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1. Introduction and summary

The concept of sufficient experiments, as introduced by Blackwell [1],
[2], [3], and recently treated by LeCam [6], provides a method of com-
paring the effectiveness of certain statistical experiments. Roughly speak-
ing, an experiment involving the observation of some random variable
(or random vector) X* is sufficient for another experiment involving
the observation of some other random variable X if it is possible, from
an observation on X* and an auxiliary randomization, to generate a
random variable with the same distribution as X for all possible values
of any unknown parameters. Precise definitions are given in the above
references and, in the context to be considered here, in Section 2 below.
In this paper we will explore the relevance of this concept in problems
in which a fixed total number of observations must be allocated in some
optimal fashion among various possible alternatives. The following ex-
ample is a prototype of the problems studied.

Consider a population of coins. Associated with each coin is a prob-
ability Z of heads which may vary from coin to coin. Suppose that
it is desired to make some inference about the distribution of Z over
the population. For example, one may be interested in estimating Pr(Z>
1/2) (i.e., the proportion of coins that are biased in favor of heads), or
in investigating the hypothesis that Pr(Z=1/2)<a (i.e., that the propor-
tion of fair coins is at most a). Suppose that one can select a random
sample of k coins from the population, toss the ith coin =, times (i=1,
-+, k), and observe the results. Given that the total number 3_n,
of tosses is fixed, the problem is to find an optimum choice of %k and
My, +++, M. An optimum allocation will, in general, depend on the par-
ticular parametric family of distributions to which the distribution of Z
is assumed to belong as well as on the type of information about the
distribution that is desired. However, for a given family, it may happen
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that one experiment X* defined by the allocation (k*; n¥, ---, n¥k) is
sufficient for any other experiment X defined by any other allocation
(k; myy - -+, m) with 35 m,=3% m¥. We then say that the allocation
(k*; m¥, ---, m&) is optimal, regardless of the type of inference to be
made or the kind of information desired.

The problem can be formulated in a more general setting as follows.
A random sample Z,, -.-, Z, is drawn from a certain unknown distribu-
tion. However, the sample values cannot be observed without error.
Thus, for each i(¢=1, ..., k), instead of observing the value of Z, we
observe the values of a set of random variables X, -, Xin, which,
conditionally on any given value of Z;, are independent and identically
distributed with a known common conditional distribution. Thus, the
random variables X, ---, X, represent n, (conditionally) independent
measurements made on the unknown randomly selected Z,. The problem
considered is that of finding an optimal choice of & and n,, - -, n;.

A familiar situation of this type is the random effects model in a
one-factor analysis of variance. In this model the effects Z,, -, Z. are
regarded as a random sample from a normal distribution and the obser-
vations X;;(j=1, ---, m»,) are, given Z,=z;, independent and normally
distributed with mean z(¢=1, ---, k) and variance z!. In order to satisfy
our assumption that the conditional distributions are known, we assume
that <! is a known number. A sufficient and, hence, optimal allocation
for this situation is found in Section 3. The question of finding suitable
allocations in the more complex situation where the variances are wun-
known is discussed in [8], p. 236, and in [9].

In Section 2 the definition of an optimal allocation is given and some
results that are useful in determining whether one of the two extreme
allocations, in which 1 observation is made on each of »n randomly se-
lected Z’s or all » observations are made on a single randomly selected
Z, is optimal.

In Sections 3 and 4 it is shown how the existence of complete, suf-
ficient statistics under various allocations can be used to simplify the
search for an optimal allocation. Several examples are given illustrating
the results.

In Section 5 problems of the optimal allocation of Bernoulli observa-
tions, as exemplified by the coin-tossing problem given above, are studied
from the point of view developed in the earlier sections.

2. Sufficient experiments and optimal allocation

Let 2 be the set of all possible values of some unknown parameter
6. An experiment X consists of the abstract random variable X, taking
values in a space 2 on which there is defined a o-field .7 of subsets,
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together with a family {P,; 6 € 2} of probability distributions of X over
(27 7). Thus, we speak of performing the experiment X={.2% &,
P,, 6 € 2} or, equivalently, of observing the random variable X,

Suppose X={2"; .%7; P,,0€2} and Y={Z; <#; Q,, 6 € 2} are two
experiments with the same parameter space 2. The concept of X being
sufficient for Y, as embodied in the following two definitions due to
Blackwell, [1], [2], is fundamental to the present study.

DEFINITION 2.1. A stochastic transformation from X to Yis a non-
negative function z(- | -) defined on <Z x .2° such that (i) for each fixed
w€ 2] n(- |x) is a probability measure on <& and (ii) for each fixed
Be &2, n(B|-) is an % -measurable function on .2°

DEFINITION 2.2. The experiment X is sufficient for the experiment
Y if there exists a stochastic transformation =(- |-) from X to Y such
that

@.1) Q/B)= S o ®(B | 2)dPu(x)

for all Be < and 6 ¢ R.

The import of this definition is that if X is sufficient for Y then it
is possible, by means of an observation on X and an auxiliary randomi-
zation as specified by the probability distribution =(- | ), to generate a
random variable having the same distribution as Y for all values of 4.
In other words, it is possible to perform an experiment equivalent to Y.

It is this concept of a sufficient experiment that will now be con-
sidered in the explicit context of the optimal allocation of observations.

Let Z be a random variable (or random vector) with distribution
P, depending on the unknown real-valued parameter (or vector of para-
meters) 0, where 6 € 2, the parameter space. Suppose that it is possible
to draw a random sample Z,, - --, Z, from the distribution P,, but that
the values of Z,, ---, Z; cannot be observed. Rather, for each value
of 4 (i=1, ---, k), what can be observed are the values of n, random
variables X, - -+, Xi,, which, conditionally on any given value Z,=z,
are independent, each with the known conditional distribution function
G(- | 2).

Since Z,, - -+, Z, are independent, the random vectors (Xis, =+, Xin),
<o+, (Xiy, -+, Xin,) are also independent. Specifically, the joint distribu-
tion function Hy(xy, -, ®u, - -, Trn,) of {Xij; 9=1, -+, nyy =1, -+, k)
is, for each #¢ £,

(2.2) Ho(xlly Cry Limgy vty Lrpy vty wknk)z ;l;l; SZ [EG({DH Izi):ldPa(zi) .

If R, denotes m-dimensional Euclidean space and Z, denotes the
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class of n-dimensional Borel sets, then the observational procedure just
described may be expressed as the experiment

M

Il
-

2.3) X={R,; Z,; Hy, 0 €2} (n=>n).

K3

DEFINITION 2.3. A specific choice of values for k and n,, ---, n, is
k

called an allocation and denoted by A n; k; ny, ---, n). Each alloca-
i=1

k
tion A(X) ni; k; my, - -+, ) results in an experiment X defined by (2.3)
i=1

k
and (2.2). It represents an allocation of a total of 3] m,; observations

among k random variables Z,, ---, Z; in such a way thla;; n; observations

are made on Z; (=1, ---, k). The random variables Z,, ---, Z, are called

the individuals on which observations are made; k is the number of in-

dividuals on which observations are made. Accordingly, the notation

A(n; k; ny, -+-, m) is used only when n, k, n,, ---, m; are all positive
Kk

integers with >} n,=n.
i=1

DEFINITION 2.4. For any given positive integer n, let & denote the
class of all allocations A(n; k; ny, - -+, ) or equivalently, the class of
all experiments X for which the total number of observations is n.

DEFINITION 2.5. An experiment X in &, (or equivalently, an alloca-
tion A(n; k; ny, - -+, M) is optimal in =, if it is sufficient for every other
experiment in &,.

The central problem with which we will be concerned in the re-
mainder of this paper is that of exploring the possibility that <, con-
tains an optimal allocation.

DEFINITION 2.6. Let X={2" &; P,,0€ Q}and Y={Z"; & ;Q,, 0 € 2}
be two experiments with the same parameter space 2. We denote by
XX Y={ZX Y; ¥XZ; P,XxQs 0} the composite experiment con-
sisting of independent observations of X and Y. In particular, in terms
of allocations, the composite experiment A(m; k; my, - - -, my) X A(n; [; n,,
.-+, m;) is equivalent to the experiment A(m-4n; k+1; m, -+, my, 0y,
.+, m;) in the sense that the m-+mn observations have the same distribu-
tion from both points of view. '

In general, it is relatively difficult to establish the optimality of a
particular allocation since it must be shown to be sufficient for every
other allocation in &,. However, the next two theorems provide helpful
reductions in studying the allocation A(n; »; 1, ---, 1) (in which 1 obser-
vation is made on each of » individuals) and the allocation A(n; 1; n)
(in which all n observations are made on 1 individual). Before present-
ing the theorems we state the following elementary result ([3], p. 332).

LEMMA 2.7. Let X;, -+, X, and Y, ---, Y, be experiments such
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that X, is sufficient for Y,(i=1, ---, r). Then XX ---X X, is sufficient
Jor Y X---XY,.

THEOREM 2.8. Let n be a fixed positive integer. A mecessary and
sufficient condition that A(m; m; 1, ---, 1) be optimal in <&, for every
value of m, 1<m<m, 1s that A(m; m; 1, ---, 1) be sufficient for A(m; 1;
m) for every value of m, I=m=n.

PROOF. Suppose that A(m; m; 1, ---, 1) is sufficient for A(m; 1; m)
for every value of m, 1<m=<mn. Let r be a positive integer, 1=r=mn.
It must be shown that A(r; r; 1, ---, 1) is sufficient for every other al-

location A(r; k; vy, -+, ) In &,. But A(r; r; 1, ---, 1) can be regarded
as the composite experiment

2.4) A(r;r 1, oo, D=A(rgrs 1, oo, DX s XA(rg 15 1, 000, 1)
and A(r; k; ry, ---, 7.) can be regarded as the composite experiment
(2.5) A(r; s 1y oo, m)=A(r; L r)X - -0 XA 15 74).

The desired result now follows from Lemma 2.7, since each component
of (2.4) is sufficient for the corresponding component of (2.5).

The converse of the theorem is trivial. If A(m;m; 1, ---, 1) is op-
timal in %, then it is sufficient for every allocation in %,. In particular,
it is sufficient for A(m; 1; m).

THEOREM 2.9. Let n be a fixed positive integer. A mecessary and
suffictent condition that A(m; 1; m) be optimal in &, for every value of
m, 1=m=mn, s that, for each value of m, 1=m=<n, A(m; 1; m) be suffici-
ent for every allocation in %, of the form A(m; 2; m,, m,).

PROOF. Suppose that for each value of m, 1<m=<n, A(m; 1; m) is
sufficient for every allocation of the form A(m; 2; m,, m,). Let r be a
positive integer, 1<r<mn. It must be shown that A(r; 1; ) is sufficient
for every other allocation A(r; k; vy, ---, 1) in. &;. It follows from the

hypothesis that A(r; 1; r) is sufficient for A(r; 2; r,, i r;); that A(§k] s
i=2 i=2

M

k k
1; r;) is sufficient for A(iZ 75 2; 1y, 23 715); and, in general, that
=2 i=3

2

k
A r; 1; 3 r,) is sufficient for A(i% T 2; 15, i r) for j=1, ---, k—1.
i=J i=j = i=j+1

e
|

k k
Since A(iz; ri; 2; r;, > ;) can be regarded as the composite experiment
= i=j+1

k k
A(ry; 1; 7)) X A( ; ri; 1; 31 1), it follows from Lemma 2.7 and the above
i=j4+1 i=j+1

results that each allocation in the following sequence is sufficient for its
successor in the sequence:
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k k
(2.6) A(r; 1; 'r)=A(i21 rg 1; iZ.‘ ),
= =1
k 13
A(ry; 1; 'rl)xA(i%ri; 1; f?—',”)’ e,

& k
A(rg 1, r)X -+ XA(rj; 1; 'rj)><A(i=§1 75 l;iglfri), cee,

A(ry; 1, r)X - XA(ri; 1; 74).

Since the final allocation in (2.6) is equivalent to A(r; k; 7y, - -+, 7¢), and
since sufficiency is clearly a transitive relation, it follows that A(r; 1; 7)
is sufficient for A(r; k; v, ---, 7). The converse of the theorem again
is trivial. These results will be illustrated in subsequent sections of the
paper. '

It should be noted that if there exists a function ¢ of Z such that
P(X=¢(Z) | Z=2)=1 for all values of 2z, then clearly it would be re-
dundant to make more than one observation on any individual and, hence,
the allocation A(n; n; 1, ---, 1) is optimal.

3. Sufficient statistics

We will now show how the familiar concept of a sufficient statistic
can often be used to simplify the search for an optimal allocation.

Let X={2" &, P,, 0 € 2} be a given experiment. Recall that S=
s(X) is a sufficient statistic for X if it is possible to generate, from S
and an auxiliary randomization, a random variable having the same dis-
tribution as X for all 4e 2. It is clear that if S=s(X) is a sufficient
statistic for the experiment X and if T=t(Y) is a sufficient statistic for
another experiment Y with the same parameter space £2, then X is suf-
ficient for Y if and only if the experiment in which only S is observed
is sufficient for the experiment in which only T is observed. Thus, in
the search for an optimal allocation one can restrict himself to studying
the distributions of sufficient statistics. This, of course, often has the
value of greatly reducing the dimensions of the spaces between which
a stochastic transformation must be constructed.

Now consider the allocation A(n; 1; n) defined in the preceding sec-
tion. Suppose that the conditional distribution of an observation X,
given the individual Z=z, is G(- [2). Then the joint conditional distribu-
tion of % observations X, ---, X,, all made on the same individual, is
G.(- | 2), the n-dimensional product probability distribution each of whose
components is G(- |z). The performance of the experiment A(n; 1; n)
can be thought of as follows. First, the experiment Z={2%"; %; P,
0 € 2}, the selection of one individual, is carried out. Then without learn-
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ing the value of z that was obtained, it is followed by the experiment
Y={R,; Z,; G.(- |12),z€ £} in which the components of the vector
(X, .-+, X,) of observations are independent and z is the parameter.
Together, the two stages of experimentation result in the overall ex-
periment Y*Z={R,; Z,; H,, 6 ¢ 2} =A(n; 1; n), where H,, defined in Sec-
tion 2, is the marginal joint distribution of X, :--, X,.

The next result is helpful in identifying a sufficient statistie.

THEOREM 3.1. If T=#X,, ---, X.) is a sufficient statistic for the
experiment Y={R,; F,; G.(- |2), z€ 2} then T is a sufficient statistic for
the allocation A(n; 1; n).

PROOF. Let .7 be the sample space of T and let Z be the o-field
of all subsets D of .7 such that ¢t (D) € &%,. Furthermore, for each z ¢ 2]
let a, be the probability distribution of T when the distribution of (X,,
-+, X,) is G.(- ] 2), and for each 8 €2, let B, be the probability distribu-
tion of T when the distribution of (X, ---, X,) is H,. Recall that

3.1) H(B)= S . G.(B|2)dP/z), B¢ <%, and hence, for each D € Z

(3.2) B(D)=H,(t (D))= S % G.(t7'(D) | 2)dPy(2)= S . a(D)APy(z) .

Since T is a sufficient statistic for the experiment Y, there exists
a stochastic transformation =(- |-) from T to Y such that, for every
Be Z, and z¢€ &, '

3.3) G(B12)=|. (B |t)datt).

But it now follows from (3.1), (3.3) and (3.2) that, for every B € <, and
fef, .

(3.4) H(B)=\, |, #(B|}da.OiP2)

=| =B 10480,

since the interchange of the order of integration needed to attain the
final expression in (3.4) is justified. Thus, it is seen from (3.4) that
n(- | -) satisfies the requirements of Definition 2.2 and, hence, that T is
a sufficient statistic for the allocation A(n; 1; m).

COROLLARY 3.2. Suppose that for each value of m(m=1, 2, ---) the
statistic t. (X, -+, Xn) 18 a sufficient statistic for the experiment Y=
(Rn; Py Gul- |2), z€ 2}, Then, for all values of k and n,, ---, 1, the
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random vector
(35) {tnl(Xn, ct Xml), ct Ty tnk(Xkly s ank)}
18 a joint sufficient statistic for the allocation A(m; k; ny, + -+, M.

PROOF. The allocation A(n; k; ny, ---, n) can be regarded as the
composition A(n;; 1; n)X -+ X A(n; 1; n,) of k independent experiments.
The desired result follows from Theorem 3.1.

The following discussion illustrates some of the results that have
been derived in the present and preceding sections. The first result
deals with a situation where for each value of n the allocation A(n; n;
1, ---, 1) is optimal.

THEOREM 3.8. Suppose that Z is normally distributed with un-
known mean 0 and known wvariance o'. Suppose that an observation
mdde on an individual Z 1s, conditionally on Z=z, normally distributed
with mean z and known variance 7. Then for all values of n(n=1, 2,
-++), the allocation A(n; n; 1, ---, 1) is optimal in <.

PrOOF. It follows from the above conditions that the marginal dis-
tribution of each observation is normal with mean ¢ and variance ¢*+7°.
Under the allocation A(n; n; 1, ---, 1), in which 1 observation is made
on each of 7 individuals, we obtain 7 independent observations, each

with this marginal distribution. It is well-known that S=%é X, is
i=1

a sufficient statistic for this experiment and the distribution of S is
normal with mean # and variance (¢’47%)/n.

Under the allocation A(n; 1; n), in which » observations are made
on 1 individual, we observe Y, ---, Y, which, conditionally on Z=z,
are independent and normally distributed, each with mean z and variance

%, It is well known that T=—q1;,—¢‘%" Y, is a sufficient statistic for this
=1

(conditional) experiment and, hence, by Theorem 3.1, T is a sufficient
statistic for the allocation A(n; 1; »). The conditional distribution of T,
given Z=z, is normal with mean 2z and variance z’/n and it follows that
the marginal distribution of T is normal with mean # and variance ¢*+
(z}[n).

But the experiment in which S is observed is sufficient for the ex-
periment in which 7 is observed. This is seen by noting that if we
define an auxiliary random variable U that is normally distributed in-

dependently of S, with mean 0 and variance n;la”, then S+ U has

the same distribution as 7 for all values of 8. This in turn implies that
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the allocation A(n; n; 1, ---, 1) is sufficient for the allocation A(n; 1; n).
Since this is true for all positive integers m, it follows from Theorem
2.8 that A(n; m; 1, ---, 1) is optimal in %, for every value of n.

Thus, in making an inference about the mean of a normal distribu-
tion with known variance when the observations are themselves subject
to a normally distributed error, A(n; n; 1, ---, 1) is the optimal alloca-
tion.

The next results concern situations where the allocation A(n; 1; n),
in which all n observations are made on 1 individual, is optimal.

THEOREM 3.4. Suppose that for each 6 € 2, the random variable Z
takes only two values, a, and b, with P(Z=a,)=P(Z=b)=1/2. For
each value z of Z, let G(- |2) be the conditional distribution function of
an observation X given Z=z. Suppose that there exists a function ¢(X)
such that, for all 6 € 2, if X has distribution function G(- |a,) then ¢(X)
has distribution function G(-|b,), and if X has distribution function
G(- |by) then ¢(X) has distribution function G(- |a,). Under these con-
ditions the allocation A(n; 1; n) is optimal in %, for all values of n
(n=1, 2, -..).

PROOF. Under the allocation A(n; 1; n) we obtain 7 observations

whose joint conditional distribution function, given Z=z, is [ G(x; |2).
i=1

Thus, the marginal joint distribution function of Xj, ---, X, is, for each
0eQ,

(3.6) [T 6 lan+ [1 6t 1v)] -

Now consider any other allocation of the form A(n; 2; n,, n;). Under
this allocation we observe Y;, ---, Y, Y. 1, -+, Y, whose joint distri-
bution function is, for each 6 ¢ 2,

6D 5| fl 6wl ay+ T 6w 10)] - 5[ 11 6w laa+ JT Gawe1b)] -

To show that A(n; 1;n) is sufficient for A(n; 2; n,, n,;) we exhibit the
following stochastic transformation from (X, ---, X;) to (Y3, -+, Y,).
Let

(X, ---, X,) with probability 1/2,

(Xh Sty an ¢(Xn1+l)v ) ¢(X,,))
with probability 1/2.

(3.8) -, Un)={

It now follows from (3.6) and the assumed properties of the function
¢(X) that the joint distribution function of (U, ---, U,), conditionally
on each of the two possibilities listed in (3.8), is
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— [T 60 1a)+]T 6o 109
it (T, -, U)=(Xs -, X

2 LI G la T, G 18)+T G 180 TT Gt 1]
(U e, U= (e o Ky ¢ Eugads =, ).

(3.9)

Since each of the above possibilities occurs with probability 1/2, the
joint distribution function of (U, ---, U,) is the average of the two
expressions given in (3.9). When this result is compared with (3.7) it
is seen that (U, ---, U,) and (Y3, ---, Y,) have the same distribution
for all 8¢ 0.

It follows that A(m; 1; n) is sufficient for A(n; 2; n,, n;) and hence,
by Theorem 2.9, A(n; 1; n) is optimal in <, for all values of .

COROLLARY 3.5. Suppose that P(Z=0)=P(Z=—0)=1/2, where 6§=0
is an unknown parameter. Suppose that the conditional distribution of
an observation, X, given Z==z, is mormal with mean z and variance o*.
Then the allocation A(n; 1; n) is optimal in %, for all values of n(n=
1,2, ---).

PROOF. The function ¢(X)= — X satisfies the hypothesis of Theorem
3.4 and the desired result follows immediately.

Another example of this type will be given in Section 5.

4. Complete families of distributions

In problems in which a stochastic transformation from one experi-
ment X to another Y cannot readily be found, some criterion is needed
for deciding whether or not X is sufficient for Y. In this section we
will derive a criterion of this type that is often useful and is expressed
in terms of the standard statistical concepts of completeness and un-
biasedness.

It is interesting to note that although we will be concerned below
with the existence and construction of unbiased estimators of various
functions of a parameter 8, we will not be concerned with their use-
fulness as estimators. They are merely devices used in the construction
of sufficient experiments. Thus, the present section illustrates how some
of the mathematical techniques and methods developed for the standard
theory of unbiased estimation can be utilized in statistical studies (based,
e.g., on the likelihood principle or the Bayesian mode of analysis)
that are not explicitly concerned with unbiased estimation of the para-
meters of interest.
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Recall that for a given experiment X={.2% .&7; P,, 6 € 2}, the family

of distributions {P,, # € 2} is said to be complete if every “measurable
function f( -) satisfying

4.1) S Lf@dP(5)=0  for all 9,

is such that f(x)=0 a.e. (X). The condition f(x)=0 a.e. (X) means
that P,{x: f(x)#0}=0 for every fec Q.
A real-valued function ¢( - ) defined on @ is said to be non-negative-

ly estimable (X) if there exists a non-negative, .%measurable function
f(+) on &£ such that

(4.2) S L f@AP)=¢(0)  for all Q.

The proof of the next theorem closely follows the usual proof of
the existence of conditional distributions, as given, e.g., in [7], p. 44,
or [5], p. 31, and, hence, many of the details are omitted. It should
be emphasized, however, that the present context is different from the
context in the above references.

THEOREM 4.1. Let X={.2", %, P,,0€ 2} and Y={%; & ;Q,, 0 € 2}
be two experiments. Suppose that the family {P,, 0 € 2} is complete. Sup-
pose also, that 2 is a Euclidean space and that the o-fielld <& is the
class of all Borel sets. Then X is sufficient for Y if and only if, for
each fixed B¢ 7, the function Q,B), considered as a function on 2, is
non-negatively estimable (X).

PROOF. Suppose that for each Borel set B € <7, there exists a non-
negative, .%“measurable function f(B|-) such that

(4.3) S o f(B2)dP(2)=Q(B)  for all 6¢ 0.

To show that X is sufficient for Y we must show that there exists a
stochastic transformation z( - | - ) from X to Y such that (4.3) holds for
all Be &7 and all €2 when f(-|-) is replaced by =(- |- ).

Since {P,, 0 €2} is complete and @, is, for each ¢ 2, a probability
distribution, it can be shown that
(i) f(Z]2)=1 ae. (X), f(g|2)=0 a.e. (X);
(ii) For each Be &, 0 f(B|2)<1 a.e. (X);
4.4) { (iii) For each sequence {B;; j=1,2, ---} of disjoint
events from <7,

F(U B/ |0)=3 F(B; |5) a.e. (X).

L
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It now follows, as in the standard proofs referred to above, that
f(-]-) can be replaced by a function n(.|-) such that for each x ¢ .27
the above properties (4.4) hold and all integrals (4.8) remain unchanged.
This completes the proof in one direction.

The proof of the converse is trivial since, if X is sufficient for Y,
equation (2.1) immediately reveals that Q,(B) is non-negatively estimable
(X).

Theorem 4.1 is particularly useful for dealing with situations where
the distributions P, and @, are discrete. The following corollary is a
simple consequence of the theorem.

COROLLARY 4.2. Let X={2" % P,, 0 2} be an experiment such
that the random wvariable X has, for each 6 € 2, a discrete distribution

specified by
(4.5) P(X=z)=plx) for x=wx;, 25, - .

Similarly, let Y={Z"; <Z; Q, 0 €2} be an experiment such that Y has
a discrete distribution for each 6 € 2 given by

(4.6) Q(Y=y)=qy) for y=yu, ¥, +*- .

Assume that the family {P,, 6 € 2} is complete; i.e., if i‘, a;p(x;)=0 for
i=1

all 0 € 2, then a,=0(i=1, 2, --+). Then X s sufficient for Y if and only

if, for each wvalue y;(j=1, 2, - --) there exist mon-negative constants {a;

1=1, 2, ---}, depending on y,, such that

(4.7) qa(yj)=§l apx:)  for all 0e Q.

It is shown in the next section (Example 5.2) that the explicit as-
sumption that the functions f(B|-) in (4.8), and the constants a; in
(4.7), are non-negative is necessary. )

The preceding results are valuable in the search for an optimal al-
location since it is often true that both the allocations A(n; 1; n) and
A(n; my 1, ---, n) admit a complete, real-valued sufficient statistic. We
now turn to a class of problems for which this is so: the allocation of
Bernoulli observations.

5. Optimal allocation of Bernoulli observations

In this section we will present a few results for the special class of
allocation problems in which the random variable Z takes values in the
unit interval [0, 1] with a distribution belonging to a given family {P,,
0 e @2}, and for which the conditional distribution of an observation X,
given Z=z, is specified by
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(5.1) Pr(X=1|Z=2)=z, Pr(X=0|Z=2)=1-z2.

It follows from Theorem 3.1 that the sum 7T, of the observations
is a sufficient statistic for the allocation A(n; 1; ») in which n observa-
tions are made on one individual. The distribution of T, is, for each
0 ¢, given by

5.2) 4. (O=P(T==(7 )| 21—adP),
t=0,1, ---, m.

It is seen from (5.2) that the distribution of T, involves only the
first » moments of the distribution P,. Thus, the probability distribu-
tion of the observations obtained from any allocation in which at most
r observations are made on any individual involves at most the first r
moments of P,. In particular, the probability distribution of the obser-
vations obtained from the allocation A(n; n; 1, ---, 1) depends only on
the mean E(Z). If E(Z)=c, a constant, for all ¢ 2, the allocation
A(n; n; 1, ---, 1) is useless.

It follows from (5.1) that the marginal distribution of an observa-
tion X is given by P(X=1)=E\(Z), P(X=0)=1—E(Z). Since the n
observations obtained under the allocation A(n; n; 1, ---, 1) are indepen-
dent, the sum S, of the observations is a sufficient statistic for this
allocation. The distribution of S, is, for each # ¢ 2, given by

(5.3) Pr, (0)=PuSu=5)=( ¥ | B2 L -E2),

s=0,1, ---, n.

The above discussion makes it clear that if there are two values of
6, say, 0, and 6,, for which E,(Z)=E,(Z) but E,(Z")+ E,(Z") for some
value of 7, 1<r=<n, then the allocation A(n; n; 1, ---, 1) cannot be op-
timal in <.

For any positive constants a and B let b( - |a, B) denote the beta
density function defined by

_ F(“'f‘ﬁ) a—1(1 __ 4\A-1

(5.4 b(z| e, p) T@I®) 7 (1—2)

for 0<2<1, and b(z|a, B)=0 elsewhere. It follows from the preceding
comments that if the family of distributions of Z is the family of all
beta distributions, then the allocation A(n; %; 1, - .-, 1) cannot be optimal.
It is shown in the next theorem, however, that if the distribution of
Z is restricted to an appropriate subfamily, no two members of which
have the same mean, the allocation A(n; »; 1, ---, 1) is optimal.

THEOREM 5.1. Suppose that the density function of Z is the beta
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density b(z| 0, k—0), as defined by (5.4), where k>0 is a known constant
and 6 is an unknown parameter, 0<0<k. Then, for every wvalue of
n(n=1, 2, ---), the allocation A(n; n; 1, ---, 1) is optimal in %, .

PROOF. The distribution of the sufficient statistic S, for the alloca-
tion A(n; m; 1, ---, 1) is given by (5.3) where, as is well-known, E(Z)=
0/k. Since 0/k can take any value in the interval (0, 1), this family of
distributions is complete. Furthermore, by (5.2), the distribution of the
sufficient statistic T, for the allocation A(n; 1; n) is given by

65 0i=(7 ) gD #ea—ayeds

TG (e—0)
_(n\ I  I6+t) I'k—0+n—1)
=(%) Tle+n) T TGe—g) ' 0<0<k

It now follows from Theorem 2.8 and Corollary 4.2 that, in order
to show that A(n; n; 1, ---, 1) is optimal in & for all values of =, it
is sufficient to show that for each value of ¢, =0, 1, ---, n, there exist
non-negative constants {a,; s=0, 1, ---, n}, depending on ¢t and n such
that

(5.6) 0. (0)=3] as< n )(_7;_)'(1e:l‘;_)""', 0<o<k.

From the explicit expression (5.5) for g, .(6) it is seen that there is an
expansion of the form (5.6) if and only if

(5.7) re+t)  r'k—0+n—t)

=1 b8 (—0), 0<0<k,

re I'(k—06) H
for some non-negative constants {b; s=0, 1, ---, n} depending on ¢t and
n. But
re+ty I'(k—6+n—t) _[t—l . ][— -1 ]
5.8 - = 0 —0
6.8) r'e) T'(k—0) LO+9 J| J1,E=0%)

-[gee[Eowa].

where the coefficients a; and B, are all non-negative. It should be noted
that the final expression in (5.8) is valid for all values of ¢, including
t=0 and t=mn, even though the middle expression of (5.8) does not hold
at these values. - Finally, recall that for 1=0, =0, and 7+j<n, there
exist non-negative constants 7,;, s=0, 1, ---, », such that

(5.9) e*(k—a)f=éo 7,8 (—0)*, 0<0<F.
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More specifically,

G10)  ow—oy="3 (") O e—0y, 0<0<k.

Together, (5.8) and (5.9) yield an expansion of the desired form (5.7).
This completes the proof.

In connection with the remark made following the proof of Corollary
4.2 in the preceding section, the next example shows that there may
exist constants a; satisfying (4.7), some of which are negative. Thus,
in applying Theorem 4.1 or Corollary 4.2 it is always important to verify
the non-negativity of the required solutions.

Example 5.2. Suppose that Z can take only two given values 2z,
and z;, 0<2,<2,<1, and P(Z=2z)=1—P,(Z=z)=0, where # is an un-
known parameter, 0<6<1. Under the allocation A(n; 1; n) the distribu-
tion of the sufficient statistic T, is, as defined by (5.2),

G1) 0= Ea—ar+a—0( 7} Jaa-zy-,
t=0,1, ---, m.
Under the allocation A(n; m; 1, ---, 1) the distribution of the sufficient

statistic S, is, as defined by (5.3)

612 pO=(7)BatQ—0)al L0410,
s=0,1, .-+, n.

The allocation A(n; »; 1, .-, 1) is sufficient for the allocation A(n;
1; n) if and only if, for each value of £(t=0, 1, ..., n), there exist non-
negative constants a,(s=0, 1, ---, ), depending on ¢t and », such that
(5.13) G O)=31ap, (6 (OSI<D).
It follows immediately from (5.12) that
(5.14) (U/n) 3 5p, (O)=02+(1—0)m  (0=0=1).

Hence, if the constants a,(s=0, 1, ---, n) are defined, for a given value
of ¢, to be

(5.15) a,= ( "Z’ )z{(l-—-zﬂ"“(ﬂ) +< :" )z;(l_zz)n—t( 8—mnz, ) ,

NnZ23—nz, nz;—nz,
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then (5.13) is satisfied. Furthermore, since the family of distributions
defined by (5.12) for 0<#<1 is complete, the constants defined by (5.15)
are, for each value of ¢, the only ones that satisfy (5.13). However,
if n=2 then for some values of s and ¢ (e.g., s=0, t=n), a,<0. Hence,
there is no set of non-negative constants satisfying (5.13) and A(n; n;
1, .-+, 1) is not sufficient for A(n; 1; n).

The next result provides an example for Bernoulli observations in
which, for each value of n, the allocation A(n; 1; n) is optimal in Z].

THEOREM 5.3. Suppose that the distribution of Z is given by P(Z=
0)=P(Z=1—0)=1/2, where 0 is an unknown parameter 0<60=<1/2. Then
for every value of n(n=1, 2, ---) the allocation A(n; 1; n) is optimal in
G-

PROOF. The function ¢(X)=1— X satisfies the hypotheses of Theorem
3.4. The desired result follows immediately.
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