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Summary

In this note, it is shown that for any probability measure g on the
Borel sets of k& dimensional Euclidian space E,, the Glivenko-Cantelli
theorem can be generalized (section 3, theorem 1). Furthermore, it is
shown that for every p satisfying some conditions, the similar result
holds with the supremum taken over the class of all Borel subsets
of E; (theorem 6).

1. Introduction

Let (2, %A, P) be a probability space and &=(&, &%, -+, &) a k di-
mensional random vector. Let p be the induced probability measure on
S=8(E;) by §;

©(S)y=P{&eS}, Se8.

Let &, &, --- be a sequence of independent random vectors which have
the same distribution as &. For each S €S, we shall define a sequence
of random variables, which we call an empirical distribution of &, by

fln(S)‘_—_Lé 7]1.(8)1 ’ﬂ=1, 2y )
n i=1
where
1, if &(w) €S
uS=n|9={
0, if &(w)¢ S .
When a family F of subsets of E, and a class € of the induced prob-
ability measures on S satisfy the relation
inf P{lim sup | x(S)—p(S)| =0}=1,
reQ@ n—o Se
we shall say that the pair (F, €) belongs to the Glivenko-Cantelli class
29
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of E, and conventionally denote it by
(F, €) e GC(E,) .

Then, the classical theorem of Glivenko-Cantelli can be stated as (R,
M) e GC(E,), where R,=R,(E,) denotes the family of all open half inter-
vals and M= E)) the class of all probability measures on S=S(E)).
Let A=A(E;) be the collection of all open half-spaces in E,. Let
B, be the class of sets BC E, each of which has the following property:
if x=(z!, ---,2*) e Band y=(¢*, - -, ¥*) is such that y'<«* for i=1, .-,
k, then ye B. Let B,, j=2, 3, ---, 2¢, be the 2*—1 classes of sets which
can be obtained by reversing, one at a time, the k inequalities occurring

2k
in the definition of B,. Then we put B=B(E'k)=ju B;. Let C=C(E))
=1

be the class of all measurable convex subsets of E,.

Let M=IM(E,) be the class of all probability measures on S=S(E,),
NR=N(E,) the class of probability measure p € MM such that every convex
set has a p-null boundary, and ¥=9%2(E.) the class of the measure
¢ € M which is absolutely continuous with respect to Lebesgue measure.
Using the above notations, we can state some earlier main results con-
cerning the same problem as follows :

(i) Fortet-Mourier [5]: (4, & e¢GC(E,),
(ii) Wolfowitz [13, 14]: (4, M) e GC(E,),
(iii) Elum [2]: (B, 8) € GC(E)),
(iv) Ahmad [1] and Rao [9]: (C, ®) € GC(E,),
(v) Rao [10]: (C, B) € GC(EY),
(vi) Sazonov [11]: (4, | ¢ GC(E..).

The pourpose of this article is to show:
(R,, T?) € GC(EY), (R, B) ¢ GC(E,), (S, €) € GUE,),

the notations being defined below.

2. Preliminalies
We shall use the following notations.
E,: k dimensional Euclidian space,

S=S(E,): the class of all Borel subsets of E.(s-ring generated
by the class of all compact subsets of E)),
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13
Ri=R(E)={(—o0, x)= X (—o0, &); x=(c, ---, a") € Fi} ,

k
R1=R1(Ek):{[x) y)= i§1 [xi: ’!/i); X, Y € Ek’ xiéyi (i:‘-lr 2, *t k)}’

R.=R.(E,): the class of all elements which are the union of at
most m elements of R,,

R=R(E)= U R..
m=1
LEMMA 1. R is a ring and S=S(R), where S(R) denotes the o-ring
generated by the class R of sets.

This is easily shown by the k-dimensional analogue of the 15.B of
[7]. The following lemma is a direct consequence of the 6.B of [7] and
lemma 1.

LEMMA 2. Let M=M(R) be a monotone class generated by R. Then
M=S.

LEMMA 3. The class M=M(R) is given by
C={C=05; SR, SicSic ---}.

PROOF. Let C,$C,5 --+,C,€C. Then there exist increasing se-
quences of sets {S,;}, {S:}, --- such that

C=08,, S;eR (j=1,2 ),
=1
for all 2=1, 2, --.. Since
S,cC < Cz=}£1 S,
there exists a finite positive integer j, for which
SucCicS,y, .
Similarly, we can select a sequence of positive integers {7;} such that

Si,jiCCiCSi ('l:=2, 3, "‘).

i

Put
Sl:sll ’ Si:siji (’i=2’ 3, .o .) .

Then for every positive integer N,
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N+1

N N N+1
uUSicucCcuS,cus,.
i=1 i=1 i=2 i=1
Since S,cS,c --- and S; € R, we have
G Ci= G S,; € C .
i=1 i=1

This shows that C is a monotone class containing R.
To prove that C is the smallest one, take any other monotone class

CoR. Then, since every element of C is the limit of a monotone

sequence of sets in RcC, we have CcC.

LEMMA 4. FEach element of R is the difference of two sums of 2*!
elements of R,. FEvery element of R, can be expressed by the disjoint sum
and the difference of at most 2™ elements of R,.

3. Results

First we shall state three lemmas.

LEMMA 5. For any p e and for each >0, there exists a bounded
measurable subset K=K, such that w(K)>1—¢ and K includes a set Q=
Q. of at most finite number of points having positive p-measure.

PROOF. It can be easily shown that for every p €I and for each
¢>0, there exists a bounded measurable subset K=K,,CE, for which
#(K)>1—iz—. For each i=1,2, ---, k, let {A”, h§”, ---} be the family
of hyperplanes which are perpendicular to the a2‘®-axes and have positive

p-measure. Since ,E u(h$?)<1, there exists a positive integer m; such
=1

that 33 HhP) S5 for each i=1,2, -+, k. Put R=R.=K,n[0 {
=m;+1

i=1 j=mt+l

k). Then it is easily shown that #(K)>1—¢ and that there is no point
k

of N AP.
=1

Therefore the set @ of such points has at most m,m, - -- m, elements.

in K which has positive p-measure, but the points P;, ...,

LEMMA 6. Let F be a class of subsets of E,. For any pcM and
e>0, we put '

(3.1) F.={FNKNQ; (FNENQ)>0, FeF},

where K and Q are subsets of E, as stated in the last lemma. If we as-
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sume that

(3.2) lim P{ U [ 5D | 1(S)—m(S) | 2} =0,
then

3.3 (F, ) e GC(E}) .

PROOF. For every p eI and F € F, the relation

| F) = F)| £ | p(FNENQ)—(FNENQ) |
(3.4) HUFNRNQ)—p(FNENQ) | + | (FNK)—p(FNEK") |
gssgg | ¢(S)—(S) | +§n€ag | 1(S)—lS) | + | (K — oK) | +e

holds with probability one, where @ is a finite family of subsets of Q.
Put

A,=[sup | ((F)—p(F) | Z4¢],
FeF
Bn= S S - S g ’
[sleu}.l #(S) — (S) | Ze]
C.=[max | (S)—p(S) | 2¢],
SeQ
D,=[| (R*)—p(K?) | Z¢] .
Then, by the relation (3.4), for each n, we have
A.cB,uC,UD,.
Therefore, for every [
(3.5) P{uU A)}=P{UBJ}+P{UC}+{UD,}.
n21l nxl n2l nxt

When l—co the first term of the right-hand side of the inequality (3.5)
tends to zero by the assumption (3.2) and the second and the third term
also tend to zero according to the strong law of large numbers and
Loéve’s definition of a.s. convergence [8, p.1561]. This completes the
proof of lemma 6.

LEMMA 7. (Blum [2])’s lemma 1) Let F be a family of subsets of E,
such that for each ¢>0 there exists a finite class of sets F(¢) and for
every F € F there exist F, and F; in F(¢), satisfying

F.cFCF,, with pF)—pF)=<e.
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Then
P{lim sup | f(F)—p(F)| =0}=1.
n—o F€F
The proof is immediately obtained by using the same method as in

the proof of the classical theorem of Glivenko-Cantelli (cf. for example,
[6, p. 391]).

THEOREM 1. (R,, M) e GC(E,) .

PROOF. By lemma 6 it is sufficient to show that
(3.6) lim P{ u [ng% .I t(Ro) —p(Ro) | 2]} =0,
where

R.={R,=RNKNQ"; #(R)>0, Re Ry} .

With no loss of generality we can assume that k=2.

For any g€ and ¢>0, we can select the K, stated in the proof
of lemma 5 as an element of R,. Put m=[2d/]+1, where 6=g(If ng°)
and [x] denotes the largest integer not larger than z. Let D{®=D{=
¢ (empty set) and DO=D®=KN@. Let D{® be the intersection of
KN@Q° and the open left half-space of such line I{® as paralleling z®-axes

(7=1, .-+, m—1), DP the intersection of KN P¢ and the open under
half-space of I paralleling 2®-axes (j=1,2, ---, m—1) such that it
holds :

”(D.(,i)—D_(,i_)l)Z—%—, j_—_']_’ 2, oo, m, i_—_l, 2.

We put
F(e)={D,=D{nDP; 4, j=1, -+, m} .
Then for any R, € R, we can find D, ; and D,,, ;4; for which
D, ,CR,CDips, s |
#(Dys1, 300) —pU(Dif) S (D, DP)+p(DF—DP)=e .
Hence by lemma 7 the relation (3.6) holds.

Combining theorem 1 with lemma 4, we obtain
THEOREM 2. For each fixed integer m>0,
(Rm’ EIR) € GC(Ek) .
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But the result can not be extended to the class R. In fact,
THEOREM 3. (R, )¢ GC(E,) .

PROOF. Let p€f. For each we€ 2> and every positive integer =,
we can construct S,=S,(w) € R such that p(S,)>1—¢ and #.(S,)=0, where
¢>0 is an arbitrarily chosen number. In fact, for every i=1,2, ---, n,
we can find the rectangle R,=R.(w) which includes the point &i(w)
and the p-measure of which is smaller than e 277, since p is absolutely

continuous with respect to Lebesgue measure. Put S,=FE,— Un R;. Then,
=1
for every n,

Pr { sup | u(S)—pu(S) | >1—¢} =1.
SeR
This completes the proof.

In the following, we shall say that a family F of sets has the prop-
erty (P,) for a probability measure x € M, where m is a positive in-
teger, if for each R ¢ F there exists at least one subset R,CR such
that R, € R, and p(R)=p(R,).

Let R be a subfamily of R such that for every p € M and each ¢>0
we can select a positive integer m=m, for which

R,={RNK; p(RNK)>0, Rec R}

has the property (P,), where K=K, is the bounded measurable subsets
of E, stated in the proof of lemma 5.
From theorem 2 and lemma 6 we obtain

THEOREM 4. (R, M) e GO(E,) .

Let & be the class of probability measures g € I for which for every
>0 there exists a positive integer m=m,. such that

R.={RNK; ((RNK)>0, R € R}

has the property (P.). Then, according to the same reasoning as above,
we obtain

THEOREM 5. (R, &) € GC(E,).

LEMMA 9. Let € be a class of probability measures on E.. If (R,
€) e GC(E;), then (S, €) ¢ GC(E).

PROOF. By lemmas 1 and 2 it is sufficient to show that (M, €) ¢
GC(E,). From lemma 3, for any M € M, there exist S; € R such that S,
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S;C --- and M=§1 S:. Since for every n and for each m the relation

|40 89=1(0 891 = | 1S —1(S2) 1= sup | 1(S)—1u(S) |

holds with probability one, for every » we have
[ (M) —po(M) | < sup | p(S)—pa(S) |
SeR
with probability one. Hence, for every n

Pr{ Sup | (M) —po(M) | = sslelllJtIﬂ(SF,un(S) l}=1

which completes the proof of lemma 9.
Combining the above lemma with theorem 5, we have
THEOREM 6. (S, &) e GC(E,) .

It is easily seen that the class & contains the class ® of all discrete
probability measures on E,. Thus we obtain

COROLLARY 1. S, D) e GC(E,) .

4, Remarks

(i) For a strictly stationary sequence of random vectors, similar
results can be deduced, for example Tucker [12], Rao [10], Burke [3],
etc. Furthermore, another generalization of the Glivenko-Cantelli theo-
rem is developed by regarding F(t) as a non-decreasing stochastic pro-
cess, for example Fisz [4] and Burke [3]. We did not consider such
cases in this note.

(ii) Since NcM but R,CC, our theorems 1 and 2 cannot be re-
duced from Rao’s result [10], which is not a corollary of our results
either.

(iii) Sazonov [11] obtained a subfamily 4,C A for which (A4, M) €
GC(E.), where T,CM is a family of distributions on E.. But he did
not consider the class R,. Does a subfamily € c I exist for which
(R, €) belongs to the Glivenko-Cantelli class of the infinite dimensional
Euclidian space E. ?

(iv) Furthermore we could not answer the following questions :

Q.: Does the pair (C, IR) belong to the class GC(E,)? The af-
firmative answer to this question is Rao [10]’s extension.
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Qy: Is there the largest class €M such that (S, €) e GO(E,) ?
If exist, what is that ?
Q;:  Is the class ® the proper sub-class of & ?
(v) We are preparing another paper in which we shall show some

results of the compound decision problem using theorem 4.
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CORRECTIONS TO
“ON THE GLIVENKO-CANTELLI THEOREM ”

GIITIRO SUZUKI

In the above titled article (this Annals 18 (1966), 29-37) the follow-
ing corrections should be made.

(i) On page 30, line 7, replace
“B, be the class of sets...”
by
“ B, be the class of measurable sets...”.

(ii) The part from page 31, line 9 (The following lemma is . ..) to page
32, line 7 (..., we have Cc 6‘) should be deleted.

(iii) The part from page 35, line 4 from bottom to page 36, line 9
should be deleted.

(iv) On page 36, line 12, replace
(S, D) € GC(EY)
by
(R, D) € GC(E).
The author is indebted to Dr. F. Topsoe, who pointed out that
lemma 3 does not hold. Accordingly, lemma 9, theorem 6 and corol-

lary 1 are also false. Therefore lemmas 1 and 2 are not necessary.
Thus these should be deleted.
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