NOTE ON THE MULTIVARIATE BURR'S DISTRIBUTION
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1. Introduction

In a paper by I. W. Burr [1], the distribution having a simple al-
gebraic cumulative distribution function was introduced. The function
is
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where ¢, k=1 are real numbers. The probability density function of
this distribution is
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Recently, the Weibull distribution has become to be used widely as
the time-to-failure distribution. The probability density function of this
distribution is ’
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where 6>0, b>0.
If 6 is a random variable and has a probability density function
g(6), the resulted time-to-failure distribution has the density function
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If we assume that g(6) is
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then,
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where b, p=1.

Letting b=c¢, a=1, p=k, (6) agrees with (2). That is, Burr’s distri-
bution [2] is a compound Weibull distribution with a gamma-distribution
as a compounder. .

It is easy to introduce multivariate Burr’s distribution by using this
fact. It will be shown in section 3 that these distributions have some
nice properties as multivariate distributions.

2. Definition of multivariate Burr’s distribution

Let b, - - -, b, be real numbers not smaller than 1 and p,, ---, p, posi-
tive numbers. As is easily checked, we have the following equation :
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Putting r.=-2% in the right side of (7), we define
24
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0 otherwise.

The equation (7) implies that f(x,, ---, . by, -+, by; 71, <+, 75 D) IS
the mn-dimensional probability density function of compound Weibull (n
dimensional direct product) distribution with the gamma distribution as
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a compounder. We may call this distribution ‘¢ multivariate Burr’s distri-
bution.”’

3. Properties of the distribution

THEOREM 1. Any marginal distribution of multivariate Burr’s dis-
tribution is also (multivariate) Burr’'s distribution :
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PROOF. Since
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The general cases follow from (11).

THEOREM 2. Any conditional distribution of multivariate Burr’s
distribution is also (multivariate) Burr’s distribution:
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Applying (8) to the right side of (13) and using formula (9), we
can obtain (12).

If p> max b£ , then the correlation coefficient p., -, of x, and =, is
=1, 2 7

given by

ror (511 () ror(f-g—5)-rle-3)r (p—)]
T iWrer ()= 7)-rl-5r )
For example, if we take p=b,=b,=2, we get p=—4—_7:_—; .
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