1, \dots, \theta_r, \theta) = r, x_r \in A(\theta), \theta \in \Omega.$$

Hence by the Implicit Function Theorem, we conclude that in some $A^{r}(\theta) \subseteq A(\theta)$, we have $g(x; \theta) = g(y; \theta)$ for all $\theta \in \Omega$ if $g(x; \theta_i) = g(y; \theta_i)$, $i=1, \dots, r$. This proves the first part of the lemma.

Write

$$y_j = T_j(x)$$
 $j=1, \dots, s$
 $\varepsilon_i = g(x; \theta_i)$ $i=1, \dots, r$.

We suppose without loss of generality that

$$\max_{x \in N} \text{ rank of } \left(\frac{\partial y_i}{\partial x_j}\right) = s.$$

Since (ξ_1, \dots, ξ_r) is necessary in $A(\theta)$, there exists a set of continuously differentiable functions F_1, \dots, F_r such that

$$(4) \xi_i = F_i(y_1, \dots, y_s) i=1, \dots, r.$$

Differentiating (4), we obtain

$$(5) \qquad \left(\frac{\partial \xi_i}{\partial x_j}\right)_{\substack{i=1, \dots, r \\ j=1, \dots, n}}^{i=1, \dots, r} = \left(\frac{\partial F_i}{\partial y_k}\right)_{\substack{i=1, \dots, r \\ k=1, \dots, s}} \cdot \left(\frac{\partial y_k}{\partial x_j}\right)_{\substack{k=1, \dots, s \\ j=1, \dots, n}} .$$

This implies $s \ge r$.

q.e.d.

Using the Lindelöf theorem and by reindexing, we have $R_{\tau} = \bigcup_{\alpha=1}^{\infty} A_{\alpha}$, where $A_{\alpha} = A^{\gamma}(\boldsymbol{\theta}_{k}) \subseteq A(\boldsymbol{\theta}_{k})$ for some γ and k. Let

$$R_{r\alpha} = A_{\alpha} - \bigcup_{\beta=1}^{\alpha-1} A_{\beta}$$

$$D_{r\alpha} = \{S_{r\alpha}(\mathbf{x}) \mid \mathbf{x} \in R_{r\alpha}\},$$

where $S_{\tau a}(\mathbf{x}) = (g(\mathbf{x}; \theta_{1a}^r), \dots, g(\mathbf{x}; \theta_{\tau a}^r))$ is necessary and sufficient in A_a . Let

$$D_{ra} = \bigcup_{i=1}^{\infty} D_{rai}$$

be a decomposition of $D_{r\alpha}$ into bounded Borel measurable sets in E^r such that $D_{r\alpha i} \cap D_{r\alpha j} = \phi$ $(i \neq j)$. Set

$$R_{rai} = S_{ra}^{-1}(D_{rai}) = \{ x \in R_{ra} \mid S_{ra}(x) \in D_{rai} \}.$$

Then

$$R_{ra} = igcup_{i=1}^{\infty} R_{rai}$$
 , $R_{rai} \cap B_{raj} = \phi$ $(i
eq j)$.

Since D_{rai} 's are bounded, there exist r-dimensional vectors η_{rai} such that

$$D_{rai}^* = \{ \eta + \eta_{rai} \mid \eta \in D_{rai} \}, \quad i=1, 2, \cdots \quad (-\eta_{1ai} \notin D_{1ai})$$

are pairwise disjoint. Now we have

THEOREM 1. The statistic defined by

$$S(oldsymbol{x}) = \left\{egin{array}{ll} S_{ au a}(oldsymbol{x}) + \eta_{ au a t}, & oldsymbol{x} \in R_{ au a t} \ 0, & oldsymbol{x} \in R_0 \ oldsymbol{x}, & oldsymbol{x} \in \mathfrak{X} - igcup_0^n R_r \end{array}
ight.$$

is sufficient in $\bigcup_{n=0}^{n} R_n$ and has minimal dimension in the sense of lemma 3 in the suitable neighbourhood of every point of $\bigcup_{n=0}^{n} R_n$.

PROOF. It will be enough to show that S(x) is sufficient. Suppose that

(6)
$$S(x)=S(y), \quad x, y \in \bigcup_{r=0}^{n} R_{r}.$$

Clearly $x, y \in R_r$ for some r. If r=0, then (6) implies $g(x; \theta) = g(y; \theta) = 0$ for all θ . If $r \ge 1$, (6) holds if and only if $S_{ra}(x) = S_{ra}(y)$ and $x, y \in R_{ra}$ for some α . The desired result follows from lemma 3. q.e.d.

3. In this section we further assume that

$$f(\mathbf{x}; \theta) = f_1(\mathbf{x}_1; \theta) \cdot \cdot \cdot f_n(\mathbf{x}_n; \theta)$$
,

and

$$\mathfrak{X} = \mathfrak{X}_1 \times \cdots \times \mathfrak{X}_n$$
,

where \mathfrak{X}_{j} 's are open subsets of E^{1} , and $f_{j}(x;\theta)$'s are continuously differentiable in \mathfrak{X}_{j} for all θ . Writing

$$g_j(x; \theta) = \log f_j(x; \theta) - \log f_j(x; \theta_0)$$
,

we have

$$g(x; \theta) = \sum_{j=1}^{n} g_j(x_j; \theta)$$

and

$$\partial g(x; \theta)/\partial x_j = \partial g_j(x_j; \theta)/\partial x_j$$
, $j=1, \dots, n$.

THEOREM 2. Let $N=(a_1, b_1) \times \cdots \times (a_n, b_n)$ be an open subset of \mathfrak{X} , and let $r=\max_{x \in N} \sigma(x) < n$. Then there are at least n-r factors of $f(x; \theta)$, $f_{r+1}(x_{r+1}; \theta), \cdots, f_n(x_n; \theta)$, say, which admit the representation,

(7)
$$\log f_{j}(x; \theta) = c_{0j}(\theta) + \phi_{j}(x) + \sum_{k=1}^{r} c_{k}(\theta)\phi_{kj}(x)$$
$$x \in (a_{j}, b_{j}) \qquad j = r+1, \dots, n,$$

where functions $\phi_i(x)$, $\phi_{kj}(x)$ are continuously differentiable.

PROOF. We have

(8)
$$A \equiv \det(g'_{j}(x_{j}^{0}; \theta_{k}))_{j, k=1, ..., r} \neq 0$$

for some $x_0 = (x_1^0, \dots, x_n^0) \in N$. Then we have for all $\theta \in \Omega$ and $x \in (a_j, b_j)$, $j = r + 1, \dots, n$,

$$(9) \qquad \det \begin{bmatrix} g_1'(x_1^0;\,\theta_1) & \cdots & g_r'\,(x_r^0\,;\,\theta_1) & g_J'\,(x;\,\theta_1) \\ \vdots & \ddots & & \vdots & \vdots \\ \vdots & \ddots & \ddots & & \vdots \\ g_1'(x_1^0;\,\theta_r) & \cdots & g_r'\,(x_r^0\,;\,\theta_r) & g_J'\,(x;\,\theta_r) \\ g_1'(x_1^0;\,\theta) & \cdots & g_r'\,(x_r^0\,;\,\theta) & g_J'\,(x;\,\theta) \end{bmatrix} = 0 \;,$$

for otherwise, there would exist $\theta \in \Omega$ and $x_j^* \in (a_j, b_j)$ such that

$$x^* = (x_1^0, \dots, x_{j-1}^0, x_j^*, x_{j+1}^0, \dots, x_n^0) \in N$$

and

$$r \ge \sigma(x^*) \ge M(x^*; \theta_1, \dots, \theta_r, \theta) = r+1$$
.

Expanding (9) by the (r+1)st column, we obtain

$$A_1(\theta)g'_j(x; \theta) + \cdots + A_r(\theta)g'_j(x; \theta_r) + Ag'_j(x; \theta) = 0$$

 $\theta \in \Omega, x \in (a_j, b_j).$

Hence we have

$$\log f_j(x;\, heta) = c_{0j}(heta) + \phi_j(x) + \sum_{k=1}^r c_k(heta)\phi_{kj}(x)$$
 $heta \in \Omega, \ x \in (a_j,\, b_j), \qquad j=r+1,\, \cdots,\, n$

where

$$c_k(\theta) = -A_k(\theta)/A$$
 and $\phi_j(x) = \log f_j(x; \theta_0)$. q.e.d.

Remark 1. We can easily verify the relations $A_i(\theta_j) = -\delta_{ij}A$, $i = 1, \dots, r, j = 0, 1, \dots, r$, which imply that $1, c_1(\theta), \dots, c_r(\theta)$ are linearly independent. But this is not important when $f_j(x; \theta)$'s are not identical, since in this case $1, \phi_{ij}(x), \dots, \phi_{rj}(x)$ are not necessarily linearly independent.

Remark 2. So far we have been concerned with \mathfrak{X} or statistics. Exchanging the places of \mathfrak{X} and Ω , we get similar results for Ω or parameters. Suppose that Ω is an open subset of E° , and that each $f(x; \theta)$ satisfies the following conditions:

(10)
$$f(x; \theta) > 0, \quad x \in \mathfrak{X}, \quad \theta = (\theta^1, \dots, \theta^n) \in \Omega,$$

and

(11)
$$\partial f(\mathbf{x}; \theta)/\partial \theta^i, \quad i=1, \dots, \nu$$

exist and are continuous in Ω for all $x \in \mathfrak{X}$.

No assumption is made on the sample space X here.

DEFINITION 3. Let N be a Borel subset of Ω . A parameter (i.e., a Borel measurable transformation on Ω) $U(\theta)$ is said to be sufficient (or identifiable) in N if for θ , $\tau \in N$, $U(\theta) = U(\tau)$ implies (or is implied by) $f(x; \theta) = f(x; \tau)$ for all x.

Let $x_0 \in X$ be fixed and let

$$k(\theta; \mathbf{x}) = \log f(\mathbf{x}; \theta) - \log f(\mathbf{x}_0; \theta)$$
.

Then we have the following

LEMMA 4. A parameter $U(\theta)$ is sufficient (or identifiable) in N, if for θ , $\tau \in N$, $U(\theta) = U(\tau)$ implies (or is implied by) $k(\theta; x) = k(\tau; x)$ for all x.

PROOF. $f(x; \theta) = f(x; \tau)$ clearly implies $k(\theta; x) = k(\tau; x)$. Conversely, suppose $k(\theta; x) = k(\tau; x)$ for all x. Then, we have

$$\frac{f(x;\,\theta)}{f(x_0;\,\theta)} = \frac{f(x;\,\tau)}{f(x_0;\,\tau)}.$$

Integrating over \mathfrak{X} , we get $f(x_0; \theta_0) = f(x_0; \tau_0)$. Hence we have

$$f(x; \theta) = f(x; \tau)$$
 for all x . q.e.d.

We can easily see that if we replace x, θ , $g(x; \theta)$ and "necessary" by

 θ , x, $k(\theta; x)$ and "identifiable", respectively, all the results obtained in section 2 in terms of the statistics, hold for the parameters.

THE INSTITUTE OF STATISTICAL MATHEMATICS

REFERENCES

- [1] E. W. Barankin, "Sufficient parameters: Solution of the minimal dimensionality problem," Ann. Inst. Stat. Math., 12 (1960), 91-118.
- [2] E. W. Barankin and M. Katz, Jr., "Sufficient statistics of minimal dimension," Sankhyā, 21 (1959), 217-246.
- [3] E. W. Barankin and A. P. Maitra, "Generalization of the Fisher-Darmois-Koopman-Pitman-theorem on sufficient statistics," Sankhyā, 25 (1963), 217-244.
- [4] E. B. Dynkin, "Necessary and sufficient statistics for a family of probability distributions," Uspehi Matem. Nauk., 6 (1951), English translation which appeared in Selected Translations in Math. Stat. and Prob., 1 (1961), 17-40.
- [5] D. A. S. Fraser, "On sufficiency and the exponential family," J. R. Statist. Soc. (B), 25 (1963), 115-123.