RUNS TEST FOR A CIRCULAR DISTRIBUTION AND A TABLE OF PROBABILITIES*

CHOOICHIRO ASANO**)

(Received Sept. 16, 1964)

Summary

A method is suggested for testing whether two samples observed on a circle are drawn from the same distribution. The proposed test is a modification of the well-known Wald-Wolfowitz runs test for a distribution on a straight line. The primary advantage of the proposed test is that it minimizes the number of assumptions on the theoretical distribution.

1. Introduction

Circular statistical problems arise in many scientific fields such as research on orientation of animals (see for instance Schmidt-Koenig [13]), time period analysis for biological clocks, and rock magnetism in geology.

As Curray [3] pointed out, for very large samples the two-sample problem can be treated by the use of the χ^2 -test. There is, however, a great need for a test that can be used when, due to the small size of the samples, the χ^2 -test is not applicable.

In 1956 Watson and Williams proposed several two-sample tests based on the von Mises distribution (the so-called circular normal distribution). These tests, however, are all parametric. In applications there is not always evidence of the circular normal distribution.

There exist also some non-parametric two-sample tests. One of them, proposed by Kuiper [8] [9], is a modification of the Kolmogorov-Smirnov test for a circle. Another such test is due to Watson [21] who applies

^{*)} This study was supported in part by the contract NSF-9968, National Science Foundation; in part by the contract Nonr 2249(05), (Nr 301-579), the Office of Naval Research, Dept. of the Navy, with The Catholic University of America.

^{**)} This paper was written while the author was a research associate in the Statistical Laboratory, Department of Mathematics, The Catholic University of America, during the academic year 1962.

a similar procedure to a test suggested by Smirnov. At present the usefulness of these tests is limited since tables for the significant values of the test statistic are only partly available. Finally, a modification of the Mann-Whitney-Cochran test for a circle has been studied by Batschelet. The result is still unpublished.

The purpose of this paper is to propose a runs test for a circular distribution in the two-sample case which will be applicable when the sample size is small and which will involve a minimum number of assumptions on the theoretical distribution. This at first appeared to be only a matter of extending the considerations of the ordinary theory of runs on a line as proposed by Stevens [15], Wald and Wolfowitz [17], Mood [11], Swed and Eisenhart [16], and Wolfowitz [18]. But it soon became evident that further investigations were needed. The rotatable symmetry for the circle changes the mathematical treatment essentially. When two separate sets of observations are combined in all the various possible ways and rotatable symmetry is considered, the resulting arrangements were sometimes identical with other cases already obtained. Hence, we must reduce the number of cases by the number of arrangements found to be identical with one already obtained.

We suppose that the merit and the properties of this test are quite similar to those of the ordinary runs test studied previously for points on a line. For practical applications the runs test is extremely simple and fast. The theoretical treatment of the runs test has the advantage that no discussion is necessary to justify the independence of the starting point. Research on the power of the circular runs test has not yet begun.

The numerical table of the distribution function of the test statistic was computed on an IBM 1620.

2. Probability function for the number of runs on a circle

Given two sets of samples on a circle, we wish to determine the probability function for the number of runs obtainable by combining these two sets of samples. As a preliminary step we consider the following partition problem.

Suppose that there are k intervals on a circle and that in each interval there are n_i elements of the first sample, where the n_i 's are ordered as follows:

$$(2.1) n_1 \ge n_2 \ge \cdots \ge n_k > 0, \text{for } 1 \le k \le N,$$

where $\sum_{i=1}^{k} n_i = N$ and N is now fixed. After the consideration of all possible arrangements of such k partitioned integers on a circle, we will

consider how to combine the second sample among these k partitioned integers of the first sample.

Let

(2.2)
$$S_{(k)} = \{n_1, n_2, \dots, n_k \mid n_i \geq n_{i+1}, \sum_i n_i = N\}$$

denote the set or sets of ordered integers determined by the sample size N and the partition size k; e.g., for N=4 we have $S_{(1)}=\{4\}$, $S_{(2)}=\{3,1\}$, $\{2,2\}$, $S_{(3)}=\{2,1,1\}$, $S_{(4)}=\{1,1,1,1\}$. Thus the set $\{S_{(k)}\}$ k=1, $2, \dots, N$ contains all the possible partitions for the integer N.

We now proceed to determine the number of rotatable symmetries generated from arranging these k partitioned integers on a circle.

If we introduce g_i such that

(2.3)
$$g_j \equiv \text{(the number of } i$$
's $\mid n_i = \stackrel{\delta}{q}, i = 1, 2, \dots, k$) for $j = 1, 2, \dots, t$.

where $n_k \le q \le n_1 \le N$, $1 \le t \le k$, we can characterize each element in the set $\{S_{(k)}\}$ $k=1, 2, \dots, N$. Then, corresponding to each element in $S_{(k)}$, we obtain a new set $G_{(k)}$ given by

$$(2.4) G_{(k)} = \{g_1, g_2, \cdots, g_t\}.$$

Furthermore, let the common divisors, including one, of such g_1 , g_2 , \cdots , g_t be d_1 , d_2 , \cdots , d_p , where we put $d_1=1 < d_2 < \cdots < d_p$ and $1 \le p \le t$.

If we omit repeated identical arrangement, then the number of circular permutations of the k integers is given by

$$(2.5) \qquad \Phi(n_1, n_2, \dots, n_k \mid N)$$

$$= \frac{1}{k} \sum_{i=1}^{p} \phi(d_i) \left(\frac{k}{d_i}\right) ! / \left(\frac{g_1}{d_i}\right) ! \left(\frac{g_2}{d_i}\right) ! \cdots \left(\frac{g_t}{d_t}\right) !$$

where Euler's function $\phi(d_i)$, the number of positive integers less than d_i and prime to d_i , is given by

$$\phi(d_i) = d_i \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \cdots$$

and p_1, p_2, \cdots are the different prime factors of d_i , with the exception that $\phi(0) \equiv \phi(1) \equiv 1$. This corresponds to Barton and David [1], [2].

Similarly, the number $\Psi(n_1, n_2, \dots, n_k | d_i, N)$ of symmetrical cases generated by $\left(\frac{d_i}{k}\right)$ -rotation*) is obtained in the following way.

^{*)} The notation $\left(\frac{d_t}{k}\right)$ -rotation means a rotation of $\left(360 \times \frac{d_t}{k}\right)^0$.

Let m_1, m_2, \dots, m_t denote the integers $\frac{g_1}{d_i}, \frac{g_2}{d_i}, \dots, \frac{g_t}{d_i}$, respectively, and let $\Phi(m_1, m_2, \dots, m_t | d_i, N)$ be given by

(2.7)
$$\Phi(m_1, m_2, \cdots, m_t | d_i, N)$$

$$= \frac{1}{t} \sum_{d^*} \phi(d^*) \left(\frac{t}{d^*}\right) ! \left/ \left(\frac{m_1}{d^*}\right) ! \left(\frac{m_2}{d^*}\right) ! \cdots \left(\frac{m_t}{d^*}\right) ! \right.$$

where the d^* 's denote the common divisors of m_1, m_2, \dots, m_t , including one, and $\phi(d^*)$ is Euler's function, with the exception that $\phi(0) \equiv \phi(1) \equiv 1$.

Then the value of $\Psi(n_1, n_2, \dots, n_k | d_i, N)$ is given by

(2.8)
$$\Psi(n_1, n_2, \dots, n_k | d_i, N)$$

$$= \Phi(m_1, m_2, \dots, m_t | d_i, N) - \sum_{\substack{n \geq i \geq i+1}} \Psi(n_1, n_2, \dots, n_k | d_i, N),$$

where Σ^* means a summation over all multiples of d_i among d_i , d_i , \dots , d_p . Naturally, as a result of (2.3), we obtain

$$\Psi(n_1, n_2, \dots, n_k | d_i=1, N)=0.$$

Now, on the basis of the above results, let us consider the probability function for the number of runs obtained by arranging simultaneously two different sets of observations on a circle.

Let N_1 and N_2 be the sizes of the first and second sample, respectively, where we assume $N_1 \leq N_2$ without any loss of generality.

First, the number $I(N_1, N_2)$ of all possible runs observable on a circle is obtained by using Euler's function again as follows:

(2.10)
$$I(N_1, N_2) = \frac{1}{N_1 + N_2} \sum_{d} \phi(d) \left(\frac{N_1 + N_2}{d} \right) ! / \left(\frac{N_1}{d} \right) ! \left(\frac{N_2}{d} \right) !,$$

where the summation is over all divisors, including one, of the greatest common divisor of N_1 and N_2 . This number will be the denominator in the determination of the probabilities.

Second, in order to give the probability function for an arbitrary "2k runs", $1 \le k \le N_1$, let us determine the number of possibilities that 2k runs will be observed. Let $n_1^{(s)}$, $n_2^{(s)}$, \cdots , $n_k^{(s)}$ be partitioned integers for N_s , s=1, 2. Then the enumerators of both non-symmetrical arrangements for N_1 and N_2 on a circle are given by

$$(2.11) \qquad \Phi(n_1^{(s)}, n_2^{(s)}, \cdots, n_k^{(s)} | N_s) - \sum_{i=1}^p \Psi(n_1^{(s)}, n_2^{(s)}, \cdots, n_k^{(s)} | d_i^{(s)}, N)$$

for s=1, 2, respectively, where $d_i^{(s)}$ indicates the d_i defined previously for the sth sample.

Hence, the number of arrangements obtainable by combining both non-symmetrical circular permutations for N_1 and N_2 is

(2.12)
$$I_{1} \equiv k \prod_{s=1}^{2} \{ \Phi(n_{1}^{(s)}, n_{2}^{(s)}, \cdots, n_{k}^{(s)} | N_{s}) - \sum_{i=1}^{p} \Psi(n_{1}^{(s)}, n_{2}^{(s)}, \cdots, n_{k}^{(s)} | d_{i}^{(s)}, N) \}.$$

Furthermore, when the symmetrical circular permutations of k integers for N_1 are combined with the non-symmetrical circular permutations for N_2 , the number of possible arrangements is given by

$$(2.13) I_{2} \equiv \left\{ \sum_{d_{k}^{(1)}} \left(\frac{k}{d_{i}^{(1)}} \right) \Psi(n_{1}^{(1)}, n_{2}^{(1)}, \cdots, n_{k}^{(1)} \mid d_{i}^{(1)}, N_{1}) \right\} \\ \cdot \left\{ \Phi(n_{1}^{(2)}, n_{2}^{(2)}, \cdots, n_{k}^{(2)} \mid N_{2}) - \sum_{i=1}^{p} \Psi(n_{1}^{(2)}, n_{2}^{(2)}, \cdots, n_{k}^{(2)} \mid d_{i}^{(2)}, N_{2}) \right\}.$$

Similarly, reversing the roles of N_1 and N_2 , we obtain

$$(2.14) I_{3} \equiv \left\{ \sum_{d_{i}^{(2)}} \left(\frac{k}{d_{i}^{(2)}} \right) \Psi(n_{1}^{(2)}, n_{2}^{(2)}, \dots, n_{k}^{(2)} | d_{i}^{(2)}, N_{1}) \right\} \\ \cdot \left\{ \Phi(n_{1}^{(1)}, n_{2}^{(1)}, \dots, n_{k}^{(1)} | N_{1}) - \sum_{i=1}^{p} \Psi(n_{1}^{(1)}, n_{2}^{(1)}, \dots, n_{k}^{(1)} | d_{i}^{(1)}, N_{1}) \right\}.$$

Finally, when both symmetrical circular permutations for N_1 and N_2 are combined, the number of possible arrangements is given by

(2.15)
$$I_{i} \equiv \sum_{d_{i}^{(1)}} \sum_{d_{j}^{(2)}} G. C. D. \left(\frac{k}{d_{i}^{(1)}}, \frac{k}{d_{j}^{(2)}}\right) \Psi\left(n_{1}^{(1)}, n_{2}^{(1)}, \cdots, n_{k}^{(1)} | d_{i}^{(1)}, N_{1}\right)$$

$$\cdot \Psi\left(n_{1}^{(2)}, n_{2}^{(2)}, \cdots, n_{k}^{(2)} | d_{i}^{(2)}, N_{2}\right).$$

where G. C. D. $\left(\frac{k}{d_i^{(1)}}, \frac{k}{d_j^{(2)}}\right)$ indicates the greatest common divisor of $\frac{k}{d_i^{(1)}}$ and $\frac{k}{d_j^{(2)}}$.

Thus putting

(2.16)
$$I(N_1, N_2, k) = \sum_{\substack{\{s_k^{(1)}\}\\ \{s_k^{(2)}\}}} \sum_{k=1}^{4} I_k$$

we obtain the probability function of observing 2k runs by arranging simultaneously N_1 and N_2 observations on a circle, where $\{S_{(k)}^{(k)}\}$ indicates the set $S_{(k)}$ defined by (2.2) for s=1, 2. This function is given by

(2.17)
$$P(k \mid N_1, N_2) = I(N_1, N_2, k) / I(N_1, N_2)$$
 for $1 \le k \le N_1$.

3. Distribution function and the table

Now we can easily obtain the distribution function for the number of runs on a circle by using (2.17).

If 2k is defined to be the number of runs, then the probability of an arrangement yielding 2r or fewer runs is

(3.1)
$$P\{2k \leq 2r\} = \sum_{k=1}^{r} P\{k \mid N_1, N_2\}.$$

The following table has been prepared for use in testing whether or not two sets of observations are from the same population. The Table gives $P\{2k \le 2r\}$ to 5 decimal places for $N_1 \le N_2 \le 20$ with a range of N_1 from 2 to 20.

4. Numerical example

To illustrate the use of the numerical table in testing for randomness of an arrangement under the null hypothesis that two sets of observations are from the same distribution, let us consider the following example. Watson [21] studied a problem related to the migration of birds. In his data the measurements are given only to the nearest 5°, as follows:

Control group
$$(N_1=12)$$
: 50, 290, 300, 300, 305, 320, 330, 335, 340, 340, 355

Experimental group
$$(N_2=14)$$
: 70, 155, 190, 195, 215, 235, 235, 240, 255, 260, 290, 300, 300, 300.

In this example, unfortunately, due to grouping some ties occur between values from the two different sets of observations. However, breaking up the ties we can give upper and lower bounds for the number of ties in favor or against the null hypothesis.

Following Watson, let us first change 290, 300, 300 of the control group into 285, 295, 295. Then the number of runs observed is 6. From the Table we find $P(2r \le 6) = 0.0040$ such that the two samples are significantly different at an often-used level of 0.01.

Second, it is easy to see that for various ways in breaking up the ties the lower bound is 4 runs, the upper bound 8 runs. Thus we obtain

$$P\{2r \le 4\} = 0.0002 \le P\{2r \le \text{ the actual number of runs}\}\$$

 $\le P\{2r \le 8\} = 0.0357.$

TABLE of $P\{2r \le 2k\}$, where 2r is the number of runs.

N ₂	k	N ₁ =2	N ₁ =3	N ₁ =4	N ₁ =5	N ₁ =6	N ₁ =7	N ₁ =8	N ₁ =9
2	1 2	.5 1.							
3	1 2 3	1.5	.25 .75 1.						
4	/1 /2 3 4	.33333 1) .2 .8 1.	.1 .6 .9					-
5	1 2 3 4 5	·33333	.14286 .71429 1.	.07143 .50000 .92857	.03846 .34615 .80769 .96154				
6	1 2 34 56	.25 1.	.1 .6 1	.04545 .40909 .86364 1.	.02381 .26190 .73810 .97619	.01250 .17500 .60000 .92500 .98750			
7	1 2 3 4 5 6 7	.25 1.	.08333 .58333 1.	.03333 .33333 .83333 1.	.01515 .19697 .65152 .95455 1.	.00758 .06897 .50000 .87879 .99242	.00407 .07724 .38211 .78862 .97154 .99593		
8	1 2 3 4 5 6 7 8	.2	.06666 .53333	.02326 .27907 .76744 1.	.01010 .15152 .57576 .92930	.00461 .08756 .41014 .82028 .98157	.00233 .05128 .29604 .70396 .94872 .99767	.00124 .03218 .21411 .59406 .89728 .99010 .99876	
9	123456789	.2	.05263 .47368 1.	.01818 .23636 .74545	.00699 .11889 .51049 .90210	.00299 .06269 .34328 .76119 .97015	.00140 .03497 .23077 .62238 .91608 .99441	.00070 .02028 .15734 .50000 .84266 .97972 .99930	.00037 .01224 .10612 .41233 .76067 .95510 .99667 .99963

Table of $P\{2r \leq 2k\}$ (continued).

$\overline{N_2}$	k	N ₁ =2	N ₁ =3	N ₁ =4	N =5	N ₁ =6	N ₁ =7	N ₁ =8	N ₁ =9.
10	1234567890	.16667 1.	.04545 .45455 1.	.01370 .20548 .69863	.00498 .09453 .45274 .87065	.00198 .04762 .28571 .70635 .95635	.00086 .02405 .17869 .53952 .86426 .98969	.00041 .01354 .11738 .42133 .78460 .96344 .99794	.00021 .00761 .07672 .31859 .68141 .92328 .99238 .99238
11	123456789011	.16667 1.	.03846 .42308 1.	.01099 .17582 .67033	.00366 .07692 .40659 .84615	.00137 .03571 .24176 .65385 .94231	.00057 .01753 .14480 .48416 .84050 .98303	.00025 .00905 .08824 .35219 .72172 .94344 .99623	.00012 .00488 .05489 .25494 .60503 .88509 .98512 .99940
12	123456789012 111	.14286 1.	.03226 .38710 1.	.00862 .15517 .62931	.00275 .06314 .36538 .81868	.00096 .02788 .20481 .60288 .92019	.00041 .01377 .12353 .37667 .77764 .97327	.00016 .00626 .06657 .29339 .65523 .92058 .99326	.00007 .00317 .03938 .20210 .52754 .84524 .97542 .99866
13	1234567890 11123	.14286 1.	.02857 .37143 1.	.00714 .13571 .60714	.00210 .05252 .32983 .79202	.00070 .02171 .17577 .56092 .09756	.00026 .00955 .09469 :37848 .76161 :96594	.00010 .00444 .05212 .25077 .60836 .89443 .98978	.00004 .00217 .02726 .16379 .47097 .79863 .96246 .99756

Table of $P\{2r \leq 2k\}$ (continued)

$\overline{N_2}$	k	N ₁ =10	N ₁ =11	N ₁ =12	N ₁ = 13	N ₁ =14	N ₁ =15
10	1 2 3 4 5 6 7 8 9 10	.00011 .00454 .05123 .24233 .58560 .87224 .98119 .99892 .99989					,
11	123456789011	.00006 .00274 .03489 .18492 .50000 .81508 .96511 .99726 .99994	.00003 .00159 .02264 .13491 .40997 .74004 .93651 .99264 .99966				
12	1 2 3 4 5 6 7 8 9 0 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	.00003 .00171 .02382 .14006 .41863 .75864 .94436 .99427 .99980	.00002 .00094 .01477 .09772 .33001 .66999 .90228 .98523 .99908	.00001 .00053 .00923 .06795 .25568 .59091 .85373 .97118 .99727 .99990 .99999			
13	1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 1 2 3	.00002 .00111 .01703 .1093 .36068 .69505 .91796 .98961 .99956	.00001 .00059 .01011 .07356 .27346 .59328 .85981 .97403 .99783 .99994	.00000 .00032 .00614 .04977 .20682 .50000 .79318 .95023 .99386 .99968	.00000 .00018 .00381 .03406 .15657 .41791 .72281 .91882 .98688 .99898		

Table of $P\{2r \leq 2k\}$ (continued)

N ₂	k	N ₁ =2	N ₁ =3	N ₁ =4	N ₁ =5	N ₁ =6	N ₁ =7	N ₁ =8	N ₁ =9
14	12345678901234	.12500 1.00000	.25000 .35000 1.00000	.00581 .12209 .57558	.00163 .04412 .29902 .76634	.00051 .01749 .15123 .52058 .88837	.00018 .00722 .07765 .33586 .72319 .95558	.00006 .00299 .03768 .19696 .51496 .87718 .98621	0.00003 .00149 .02207 .13483 .41688 .75421 .94762 .99597
15	1234567890112345	.12500 1.	.02174 .32609 1.	.00490 .10784 .55392	.00129 .03737 .27191 .74098	.00039 .01392 .13148 .48337 .87046	.00013 .00555 .06426 .29910 .68632 .94465	.00005 .00238 .03273 .18450 .51837 .83647 .97956	.00002 .00105 .01665 .11618 .36739 .71039 .93086 .99385
16	1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 4 1 5 6 1 6	.11111	.01961 .31373 1.	.00408 .09796 .52653	.00103 .03199 .24871 .71827	.00029 .01147 .11445 .45013 .85173	.00009 .00424 .05258 .28050 .65761 .93416	.00003 .00176 .02573 .15574 .46731 .81038 .97359	.00001 .00075 .01274 .09069 .32454 .66752 .91251 .99125

Table of P{2r ≤ 2k} (continued)

N ²	k	N ₁ =10	N ₁ =11	N ₁ =12	N ₁ =13	N ₁ =14	N ₁ =15	N ₁ =16
14	12345678901234	.00001 .00073 .01218 .08572 .30612 .63690 .88879 .98336 .99911	.00000 .00037 .00693 .05505 .22348 .52665 .81539 .95975 .99584 .99985	.00000 .00020 .00404 .03574 .16249 .42873 .73292 .92526 .98863 .99921 .99998	.00000 .00011 .00242 .02359 .11887 .34755 .65245 .88113 .97641 .99758 .9989	.00000 .00066 .00148 .01567 .08661 .27817 .57002 .83131 .95899 .99448 .99964 .99999		
15	123456789012345	.00001 .00049 .00889 .06756 .26156 .57964 .85665 .97537 .99845	.00000 .00024 .00483 .04158 .18306 .46602 .76919 .94243 .99296 .99969	.00000 .00012 .00272 .02605 .12873 .36857 .67661 .89621 .99840 .99995	.00000 .00006 .00156 .01653 .09064 .28826 .58470 .83829 .99523 .99523 .99972 .99999	.00000 .00003 .00092 .01065 .06417 .22674 .50000 .77526 .93583 .98935 .99908 .99997	.00000 .00002 .00055 .00696 .04572 .17491 .42407 .70882 .90261 .98012 .99774 .99987	
16	1234567890123456	.00000 .00034 .00650 .05330 .22163 .53034 .82425 .96604 .99753	.00000 .00016 .00342 .03169 .15023 .41148 .72249 .92242 .98907 .99943	.00000 .0008 .00185 .01913 .10204 .31487 .61888 .86321 .97713 .99989	.00000 .00004 .00103 .01172 .06947 .23886 .52117 .79341 .94465 .99940	.00000 .00002 .00058 .00729 .04750 .18022 .43300 .71867 .98199 .98199 .99807 .99990	.00000 .00001 .00034 .00461 .03277 .13598 .35717 .64283 .86402 .96723 .99539 .99966	.00000 .00000 .00020 .00295 .02277 .10269 .29296 .56942 .81406 .99085 .99911 .99996

Table of $P\{2r \le 2k\}$ (continued)

N ₂	k	N ₁ =2	N ₁ =3	N ₁ =4	N ₁ =5	N ₁ =6	N ₁ =7	N ₁ =8	N ₁ =9
17	1 0 04 56 78 9011034 567	.11111 1.	.01754 .29824 1.	.00351 .08772 .50877 1.	.00084 .02757 .22807 .69591	.00023 .00934 .10048 .41946 .83413	.00007 .00340 .04500 .23917 .61778 .92067	.00002 .00132 .02073 .13399 .42847 .78185 .96695	.00001 .00046 .00843 .06421 .39051 .68055 .90844 .98983
18	1 2 3 4 5 6 7 8 9 0 1 1 1 2 1 3 1 4 1 5 6 1 7 8 1 8 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1	.10000 1.	.01563 .28125	.00299 .08060 .48657	.00068 .02392 .20984 .67464	.00018 .00783 .08861 .39181 .81530	.00005 .00270 .03807 .21487 .58617 .90806	.00002 .00101 .01685 .11593 .39306 .75357 .95944	.00001 .00040 .00771 .06255 .25450 .58722 .87239 .98442

Table of $P\{2r \leq 2k\}$ (continued)

N ₂	k	N ₁ =10	N ₁ =11	N ₁ =12	N ₁ =13	N ₁ =14	N ₁ =15	N ₁ =16	N ₁ =17	N ₁ =18
17	123456789011234567 111111111111111111111111111111111111	.00000 .00023 .00484 .04248 .18927 .48284 .79039 .95515 .99634	.00000 .00011 .00245 .02436 .12403 .36323 .67648 .90023 .98413 .99905	.00000 .00005 .00128 .01419 .08131 .26926 .56461 .82831 .96016 .99980	.00000 .00002 .00068 .00832 .05300 .19600 .45817 .73906 .91461 .97703 .99888 .99997	.00000 .00001 .00038 .00506 .03548 .14501 .37450 .66136 .87650 .97212 .99646 .99978	.00000 .00001 .00021 .00309 .02371 .10615 .30047 .57808 .82098 .95053 .99175 .99997	.00000 .00000 .00012 .00192 .01598 .07781 .23974 .50000 .76026 .92219 .98402 .99808 .99988	.00000 .00000 .00007 .00121 .01087 .05720 .19067 .42902 .69716 .88784 .97278 .99595 .99999	
18	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	.00000 .00017 .00365 .03413 .16208 .43936 .75618 .94294 .99480	.00000 .0008 .00190 .02009 .10926 .34110 .67231 .86831 .97674 .99842	.00000 .0003 .00090 .01063 .06511 .23038 .51367 .79193 .94651 .99289 .99964	.00000 .00002 .00047 .00609 .04150 .16427 .40980 .69919 .90015 .9805 .99807 .99993	.00000 .00001 .00025 .00355 .0268 .11675 .32268 .60584 .84180 .959411 .99957 .99999	.00000 .00000 .00014 .00210 .0126 .08296 .25189 .51735 .77544 .93029 .98660 .99854 .99992	.00000 .00000 .00007 .00126 .01122 .05871 .19437 .44039 .706877 .89341 .97481 .99640 .99972 .99999	.00000 .00000 .00004 .00078 .00746 .04226 .15146 .36595 .63407 .84856 .95776 .99256 .99994 1.	.00000 .00003 .00048 .00498 .03030 .11712 .30445 .56500 .93594 .98658 .99827 .99987 1

Table of $P\{2r \le 2k\}$ (continued).

N ₂	k	N ₁ =2	N ₁ =3	N ₁ =4	N ₁ =5	N ₁ =6	N ₁ =7	N ₁ =8	N ₁ =9
19	1234 56 78 90 112 134 156 178 19	.10000	.01429 .27143 1.	.00260 .07273 .47013	.00056 .02089 .19368 .65443	.00014 .00649 .07849 .36646 .79842	.00004 .00217 .03241 .19368 .55652 .89518	.00001 .00078 .01384 .09840 .35955 .72517 .95150	.00000 .00030 .00608 .05240 .22607 .55025 .85128 .98029
20	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20		.01299 .25974 1.	.00224 .06726 .45067	.00047 .01834 .17921 .63500	.00011 .00524 .06617 .37781 .79217	.00003 .00176 .02776 .17507 .52861 .88215		.00000 .00022 .00484 .04413 .20126 .51552 .82978 .97568

Table of P[2r < 2k] (continued)

N ₁ = 20		000000 000000 000000 000000 000000 00000
N ₁ =19	.00000 .00000 .00000 .00236 .01648 .07330 .14595 .39148 .66429 .86518 .96258 .96258 .99323 .999923	.00000 .00000 .000012 .001045 .01046
N ₁₌₁₈	.00000 .00000 .00001 .000335 .02186 .09057 .50000 .74746 .90944 .90944 .90944 .90944 .90944 .90944 .90944 .90944 .90965	.00000 .00000 .000019 .00027 .01575 .01575 .69596 .69599 .996722 .99418 .999418
N ₁ =17	.00000 .00000 .00003 .000517 .03129 .12021 .31077 .57278 .80568 .80568 .99846 .99846 .99846	.00000 .00002 .00003 .00351 .00351 .09551 .51456 .76040 .91684 .98084 .9977 .99977
N ₁ =16	.00000 .00000 .00005 .00805 .04504 .15944 .38012 .64984 .85961 .99382 .99382 .99942	.00000 .00000 .00003 .00057 .03445 .03445 .59590 .59590 .82366 .59590 .82366 .999025 .99994
N ₁ =15	.00000 .00000 .000045 .01267 .01267 .01263 .106092 .72832 .72832 .909746 .99746 .99746	.00000 .00000 .00000 .00102 .00174 .05174 .05174 .05178 .09178 .99585 .99970 .99970
N ₁ =14	.00000 .00000 .00017 .00252 .02015 .0942 .27763 .27763 .80493 .94504 .99508 .99923 .99998	.00000 .00001 .00011 .01541 .01541 .23925 .50435 .76945 .76945 .993146 .993146 .993146 .99995
N ₁ =13	.00000 .00032 .00445 .00445 .00445 .00445 .00445 .004445 .00446 .0046 .00466 .0	.00000 .00001 .00022 .00327 .03251 .12023 .32493 .32493 .32493 .32493 .92463 .99546 .99578
N ₁ =12	.00000 .00002 .00064 .00800 .05221 .19663 .46484 .75569 .93130 .93130 .93130 .93130	.00000 .000046 .00043 .00613 .04239 .16928 .42305 .71763 .91400 .98601 .99911
N ₁ =11	.00000 .00005 .00131 .001475 .08533 .28296 .58881 .85096 .97111 .97782	.00000 .00004 .00007 .01162 .07121 .25002 .54802 .982474 .9969310
N ₁ =10	.00000 .00012 .00278 .02759 .13923 .39974 .72227 .92961 .92961	.00000 .00010 .00237 .02495 .13329 .29325 .65437 .90591
×	10 00 4 60 6 60 60 60 60 60 60 60 60 60 60 60 6	10047000011011111110000
×	19	8

From this we conclude that at the 5% level the two groups differ significantly.

I am indebted to Professor E. Batschelet for suggesting to work in the field of circular distribution, and to Mr. J. F. Gilroy, S. J., for his help in preparing this manuscript, (The Catholic University of America). I wish also to thank Professor G. S. Watson (Johns Hopkins University) for referring me to Barton and David's work [1], [2].

KOBE UNIVERSITY & SHIONOGI RESEARCH LABORATORY

REFERENCES

- [1] D. E. Barton and F. N. David, "Runs in a ring," Biometrika, 45 (1958), 572-578.
- [2] D. E. Barton and F. N. David, Combinatorial Chance, Hafner Publishing Co. 1962.
- [3] J. R. Curray, "The analysis of two-dimensional orientation data," Jour. Geology, 64 (1956), 117-131.
- [4] D. Durand and J. A. Greenwood, "Random unit vectors. II. Usefulness of Gram-Charlier and related series in approximating distributions," Ann. Math. Statist., 28 (1957), 978-986.
- [5] D. Durand and J. A. Greenwood, "Modifications of the Rayleigh test for uniformity in analysis of two-dimensional orientation data," Jour. Geology, 66 (1958), 229-238.
- [6] J. A. Greenwood and D. Durand, "The distribution of the length and components of the sum of *n* random unit vectors," *Ann. Math. Statist.*, 26 (1955), 233-246.
- [7] E. J. Gumbel, J. A. Greenwood, and D. Durand, "The circular normal distribution: Theory and tables," Jour. Ann. Statist. Assoc., 48 (1953), 131-152.
- [8] N. H. Kuiper, "Tests concerning random points on a circle," *Indag. Math.*, 22, No. 1, (1960), 38-47.
- [9] N. H. Kuiper, "Random variables and random vectors," Bull. Inst. Agronomique et Station de Recher. de Gemblonx, 1 (1960), 344-355.
- [10] M. P. A. MacMahon, Combinatory Analysis, Vols. 1 & 2, Cambridge University Press, 1916.
- [11] A. M. Mood, "The distribution theory of 'Runs'," Ann. Math. Statist., 11 (1940), 367-392.
- [12] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, 1958.
- [13] K. Schmidt-Koenig, "Internal clocks and homings," Cold Spring Harbor Symposium on Quantitative Biology, 25 (1960), 389-393.
- [14] M. A. Stephens, "Exact and approximate tests for directions (I)," Biometrika 49 (1962), 463-477.
- [15] W. L. Stevens, "Distribution of groups in a sequence of alternatives," Ann. Eugenics, 9 (1939), 10-17.
- [16] F. S. Swed and C. Eisenhart, "Tables for testing randomness of grouping in a sequence of alternatives," Ann. Math. Statist., 14 (1943), 66-87.
- [17] A. Wald and J. Wolfowitz, "On a test whether two samples are from the same population," Ann. Math. Statist., 11 (1940), 147-162.
- [18] J. Wolfowitz, "On the theory of runs with some applications to quality control," Ann. Math. Statist., 14 (1943), 280-288.
- [19] G. S. Watson and E. J. Williams, "On the construction of significance tests on the circle and the sphere," *Biometrika*, 43 (1956), 344-352.
- [20] G. S. Watson, "Goodness-of-fit on a circle," Biometrika, 48 (1961), 109-114.
- [21] G. S. Watson, "Goodness-of-fit tests on a circle (II)," Biometrika, 49 (1962), 57-63.