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1. Introduction and summary

To determine the threshold number of light-quanta in human vision
is an important problem in quantum-biophysics of vision, and it has
been studied by some biophysicians basing upon a certain biological ex-
perimentation [1], [2], [3].

In the theory of quantum-biophysics of vision, it is assumed that
when a light-stimulus is given to human eye, the effective absorptions
of light-quanta occur independently from one another with the same
probability for each, and if at least k quanta cumulate their energies
at some time-point during the stimulation, then they elicit a visual sen-
sation of human eye. Value of k, the minimum number of quanta ne-
cessary to cause a visual sensation, is called the threshold number of
light-quanta in human vision.

In an experimental situation, with which we shall be concerned in
this article, the light-stimulus is of constant intensity with average num-
ber p of light-quanta which are absorbed effectively in the unit time.
In such a situation, it is adequate to assume that absorptions of light-
quanta occur according to a Poisson process with parameter p [3].

It can also be assumed that the life-time = of light-quanta has a
certain life-distribution of the discrete or of the continuous type, and
for each quantum which is absorbed effectively in the stimulus, its life-
time is a random realization of z.

Under such an experimental situation, let Wi(g, t) be the probability
of visual response, i.e., the probability that the subjective recognizes
the flash, in the duration ¢ of the light-stimulus. This quantity is funda-
mental to the analysis of data for estimating the value of k in the
experimental research under consideration. Theoretical derivation of the
exact form for evaluating Wi(g, t) is difficult, and an asymptotic evalu-
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ation formula under a certain limiting is considered: Bouman and Van
der Velden [1] anticipated the proportionality

1.1) Wiy, t) oo o't , as t¢»1 and p«1,

where a designates the mean value of . Recently, Yamamoto [3] pro-
posed without any rigorous proof, an improved evaluation formula such
as

(1.2) Wi, £)~1— exp [—%] , as (t—>co)x ,

where ({—>o0), designates a limiting process of parameters p and ¢ such
that t—>o0 and p—>0 under the restriction g‘t—>2 for some positive con-
stant 2. We shall call the formula (1.2) the Bouman-Velden-Yamamoto
asymptotic evaluation formula as in the title of this paper.

Later, Yamamoto [4] proved the validity of (1.2) under the assump-
tion that = has an exponential distribution with mean «, and the present
author [5], [6] showed the validity of (1.2) in the case when r has the
unit distribution with the whole mass at r=a. The question, however,
whether the asymptotic evaluation formula (1.2) is true or not for other
distributions of 7, has been left open.

Isii [7] treated the problem for general distribution of z, and proved
the validity of (1.2) assuming that r has moment of a certain order
greater than unity. '

This article treats the same problem in an elementary way and gives
a complete answer to the above question: If only a finite mean value
a of © exists, then the asymptotic evaluation formule (1.2) holds true.

In the following section, notations and preliminary results are stated.
In section 3 it is shown that the number of visual responses in the
duration t of stimulus has a limiting Poisson distribution under some
mild restrictions imposed on the distribution of z, and that the above
stated result can be derived as a corollary, in the case when k is greater
than unity. In the case when k=1, the validity of (1.2) is easily con-
firmed, and it will be omitted in the present discussion.

2. Notations and preliminaries

Since the absorptions of light-quanta occur according to a Poisson
process with parameter p, it is assumed, in the discussion of the pre-
sent paper, that (i) the number S, of quanta which are absorbed in
any time-interval with length ¢ is distributed according to a Poisson
distribution with mean g¢, and (ii) numbers of quanta which are ab-
sorbed in mutually exclusive intervals are mutually independently distri-
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buted.

Let (a, b) be time-interval with length ¢, then, by assumption (i)
given above, the number S, of light-quanta which are absorbed in this
interval has probabilities

@2.1) P(S,:s):e-w(_g?’—  5=0,1,2, ---.

Let T%, T¢, .-+, T¢ be time-points at which s quanta are absorbed suc-
cessively under the condition that S,=s, and put

(2-2) 3=T§_a: Ui=T;_Tir t U::"b—'Ti ’

which are time-intervals between successive absorptions of quanta. Clear-
ly these (s+1) conditional variables given S,=s are subject to the re-
striction such that 3%_,U:=t, and the conditional joint probability density
function of these variables is given by

s!

(2.3) pt(ulr Ugy **y Usg IS)= 1

, (0<u; i}ui<t) ,

for any given s, s=1, 2, ..., and, in particular, for s=0, U} is distribut-
ed according to the unit distribution with mass-point ¢.

From (2.3) it is easily observed that any subset of size n(<s) of
these variables {U:}(:=0, 1, 2, - - -, s) has the conditional joint probabili-
ty density function given S,=s such as

_8(s=1)---(s—m+1) [{_ 1 &\
@0 pl el & ¢ ti=1“’> ’

(0<us 3 u<t),

and therefore, (1/t)33n-,U:,, (=V3, say)-is distributed as a beta-distribu-
tion B(n, s—n+1), whose probability density function is

TG+ g e
(2.5) p(v]s)= I’('n)l’(s—n+1)v A—2)y™", (0<v<]).

Next, let (a, b) and (¢, d) be two mutually exclusive time-intervals
with length ¢ and A respectively, and let S, and S, be numbers of quanta
which are absorbed in these intervals. Then, by assumption (ii), S, and
S, are mutually independent in the stochastic sense, and, since the time-
intervals between successive absorptions are distributed depending only
on the number of quanta which are absorbed in each interval, the con-
ditional variables {U$}(:=0, 1, ---, s) given S,=s and {U}'}(=0,1, ---,
¢') given S,=s' are mutually independently distributed under the condi-
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tion that S,=s and S,=s¢'.
Now, let F(z) be the cumulative distribution function of the life-
distribution of 7, then, it is obvious that

2.6) S: (1— Fu))du= S” w dF(u)(=a, say) ,

provided that either of these integrals exists. It is also easily seen that,
if the mean value «a exists, then it holds that

en [V a-FPatut -+ w)dudu, - du=—_,
i=1
for every positive integer =.

3. Limiting distribution of the number of visual responses in the
case when k=2

Let [0, t) be a time-interval during the stimulation, where 0 is the
starting point of the stimulus. As was stated in the first section, a
visual response occurs if at least k quanta cumulate their energies at
some time-point during the stimulation, and hence, it occurs just after
the absorption of some light-quantum. Successively to the occurrence of
a visual response, there may be a time-interval during which the visual
sensation continues, i.e., at least k& quanta survive simultaneously in
that whole interval, and, any light-quantum which is absorbed in such
an interval can not contribute to the occurrence of a new visual re-
sponse. The number of times of visual responses thus counted in the
time-interval [0, ¢) will be called simply ‘‘ the number of visual responses
in the interval [0, ) .

Now, let us define the following events:

The symbol {X;=1} designates the event that a visual response
3.1) occurs just after the jth absorption of light-quantum, while
{X;=0} designates the complementary event of {X,;=1},

and we put symbolically
3.2) N,-=jﬁ X;, i=0,1,2, ---.
=0

That is to say, {N,=n} means exactly n visual responses occur before
the (i+1)st absorption of quantum. In these definitions, it is evident
that both of the events {X,=1} and {N,=1} are empty, or, more pre-
cisely, {X;=1}(0<j<k—1) and {N;21}(0<i<k—1) are all empty.

The probability that the number of visual responses in [0, t) is equal
to n, n being any non-negative integer, is given by
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3.3) Py, t)=§oP(S,=s)P(N,=n |S;=8),

for which it is clear that
(3.4) P.(z, 0)=8,., 0., being the Kronecker delta.

Now, let S,.,» be the number of light-quanta which are absorbed in
the interval [0, t+k). Then, from (3.3) we have

8.5) Py, t+h)=3 P(S,.»,=8)P(N,=n|8;:»=8) ,

for every non-negative integer m. Dividing the interval [0, ¢+k) into
two sub-intervals [0, ¢) and [t, t+h), and letting S, and S, be numbers
of light-quanta which are absorbed in respective sub-intervals, one can
readily obtain

(3.6) Py, t+h) =RZ°}§0P(S,=s)P(S,,=s’)P(N,+,,=n |S,=s, S,=¢').

Since, for small h, P(S,=0)=1-—pgh+o(k), P(S,=1)=ph+o(h) and
P(S.=2)=0(h), it follows from (3.6) that
3.7 Py, t+h)=(1 —-yh)é}oP(S,=s)P(N,,=n | S;=s, S,=0)

+yh§° P(S,=8)P(N,;,=n|S,=s, Sp=1)+o(h) .

Here, we note that (a) under the condition S,=s and S,=0, the event
{N,=n} is dependent only on time-intervals {Ui}(i=1, 2, ---, s—1) and
life-times {z;}(i=1, 2, .-+, s—1), 7, being life-time of the ith quantum
absorbed, and hence, this event is independent of the condition S,=0,

and (b) the same is seen for the condition S,=1. Using (a), it readily
follows that

> P(S,=s)P(N,=n|S,=s, S,=0)=Pu(p, ?) .

Since the event {N,,,=n} is, under the condition S;=s and S,=1, the
union of two events, {N,=n—1 and X,,;=1} and {N,=» and X, =0},
which are mutually exclusive, and the latter is the complementary event
of {N,=n and X,,,=1} with respect to {N,=n}, it easily follows from
(b) that

%P(Sg‘——‘S)P(MH:’n |S¢=s, Sh=1)
=§P(S¢=3)P(M=n—1, X,1=1|8,=s, Sy,=1)+P.(, t)
-3 P(N,=n)P(N,=n, X,.,=1|S,=s, S,.=1),
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for every non-negative integer n, where, for n=0, {N,=—1} defines the
empty event for every s.
Hence, (3.7) turns out to be

(3.8)  Pu(y, t+h)
- n([l, t)+ﬂh§) P(S;=8)P(N3=n""'1, X'+1=1 ‘Sg=3, Sh———l)

—yhzg‘:)P(S¢=8)P(M=n, X,n=1|8;=s, Sy=1)+o(h),

for every non-negative integer mu.

In order to delete the condition S,=1 in the second and third mem-
bers on the right-hand side of (3.8), let us investigate the event {X,,;=
1}. Clearly, under the econdition S,=s and S,=1, this event depends
upon the random variables, z,, ---, z,, U}, ---, U? and U},,, where, as
before, =; designates the life-time of the ith quantum absorbed, U¥s are
time-intervals between successive absorptions in the interval [0, ), while
U}, stands for the time-interval between ¢ and time-point of the (s+1)st
absorptions. Let us define events such as

EG, 5)={=>Ui+ --- +Uj}, (=55 4, 5=1, ---, 8—1),
EQ s)={u>Ui+ --- +U+ Ui}, (=1, .-+, 8).

and

Then, it is clear that the event {X,,,=1} can be expressed as a func-
tion of these events with the operations, union, intersection and com-
plementation, which is written as

(3°9) R:(t+h)=§0(E(iy j)r E’(l! 8); i§j=19 Tty 8—1; l=17 tt 8) ’

where R{(t+h) stands for the event {X,,,=1}.
Corresponding to the definition of E'(l, s) given above, let us con-
sider the events

E(l9 s)z{fl> U;+ M +U:} ’ (l=17 ct s)!

and, by exchanging E'(l, s) on the right-hand side of (3.9) for E(, s),
put '

(3'9)’ R,(t)=§0(E(’l:, j)! E(l’ S); i§j=lv Tty 8_1; l=11 M) 3) .
Then, it is observed that
(3.10) AR(t-+h), RO)C U (B 9—FC, ),

where 4(A, B) designates the difference between events A and B. Since
E(l, s)—FE'(, 8) is included by the event {r,—hUi+ --- +U:i<z} for
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each s, =1, 2, ..., s, it follows from (3.10), by using (2.5), that

P(A(Rﬁ(t+ﬁ), R(t) |S,=s)§li=}lP(r,-—h§ Ui+ --- +U:i<,|S.=5s)

& (e */t I'(s+1) 11 )=l
—E So dF(T)S(r—h)/t I”(s—l-l—l)['(l)v’ (1=o)"d

t+h t/t h
=sS0 dF(r)S dv<s—s,

(z=h)/t t

from which we get

(3.11) gP(S,zs)P(A(Ri(t+h), R(t)) |S,;=s8)<ph, for small h.

Hence, replacing the event {X,,,;=1} on the right-hand side of (3.8)
by R(t), one can easily obtain

(3.12) Py, t+h)
=Puss, O)+phS P(S,=s)P(N,=n—1, R(t)|S.=s)

— ,uhg(‘,, P(S,=3)P(N,=n, R(t)|S.=s)+o(h),

for small (>0) and for every non-negative integer %, where we have
dropped the condition S,=1 because the events {N,=n} and R.(t) are
independent of that condition. Thus, one can state the following

LEMMA 3.1. The probability P.(u, t) satisfies the differential equa-
tion
(3.13) P (p, t)=,uzg}oP(S,=s)P(N,=n—1 , Ri(t)|S.=5s)

—p“:‘_(.) P(S,=s)P(N,=mn, R(t)|S,=s),

Sor every mon-negative integer n, where the left-hand member designates
the derivative of P,(u, t) with respect to t.

Now, let us define as

38

At)= EQ,s)and B()= U N EG, s),
4 k+2 [CTRITA ip_q i=1
(8—Kk+2, +os, 8)

=§5—

where Ell, s)’s are the same as before, and the union in the definition
of B,(t) is taken over all choices of k—1 integers, {i,<---<%._,}, out
of 8 integers, {1, 2, -, s}, excluding one, {s—k+2, ---, s}. Here, At)
and B,(t) are empty if s<k—2 and s<k—1 respectively. Then, it can
easily be seen that
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(3.14) A(NB{CROHCAMUB),

where B,(t) stands for the complementary event of B(t).
Replacing R,(t) on the right-hand side of (3.13) by A.(t), we get the
equation

(3.15) P (g, t)= ‘”% P(S,=8s)P(N,=n—1, A(t)|S;=s)

— ;zg“,] P(S,=8)P(N,=m, A\t)|S.=8)+T(e t),
where
(3.16) |71, £) | §.2#§0 P(S,=s)P(B,(t) | S;=s) .

We shall evaluate the right-hand side of this inequality : Since

PBOIS=9= £ P(0 B, 9)I8=9)

vt tp—1
x(8-k+2, ++v, 8)

k-1
= 3 SS .o .S 10 (]__F(uij +4 ... +us))p¢(uil, coe, U Is)duil oo du,
Gy oo Gy J=1
x(8—Kk+2, s, 8)

=§ N SS---SE[E}(I—F(MI-F st Uy b))

jl+ .en +jk—1=i

Im=1 0< B u,<t
1=1

. 8(8—‘1)- . -(8—i+1) (1__:'_ Zz: ul>s—idulduz e dui

tt =1

(- (TTa- B pint g(s—1)---(s—i+1)
éEkSS S'rr-!;rl(l F(vm)3,+-o-+21k_l=t 1111 (Gn—1)! t
k-1 Im 1
0<m=lom<t

1 k-1 8—1
* (I_T 2 'Um> d'vld/vz b d'l)k_.l
m=1

_s(s—1)- .t;ff—k+2)gs . 'Sfﬁl(l—Fw’"» “‘gl <s—l£+1> <%>‘

<ot

. (1__':->'—k+1_id'vl S (’v= :j:;%)

eiteenf | fuorfi-(1-4)

. d'vl A d'v,,_.l )

0ot
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we have
% P(S,=s)P(Bi(t) | S,=s)

k-1

g;ﬁ“sg- . S T A—F@a)1—e o, - dvs .

0<v< ™
Thus, by (3.16), we get inequality
3.17) [Ty, t) | <C(),  uniformly in ¢(>0) and n(=0),

for every fixed p(>0), where

318 Gi=22([-- | T a-Fo-n—e "o, - do,.,.

0<vm<oo
m=1, see, k—1

Next, we shall evaluate the first two members of the right-hand
side of (3.15).

Let d be a fixed positive constant less than unity, and put b=p@+»
and a=t—b when ¢t>b.

In the first place, let us consider the case when t<b. In this case,
it is seen that

5 B PS,=5)P(N,=n, A1) |S,=3)
SSPS=9P( U (>, Aft)]S.=s)

<5 PS=9)6—k+D|[---[0-Fw) T a-Faut - +u))

k
0< T u;<t
i1

k 8-k
. 8(s—1)- .t.k(s—k-l-l)(l___i_z ui> du, - - - du,

i=1

<f] - | a-Pen T a-Fan+ - +u)

<ot

. [;zk“t<1—%> +;t"]e""’ du, -+ - du, (v:éui>

k
k-1 -aTu
=@ +|] -+ | A-Fa) T a—Font - +upe "=
0<i§=lui<b .
. dul coe dug ,
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:%) P(S,=8)P(A,(t) | S.=8)

k-1

=SS- .o S jlfli (1—-F(u1+ eon +ui))"k_le-'¢§1u¢dul s duk—l
k=1 -
0< I uy<t
k-1 —ptz—:h‘
<eff | Ta-Fout - fue S duns,
<

and
glpu(lly t)=1—Po(ﬂ, t)=§| § P(S‘=3)P(M=n I S;-_-'S)
<3 PS=aP(U {r> Ut} |8,=9)

=2 P(S,=s)(s—1)S: (1—Fa)-> (1—%)‘"'@‘

= ,ftS: (1—F(w)) (1—_':.)e-wdu

< ,f-'S: (1= F(u))e"du .

Thus, if we put

k-1

(3.19) ﬁ(p):,ukgg o S 'jji (1_F(u1+ cee +u‘))e°‘§§1“‘duldu’ coo dugy,

0T <o
°,
i=1 i

then, for every non-negative integer n and for small ¢ positive, it holds
by (8.15) that

(3°20) P,'.(#, t)=ﬂ(ﬂ)[Pn-l(l" t)—Pn(I‘r t)]+rln(.u’ t)+72>'::(ﬂ’ t) ,
for every fixed small g and for all ¢ such that 0<t<b, and
(3.21) |TE(n, t) | £CH(w) , uniformly in ¢(<b) and »(20),

where

(622) Q=4+ Q- Fuperdu-||-- (T a-Fout - +up

0<v<d

k-1
. e *duy - dug_, ('v= > u‘> .
i=1
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In the second place, we investigate the case when ¢>b.

Let us divide the interval [0, t) into two sub-intervals [0, a) and
[a, t), and let us denote the numbers of quanta which are absorbed in
respective intervals by S, and S,. Further, let {U4}(:=0,1, ---, s)
and {U%}(5=0, 1, ---, &) be time-intervals between successive absorp-
tions in respective sub-intervals [0, a) and [a, ) under the respective
conditions S,=s and S,=s¢’. Then, as before, S, and S,, and hence, U%’s
and Uj,’s are mutually independent in the stochastic sense.

Now, for every non-negative integer =, it is evident that

(3.23) pY P(S,=8)P(N,=n, A(t) |S.=s)
=31 3 (S, =8)P(S,=¢)P(N,1s=m, A,1.(t) | Su=3, S,=¢).

820 820

In order to evaluate this probability, we introduce and evaluate the
following

(3.24) % f:'-':; P(Sa=8)P(Sb=s')P(M=n, A, (t)|S.=s, szsl)
=3 3 PE.=9)PS,=¢)P(N.=n|S.=8)P(Auu(t) | S, =5

+> Zk] \ P(S.=8)P(S,=8)P(N,=mn, A,,.(t) | S.=s, S,=¢),
820 8'sk— .

where we used the fact that, if 8 =k—1, then the events {N,==} and

A...(t) are independent of the conditions S,=s' and S,=s respectively.

The first member on the right-hand side of this equality is exactly equal

to

(3.25) 7' B(e)Pu(p, @), B(p) being the same as (3.19).

The second member can be evaluated as follows: This is not greater
than

— @) —p—#? (I‘b) e (/‘b)k-’
(3.26) 3 PS=s)=e [1+-—1! + +—-—(k_2)!]
_gk=2 18
=" L <y, for small p.
AT

Next, we shall consider the difference between two quantities given
by (8.23) and (8.24). Under the condition S,=s and S,=s’, it holds
that

min(s’, n)

Wow=n) =" "Ne=n—j, Nz=3), W2="5 %),

and
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{(N,=n} =§3 {(N,=n, N¥=§}.
=0 :

Consequently, the difference between two events {N,,,=n} and {N,=n}
is included by the event {N*=1}, which is interpreted, under the con-
dition S,=s and S,=¢', as the event that at least one visual response
occurs in the sub-interval [a, t). Hence, the difference between those
given by (3.23) and (3.24) is not greater than the first member of the
following inequality :

(8.27) 3 1 P(S.=s)P(S,=¢)P(N¥=1, A,..(t)|S.=s, S,=¢")

820 8’20

< X P(S,=¢)

$'<k—2

T3 3 PS=s)P(S,=8)P(NIZL, Auu(t) | Sa=s, Sy =5) .

820 8" 2k~

Here, an evaluation of the second member has been given by (3.26).
Evaluation of the third member can be given as follows: This is not
greater than the first member of the following inequality

(328 3 PS=P( U {rus> U}, Auel®) [S,=9)

Il M

u
li

<@=+2)[- fa-Fa) T a-Fou+ - +upe”

. dul...duk’

which is obtained by using a similar calculation to that used to derive
the result (3.20). _

Finally, we shall compare the probability P.(z, a) with P.(g, t). It
is easily seen that

| P, @)= Puler, D] =33 353 P(S.=5)P(S, =8)P(NF 21| Su=s, 8,=5')

<15 P(S,,:s)P(S,,:s’)P(:L;J: {ze0s> U%} U Bi@) | Sa=s, S,=5)

820 8’20

(3:29) S22 PS=)PE=P( U {russ> Us} | Si=s, S;=7)

820 8'20

+§) P(Sa=8)P(Bs(a) l Sa=s)

=31 P(S,=+) s’S: (1—-F(u))_‘l’:- (1—_’;_)"" du
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43 P(S,=e) 20D e=kED ([ {1} 1 Fo.)

B T . dvy « - dvp_, v=k§vm
1-(-7)

a

<=+, - Fayedu+ | - | T 0 - Fom i~

0<v< 0

* d’vl A d’v,,_l .
By using (3.23) through (8.29), it follows from (3.15) that, when t>b,
(3'30) P, (;l, t)=[9(p)[P —l(ﬂ’ t)—Pn(l": t)]'l'rln(l‘v t)+r;§,*(#, ),

and
(3.31) | 75%(ne, t)| £CF*(p), uniformly in ¢(>b) and n(=0),

for every fixed small g, where

(3.32) ) =4+ 2(#""+#)ﬁ(ﬂ)sz (A—F(u)edu

2800 (|- T a—Fw) - a—emdv, - do

0<V< 0

g2 (- Fa) TTa-Fout - +u))

0< T u;<b
i=1

=

1.3
-Fi§“i
e “Udu, dug - duy .

Thus, putting

(3.33) Tl t)={T;':.(p, t), if tsb,
TEp, 1), if t>b,

and

(3.34) L) =max (X)), &),

we get by (3.20) and (3.30)
(3'35) P:z (‘Ll, t)=ﬁ(#)[P —l(ﬂ! t)_Pn(”l t)]+rln(.u9 t)+r2n(ﬂ’ t) ,

where

(3.36) [ 7wm(pt, t) | £Ci(p), uniformly in positive ¢ and n(=0),

for every fixed small p.
Put
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(3°37) Qn(ﬂr t) = Tln(ﬂ: t) + r]n(ﬂr t) and C(ﬂ) = Cl("‘) + Cﬂ(l‘) .

Then, summarizing the results thus obtained, one can state the follow-
ing

LEMMA 3.2. P.(y, t)’s satisfy the equations :
(3.38) P (o, ) =B(e)[Po-s(pty )= Pulpr, D] +Qulpt, 1),
where
(3.39) [Qu, 8)| <L), uniformly in positive t and n(=0),
Sfor every fixed small p.

Now, as is easily verified, the solution of (3.36) under the initial
condition (3.4) is given by

P, )=+ [1+ | Qu, w)eda],
(3.40)
P, )= 8@ Pa-it, 2)e -+ @, w)eFda] (n21).
From this, we can show the following |
THEOREM 3.1. If the conditions
(3.41) B(Wt—0(>0) and c(p)i—ao, as (t—>), ,

are satisfied, then it holds that
(3.42) P t)—»e":n—', as (t—>0); .

for every mom-negative integer m.
PROOF. By (3.40),
Py(p, t)y=e 5 +Gy(y, t) ,

where

Gl ={ Qus, a)errda
Then, from (8.39) it readily follows that
(3.43) | Go(, t) | £L(p)t, uniformly in positive ¢,
for every small p.

Suppose that
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(3.44) P, y=esor LBW L 0 )
(n—1)!

and

(3.45) |Goin ] ST'S, (Bt)', uniformly in 1(>0)

for every small p, 0<p<p, say. Then, by (8.40) we get

(3.46) Py, t)=e#o [ﬂ(::)ytl"_+G,,(,1, £,

where

B4 Gl Y= 83| Goosr, W) d+ [ Qulp, s
Hence, by (3.39) and (3.45) it holds that

(3.48) [ Guls B) | §C(ﬂ)ti§.l (B()t)*, uniformly in {(>0),

for every p, 0<u<py, .

Thus, by the mathematical induction, we are sure that (3.46) and
(3.48) hold true for every non-negative integer 7, from which the theo-
rem follows. ‘

COROLLARY 3.1. If the l'éfe—diétribution has a finite mean value a,
then it holds that

(3.49) Py, t)——)e"% , as (t—>0),

where §=a*"'Af(k—1)!, 2 being the same as in section 1.

PROOF. From the definition of {(z), it is easy to see that the condi-
tion of this corollary implies the second condition of (3.41).

By the definition (3.19), it holds that

oo oo o k-1

ﬁ(p)t-—)lso So .. -So E A—-F(u;+ -+ +u))du, - - du,_,, as (t>o0),,
due to the Lebesgue convergence theotem. Hence, from (2.7) it follows
that B(x)t—>¢ as (t—oc0),. The corollary, now, follows from the preced-
ing theorem.

Since

Wils, t)=33 Palis, )=1—Pifs, 1),
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the following is a direct consequence of this corollary.

COROLLARY 3.2. If the life-distribution has a finite mean value a,
then, it holds that

(3.50) Wy, t)—>1—e*, as (t—>0),.

Basing upon this limiting formula, we can state the following, which
is the main result of this section.

THEOREM 3.2. If the life-distribution has a finite mean value a, then
the Bouman-Velden-Yamamoto asymptotic evaluation formula (1.2) holds
true, in the case when k=2.
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