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1. Introduction

If all the latent roots except the largest one of X, the covariance
matrix of a multinormal population are equal, the corresponding latent
vector gives rise to a single non-isotropic principal component. A good-
ness of fit test for a hypothetical principal component was derived by
Kshirsagar [11]. He considered the following two aspects: (1) Departure
from the hypothesis due to there being more than one non-isotropic prin-
cipal component and (2) departure due to deviation in direction of the true
principal component from the hypothetical one. By removing the con-
tribution due to (1) to the over all statistic, he gave .an exact test
dealing with the direction aspect of the hypothetical principal component.
The procedure was analogous to Bartlett’s ([4], [6], [6]) direction and col-
linearity tests in discriminant analysis. However, in practice, it will be
only rarely true that only one non-isotropic principal component ade-
quately represents Y. In other words X will have two or more unequal
roots, the remaining being all equal. There will, therefore, be two or
more non-isotropic principal components. In this paper, it is proposed to
extend Kshirsagar’s test to suit this situation by considering the goodness
of fit of two or more hypothetical principal components. The case of
two principal components is considered in detail first. Further generali-
zation is outlined in section 5.

2. Two non-isotropic principal components

Let x'=(a, %5, - - -, %,) be the row vector of p multinormal variables
measured from their true means and covariance matrix Y. Let ¢}, and
I, (i=1, - --, p) be the latent roots and corresponding orthonormal latent
vectors of X respectively. We assume that ¢}= ... =d3(=¢’) and o?>
at>d'. This means that Ix and Ix are the (true) two non-isotropic
principal components. Let I, (t=1, - - -, p) form the columns of a matrix
L'. Obviously L is orthogonal. As in Kshirsagar [11] we define

347



348 A. M. KSHIRSAGAR AND R. P. GUPTA

2.1) y’=x'L’=(y1, Yy * yp)
and also it can be readily seen that
(2.2) 2=allill+ Ll (I—- LI — L)

=(oi—0") L+ (oi— o )li+0'T

i.e., ¥ is completely determined by I, L, ¢, ¢ and ¢ where I is the
identity matrix.
Let

2.3) X=(x,) (@=1,---,p) (r=1, ---, m)

be a sample of size n from the distribution of x. Then ¥ is estimated
by LA where
"

(2.4) A=(ai1)=X’X

is the matrix of the sums of squares and products of the observations
in the sample.

Suppose now, we have two hypothetical linear functions I}’x and
¥ x satisfying

(2.5) | lL=1 [FlL=1 and IFI¥=0.

We now set up the following null hypothesis. H:(H)) all the roots of
Y except the first two are equal and (H,) the latent vectors correspond-
ing to the two anomalous roots are I¥ and If, i.e.,

L=lF and L=IF.

It should be noted that H consists of both H, and H,. However,
we are more interested in H, rather than H,. H, deals with the direc-
tion aspect of the first two principal components, while H, simply deals
with the adequacy of only two nonisotropic components. A hypothesis
about the goodness of two assigned principal components is meaningful
only when H, is true. If H, is not true, two components are not fully
adequate to represent X, but they may do so only approximately. One,
therefore, will wish to test H; by a preliminary test and will proceed
to H, only when there is reason to believe in the validity of H; or else
we are prepared to ignore the effect of the non-validity of H,. Con-
sequently it is necessary to remove the contribution of H; to the over
all test criterion of H and obtain a more precise test for H,, as done
by Bartlett ([4], [5], [6]). If H is true l,=I}, (1=1, 2). Consequently
we can suppress the stars in the foregoing discussion. [,, and [, satisfy
orthogonality conditions (2.5) and hence we can find p—2 suitable other
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vectors I;y(1=3, 4, - -, p) such that
(2.6) L'=Uyilkyi - il)
is an orthogonal matrix. Then it can be easily seen from (2.1) that
2.7 wy is N(, ay), ¥, is N(0, o;) while y,(:=8, ---, p) are N(0, g),

all being independent. Consequently,

2 1 2 i 2
(2.8) n=‘T 2 2 Yir
g i=ar=1
where
(2.9) Y=(y:;)=XL'

has a 2! distribution with n(p—2) d.f. This is the over all eriterion for
H which is HNH,. The test can be applied if ¢* is known. The crite-
rion can also be expressed as

2.10) (putting B=Y'Y=LX'XL'=LAL)
@.11) oWy =tr Y’Y—g_’l P
=tr B—b,;,—b,,
—tr A—2— 22
where
2.12) bii=z==rzzly§,=lgi)Az(i), (=1, 2).

distribution with n d.f.
01 02

has a 2 distribution with » d.f. and both are independently distributed.

We now want to isolate the contribution of H, to this over-all x%
as we are more interested in the direction aspect of the hypothetical
components.

3. Partitioning of 2%
From (2.7) it follows that B=Y'Y has the Wishart distribution

n—p-—1 1 bu b’ b33+ oo +bpp
+ I
L

Const [B] * ¢ * &' o

3
41

dB
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where dB stands for the volume element. As in Kshirsagar [11], we
transform to the rectangular coordinates '

tu O e 0
(3-2) T-: t21 tgz e 0
bty 2o Ty
by
(3.3) B=TT

and find that

(1) B is a0 with n d.f.

gy

(2) 2 is a0 with n—1df., @=3, -, p)

[}

(3.4)

(3) bt isaw with n—(i—1) d.f.
ag

(4) tyis NO, o)
(5) ty (i>j) are N, 6), 14, 35=3, -+, p.

All these are independently distributed.
2% of section (2) can now be written as

Yy=tr B—2—2
(3.5) =tr TT' —t},— (th+th)

D i
=2 2] tfj .
i=3 j=1

In the case of a single nonisotropic principal component Kshirsagar
[11] proved by a geometrical argument that the direction factor is ob-
tained by selecting only those t’s from the sum (3.5) which have the
second subscript unity. It can, therefore, be easily conjectured that in
the present case the directions factor for the two hypothetical princi-
pal components will be obtained by selecting those t’s from the sum (3.5)
which have the second subscript (1) one and (2) two. Thus

N=ty+ --- +t;1
L=tu+ --- +t;z

(3.6)

will be the two direction factors while

(3.7 B=t;
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will correspond to the angle between the two components. (This is ex-
plained later.) From (3.4) we see that

2
X s a 2 with p—2 d.f.
g

——5— is a X' with p—2 d.f.
g

and —% is a 2! with 1 d.f.
g

These tests give direction aspect of the goodness of ¥, and ¥ respec-
tively.

In the next section we express these X”s in terms of known quanti-
ties and in section (5) we shall parallel Kshirsagar’s [11] arguments to
give an alternative derivation of these direction tests.

4. An dalternative geometrical derivation

We have already seen that l/x (¢=1, - .-, p) are all normally indepen-
dently distributed. In the case of one hypothetical principal component
"x Kshirsagar [11] considered the sample projection of ljx (t=2, ---, p) on
I'x and constructed the direction test. The sample projection is equiva-
lent to the sample regression coefficient.

In the present case of two hypothetical components, we consider
the partial regression coefficients of lx(¢=8, ---, p) on lix when lx is
fixed. This is as good as considering the sample projection of Zx on
’x in a space orthogonal to lx.

A little calculation shows that the partial regression coefficient under
consideration is

4.1) LAL—plALI2
A(1—p")
where
UAl

VAT 1A

is the sample correlation coefficient between Ix and lLx. As lx are all
independently distributed, the above regression coefficient are all also
independently normally distributed and consequently
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2

“.%) 2{ HI—p)"

is distributed as X' with p—2 d.f. Since we consider projections on
Uix, the above statistic gives weight to the direction of the hypothetical
function Lx and consequently can be taken as the direction factor. We
now show that this is nothing but % of section (8). From (3.8) and
(2.10)

(4.3) TT'=LAL

as each is equal to the matrix B. Equating elements on both sides we
have

4.4) th=UAL=2
(4.5) tata=UAlL  (i=2, ---, D)
(4.6) th+th=LAL=2

4.7 tuta+tuta=ULAL (=3, ---, p).

From these it can be easily seen that

(4.8) =21
4.9) o=t~ ALY 1y
and
AL — o
(4.10) L LAl —p 2 AL
S N/ )
Hence
. 2 2
(liAlz-—pTzliAl,>
b4 2 1
(4.11) 2th=> Ao

which is the same expression as (4.2) and is the direction factor X of
section (3). For practical applications, however, the above % can also
be put in a more convenient form by expanding the square in (4.11)

and using the orthogonality of L, viz., “L" L=I-Ll,—Ll,. After a little
=3
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simplification we obtain
LAY+ 2 p At —20 % g4y
) p"}?‘l 1 p—j{—: 1

4.12 1 ! —2(1—pY.
(4.12) X B (1—p")

The expression of 2 and its geometrical derivation is almost the
same as Kshirsagar’s expression except for the minor change that 2 is
now not 3+ --- +t;, but &+ --- +£, as it is necessary to remove t,
in the present case as we are dealing with two hypothetical principal
components lx and lx. In fact

AL A,
—_ =p—
tll 11

th=

represents the regression coefficient of lix on lx, i.e., ¢, corresponds to

2
Byt is a 2 with 1 d.f. and will
a;

test the orthogonality of I, and I, However, both [, and I, have been
assigned to us in the hypothesis as orthogonal and consequently this is
of little interest for testing the hypothesis under consideration.
Thus in the present case
X:=Kshirsagar’s expression of X2 in the
case of one component—i¢}

LA
A

the sample projection of lx on IUx.

(4.13)
2 A

a

_23

If ¢* is assumed to be known, we can use the above two X* tests
for our hypothesis about the directions of the two assigned functions
ix and Lix. However, if it is unknown, we note from (8.5) that 14=

i
pr St is X6* with n(p—2) d.f. and %, 2 and X} are parts of it, con-

i=8 j=1
sequently X} —X—X—X=trA—A2—2—X2—X is independently distributed
of Xi, X3 and X as X'¢' with d.f.=n(p—2)—(p—2)—(p—2)=(n—2)(p—2).
This can be used to obtain an independent estimate of ¢ and hence us-
ing this estimate we may employ F-tests instead of two X* tests based
on X} and Xi.

5. Generalization to more than two assigned principal components

The generalization of the above test procedure to the case of k(< p)
hypothetical principal components lix (=1, -- -, k), ll,=d;; (3, 5=1, - - -, k);
0;; is the Kronecker delta, is straightforward. As before, we can ob-
tain (p—k) mutually orthogonal vectors I, (j=k+1, -- -, p) such that they
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are also orthogonal to the assigned vectors I, (i=1, -+, k). These vectors
will now constitute the orthogonal matrix L of section (2). As before
by transferring from B=LAL' to TT where T is lower triangular,
we can show that t}; (i=k+1, ---, p) are X’ variables with n—(i—1) d.f.
and ¢,; (¢>j) are normal variables. The direction statistics for the k&
assigned function are therefore provided by

x§=t?a+l. 1+ o +t12:, 1

xg:t?éﬂ, P pER +t121, 2
(5.1)

The d.f. in each case are obviously p—k. If ¢ is not known, it
can be estimated as before by

trA—B— B oo — =L oo —12

based on (n—k)(p—k) d.f. 2 represents the sample sum of squares for
lix, viz., LAl,. 1t is theoretically possible to express the above *¥s in
terms of A and the given I’s only. But the resulting expression will
be complicated. A geometrical deviation of these X’s can also be given
by sample projections of % x (j=k+1, ---, p) on lix (i=1, ---, k) when the
remaining I, x (r#i=1, ---, k) are fixed. But it is not necessary to spell
out this as it is implicit in the Bartlett decomposition T7T' of the
Wishart matrix B.

6. Numerical illustration

To illustrate the use of the test outlined in section 4, we apply it
to a random sample of size =50 from a multivariate normal distribu-
tion (using Wold’s [17] random normal deviates) of four variables x,, x,,
x5, ¢, of zero means and variance-covariance matrix

S=(si—ali+(si—a")Ll;+a'l

where g} >0di>0. o' is taken to be unity. I, and I, were taken pro-
portional to

my=(1, —2,3,1) and m,=(2, 5, 1, 5)

respectively. The matrix A of sums of squares and products of the
sample values was found to be
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62.9852 23.5025 3.2115 .8449
23.5025 84.9415  —22.4047 —.8951
3.2115  —22.4047 42.9952 4.8939
.8449 —.8951 4.8939 45.9578

The latent roots of A , the estimate of X are

9,=2.0492, 6;=1.1118, #;=.9172, 6;=.8068.

The assumption that X has only two latent roots >1 and all others are
equal to unity can be tested by using Bartlett’s Statistic [3] (see also
Lawley [13])

(=2~ (2p—8——2 ) A} [ og. ot o002

The values of this statistic in this example comes out to be 0.8367.
Comparing this with 59 value of a ¥* with %(p—Z)(p—l)zG d.f. we
find that it is not significant.

We shall now test the hypothesis that the second nonisotropic prin-

cipal component lx is proportional to mix where m;=(2, 5, 1, 5). The
over all criterion value is

Y=tr A—A—4
=100.5647

for n(p—2)=100 d.f. and is not significant. Its direction components
are given by

yim l{z::ll _ zg_(_lé_"‘:f_i)_zzl.4265

1 1

2

=0.28098

1

A V1—p

L=

QAl,—p—j—’—lgAll }’ i l:Al,—p—;’—liAll
1

A /1—p

for (p—2)=2 d.f. each and both are not significant.
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