AN EXAMPLE OF THE TWO-SIDED WILCOXON TEST WHICH IS NOT UNBIASED

NARIAKI SUGIURA

(Received June 29, 1964)

The purpose of this note is to answer the question stated in Lehmann ([1], p. 240), of whether the two-sided Wilcoxon test is unbiased against the two-sided alternatives or not. Although every one-sided Wilcoxon test is unbiased against the one-sided alternatives, we shall show by an example that the two-sided Wilcoxon test is not necessarily unbiased against some special two-sided translation alternatives.

Let X_1, \dots, X_m and Y_1, \dots, Y_n be two random samples drawn from the distributions F(x) and G(x), respectively. These distributions are assumed to be absolutely continuous with respect to the Lebesgue measure. To test the hypothesis H: F(x) = G(x), consider the following test function $\phi(X_1, \dots, X_m; Y_1, \dots, Y_n)$:

(1)
$$\phi(X_1, \dots, \hat{X}_m; Y_1, \dots, Y_n) = \begin{cases} 1 & \text{when } X_1, \dots, X_m < Y_1, \dots, Y_n \\ & \text{or } X_1, \dots, X_m > Y_1, \dots, Y_n, \\ 0 & \text{otherwise.} \end{cases}$$

Then it is clear that the test ϕ is a two-sided Wilcoxon test with the level $\alpha = 2(m!n!)/(m+n)!$. The power of the test is given by

$$(2) \quad \beta = P\{X_1, \dots, X_m < Y_1, \dots, Y_n\} + P\{X_1, \dots, X_m > Y_1, \dots, Y_n\}$$

$$= P\{\max_{1 \le i \le m} X_i < \min_{1 \le j \le n} Y_j\} + P\{\min_{1 \le i \le m} X_i > \max_{1 \le j \le n} Y_j\}$$

$$= \int_{-\infty}^{\infty} F(x)^m d[1 - (1 - G(x))^n] + \int_{-\infty}^{\infty} G(x)^n d[1 - (1 - F(x))^m]$$

$$= n \int_{-\infty}^{\infty} F(x)^m (1 - G(x))^{n-1} dG(x) + m \int_{-\infty}^{\infty} G(x)^n (1 - F(x))^{m-1} dF(x).$$

Let us now specify the distribution functions F(x) and G(x) as follows:

$$F(x) = \begin{cases} 1 - e^{-x} & x \ge 0 \\ 0 & x < 0 \end{cases},$$

$$G(x) = F(x - \Delta),$$

and test the hypothesis $H:\Delta=0$ against the two-sided alternatives $K:\Delta\neq 0$.

The power function, $\beta_{m,n}(\Delta)$, of the test ϕ for this special case is obtained from (2):

$$(4) \qquad \beta_{m, n}(\Delta) = n \int_{\Delta}^{\infty} (1 - e^{-x})^{m} e^{-n(x - \Delta)} dx + m \int_{\Delta}^{\infty} (1 - e^{-(x - \Delta)})^{n} e^{-mx} dx$$

$$= \frac{m! n!}{(m + n)!} e^{-m\Delta} + n e^{n\Delta} \int_{0}^{e^{-\Delta}} t^{n-1} (1 - t)^{m} dt$$

$$= \frac{m! n!}{(m + n)!} e^{-m\Delta} + n \int_{0}^{1} x^{n-1} (1 - e^{-\Delta}x)^{m} dx$$

for $\Delta \ge 0$ and similarly

(5)
$$\beta_{m,n}(\Delta) = \frac{m! n!}{(m+n)!} e^{n\Delta} + m \int_0^1 x^{m-1} (1-e^{\Delta}x)^n dx$$

for $\Delta < 0$. From (4) and (5) we have

$$\beta_{m, n}(\Delta) = \beta_{n, m}(-\Delta).$$

Differentiating (4) with respect to Δ , we have

(7)
$$h(\Delta) = e^{\Delta} \beta'_{m,n}(\Delta)$$

$$= -\frac{m! n!}{(m+n)!} m e^{-(m-1)\Delta} + m n \int_0^1 x^n (1 - e^{-\Delta} x)^{m-1} dx,$$

and

(8)
$$k(0) = \frac{m! n!}{(m+n)!} (n-m).$$

Since $h(\Delta)$ is strictly increasing for $\Delta \ge 0$ whenever m > 1, (a) the equation $h(\Delta) = 0$ has a unique solution in the interval $(0, \infty)$ when n < m, (b) h(0) = 0, when m = n > 1, (c) $h(\Delta) > 0$ for $\Delta \ge 0$ when n > m > 1. In the case that m = 1, $\beta'_{1, n}(\Delta) = (n-1)e^{-\Delta}/(n+1)$ and hence $\beta'_{1, n}(\Delta)$ is always positive for $\Delta \ge 0$ when n > m = 1.

Considering the symmetric property of $\beta_{m,n}(\Delta)$ as in (6), we can conclude that in all cases except when m=n=1, $\beta'_{m,n}(\Delta)=0$ has a unique solution $\Delta=\Delta_0$, $\beta_{m,n}(\Delta)$ is strictly decreasing for $\Delta<\Delta_0$ and strictly increasing for $\Delta>\Delta_0$, and further that $\Delta_0>0$, $\Delta_0=0$ and $\Delta_0<0$ according as m>n, m=n>1 and n>m, respectively. In other words, the test ϕ defined by (1) is not unbiased against the two-sided alternatives $\Delta\neq 0$ when $m\neq n$ and is unbiased when m=n>1. From (4) and (5) it can easily be seen that

$$\lim_{\Delta \to +\infty} \beta_{m, n}(\Delta) = 1.$$

We shall give two numerical examples which are obtained from (4) and (5).

(i) In case m=19 and n=1: $\alpha=0.10$

$$eta_{_{19,1}}\!(\Delta)\!=\!\left\{egin{array}{ll} rac{1}{20}\!\left[e^{_{_{_{19,1}}}}\!\!+\!e^{_{\Delta}}\!\left\{1\!-\!(1\!-\!e^{_{_{_{_{_{_{19,1}}}}}}}\!
ight\}
ight] & (\Delta\!\geq\!0) \ 1\!-\!rac{9}{10}e^{_{\Delta}} & (\Delta\!<\!0) \;. \end{array}
ight.$$

(ii) In case m=n=3: $\alpha=0.10$

$$eta_{3,3}(\Delta) = \left\{egin{array}{ll} 1 - rac{9}{4}e^{-\Delta} + rac{9}{5}e^{-2\Delta} - rac{9}{20}e^{-3\Delta} & (\Delta \geqq 0) \ 1 - rac{9}{4}e^{\Delta} + rac{9}{5}e^{2\Delta} - rac{9}{20}e^{3\Delta} & (\Delta < 0) \end{array}
ight..$$

The following figure shows the power function $\beta_{m,n}(\Delta)$ for the cases (i) and (ii). In both cases the level of the test ϕ is equal to 0.10. In case of (i) the power function attains the minimum value 0.062 at about $\Delta=0.2$ and is less than 0.10 for $0<\Delta<0.7$.

OSAKA UNIVERSITY

Fig. 1. The power of the test

REFERENCE

[1] E. L. Lehmann, Testing Statistical Hypotheses, John Wiley and Sons Inc., 1959.