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1. Introduction and summary

Non-parametnc tests for various problems relating to two or more
1ndependent samples, based on the number of rare exceedances, are due
to Mosteller [4], Wilks-Rosenbaum [8] [9], Kamat [3], Haga [2], among
others. Now, in non-parametric theory, the class of parent distri-
butlons are usually of quite general mathematical form, and for this
reason, we require that for a broad family of parent distributions, the
proposed test (s) must be consistent, i.e., the power of the test (s)
should approach one, as the sample sizes increase. But, unfortunately,
the class of tests referred to above fails to be consistent for the entire
family of continuous cumulative distribution functions (cdf’s). In this
paper, the consistency, asymptotic power and some other related pro-
perties of these tests are studied in detail.

Firstly, broad families of cdf’s are traced here, for which these
tests will be consistent or not. In fact, each of the above tests are
shown to be inconsistent for various common types of parent cdf’s.
Secondly, for different classes of alternative specifications and different
families of parent cdf’s, the asymptotic distributions of these tests criteria
are obtained in some simple forms, whence their power properties studied.
Thirdly, the scale-tests by Wilks-Rosenbaum and by Kamat are based
on the assumed identity of the associated location parameters and cdf’s.
A comparative study of the power of these two tests for the parent
cdf’s being normal and the sample sizes being less than 10, is due to
Sukhatme [13]. Now, in the general case, we desire to test for the
identity of the scale parameters, without assuming the homogeneity of
the locations (cf. Sukhatme [12]), and hence the modifications neces-
sary to make such tests invariant under any change of the locations,
and the regularity conditions needed to render such modified tests asymp-
totically distribution-fre_e, are studied here. Similarly, the location tests

* Adapted from the author’s D. Phil. Thesis (Chapter 8), Calcutta University, 1961.
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by Wilks-Rosenbaum or by Haga are based on the assumed identity of
the associated scale parameters, and the possibility of using them for
testing the homogeneity of locations without presuming the homogeneity
of the scales, has been thoroughly explored here. Mosteller’s k-sample
alippage test has also been studied from the points of consistency, asymp-
totic distribution and some other related properties. Finally, some as-
pects of the class of tests referred to above are contrasted with those
of a different class of non-parametric tests, which may be said, to be
based on the number of normal exceedances or on certain U-statistics.

2. Consistency of the class of tests

Instead of studying separately the consistency (or inconsistency) of
each of the tests referred to earlier (in section 1), we would consider
first the case of the following test, and later, append a theorem on that
of the others.

The K-test. Let X, ---, X,, be a random sample of m units drawn
from a universe with a continuous cdf Fy(x), and let Y;, ---, Y, be a
second random sample drawn independently from a second universe with
a continuous cdf Fy(x). Let X, and X._..;, be respectively the rth
smallest and the rth largest observation in the first sample and let, in
the second sample k (and k') observations have values greater than
Xm-r+1» (and less than X,,). Then the proposed test is based on the
values of k (and k') and would be termed the K-test (and K'-test).

Let us first consider the null distribution of K (i. e., when F\(x)=
Fy(x)), as this will be required subsequently in the proofs of the theo-
rems to appear. This is easily shown to be

@y pwE)=r(T)(})/ e+ TR, for k=0,1,2, -+;

thus putting i=mn/(m+n), and taking m, n both large, subject to a
given 1, 0<i<1, (2.1) reduces to

(2'2) < k::_z'_;l )2"(1—1)", for k:O, 1, ey

which is a negative binomial distribution with the parameters (r, 2).
Thus, for any given level of significance a, 0<a<1, the critical values
of k are finite and have finite asymptotic limits.

Now, it would be shown later on that the asymptotic properties of
the tests depend on the behaviour of the sample extreme values X,
and X.,_,,,. Also, as regards the asymptotic behaviour of the sample
extreme values, the class of parent cdf’s of the continuous type may
be broadly divided into three types, namely (i) exponential type, (ii)
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Cauchy type, and (iii) distributions having a finite extremity (cf. Gum-
bel [1]). Accordingly, we have considered here each of the above
types of parent cdf’s separately, and the consistency (or inconsistency)
of the tests has been established in the respective cases. Now, if we
use the K-test using the righthand side tail of the values of k as the
critical region, the test would be termed the R.H. K-test, and a similar
convention follows for the L.H. K-test.

(i) Exponential type of cdf’s.

For this family of cdf’s, the cdf F together with its first two deriv-
atives, is continuous everywhere and vanishes at the extremity of the
range, which extends to infinity. Writing then

@3  H@=0-F@UF@ ad G@=-L{-4w).

we may characterise this type of cdf’s by

(a) lim F'(x)=0=lim F"(x),
(2.4) = ==
(b) lim e, (2)=0.

A similar case follows with the lefthand tail of the distribution, pro-
vided the range extends to —oo, on the left. Further, we have clas-
sified the exponential type of cdf’s into three sub-types (cf. Sen [10]) as
follows :

(a) Convex exponential type: lim &i(2)=0,

(2.5) (b) Simple exponential type : lizn d(x)=d :0<d <0,
(c) Concave exponential type: lim do(x)=00,
Then we have the following theorems.

THEOREM 2.1. For Fyx)=F(x—d), with H,:d=0, and for F, be-
longing to the family of exponential type of cdf’s, the R.H. K-test will
be consistent for the set of alternatives H:d>0, only for the convex type.
A similar result holds for the L. H. K-test also.

PROOF. Writing k,(m, n) as the critical value of k¥ (R.H. K-test),
it follows from (2.1) and (2.2) that for a given A=n/(m+n):0<2<1
and for all m>m,, we can select two integers k, and k,, such that k<
k(m, n)<k, for all m=m,. It then follows from (2.1), using the simple
relation between the incomplete binomial sum and the incomplete Beta
integral (cf. Rao [7], p. 33) that for m=m,, and a given 2,

(2.6) Plkzk(m, n) | H}zP{kzk, | H}
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= m+1 1I{' m—r 1_F r—1
(R @ =P
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Now, it has been shown by the author (Sen [10]) that on defining the

characteristic rth largest value %, by Fy(&..)=(m—7r)/m, that for the

entire family of exponential type of cdf’s, z,,—>o as m—»oco, while

P
| Xtm—r41y—%m,r| —> 0, only for the convex type. Further from (2.3) and
(2.5), we have

@) lim [ Fi(a,.) | =lim [L/gy(zm. | =lim [1/g(a)]

=o0, for convex type,
<¢;< o0, for non-convex type.

Let us first consider the case of convex exponential type of cdf’s, and
-3
put o= ™ Fi(za)| ", where 0<5,<1; aP=mll—Fz,,+3)], and

aP=m[l—F(®n,-—0.)]. It then follows from (2.7) and some simple com-
putations that 0,0, a’’>—0, and a®’—>oco as m—>oo0, and writing Z=
m[l—Fy(x)] and W, ,=n[l—Fy(z)]=n[l—F\(x—d)], in (2.6), the r.h.s. of
(2.6) can be written as

2.8) 1 Sag,f) o7z ! [ 1 Swz'de'w’wkrldu)]dZ'l‘ﬂ(l)

Vrodaw Vi, o "
where 75’—>0 as m—>oco. Again, we get following some simple steps that
2.9) W,..=pze?D  0<0<1; p=2/1-2)

and hence, it can be shown with little effort that for all a“’SzSaS,f’,
lim W, ;=oco. Hence, from (2.8), it readily follows that

m=oco

lim P{kzk(m, n) |[H:d>0}=1.

Hence; the consistency of the R.H. K-test for convex exponential type
of cdf’s. Again, to establish the inconsistency of the test for the other
two exponential type of cdf’s, we have

- (2.10) P{kzk(m, n) | H:d>0}=<P{k=k,|H:d>0}

— m+1 ! I,"1 m—r 1—F1 r—1
| [F@r - F)]
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y, { Vn+1 S
Vs VT b 17
Let us now select a sequence of values {xX}, such that Fi(x})=(m—mr)/
m, r, being any positive quantity chosen arbitrarily. It then follows
readily that P{Zum_,.1,>%%} >0, and this can be made to converge to any
limit p*:0<p*<1, (with m—>o0) by a proper choice of 7,. Defining then
Z and W, , as before, we have for all z<7,

Wea=pre”* P, 0<6<1
and hence by (2.7), it follows readily that for all z=<n,

Y (l—y)hdy] dF(s)

(2.11) lim W, (< pze” 1< prie?/156,< 00

Mm=00

Thus, we have

2.12) Sup{lim __Yn+1 y""‘l(l—y)"l"dy}
zgry im:w ‘/kl ‘\/’n—kl-l-lSF"'(")
1 (o ,
< e "whidw = p<1.
ks So P

Thus, from (2.10) and (2.12), we get following simple steps that
lim Plkzky(m, n) | H:d>0}<lim P{k=k,|H:d>0}

<p*p+(1-p*<1.

Hence, the inconsistency of the R.H. K-test for non-convex exponential
type of cdf’s.

The case with the L.H. K-test follows precisely on the same line.
Hence, the theorem.

THEOREM 2.2. If Fy(x)=F,vx) with H,:v=1 and against the set of
alternatives H:v<1 (or v>1), then the R.H. K-test (or the L.H. K-test)
will be consistent for the entire family of exponential type of cdf’s.

PROOF. As in the proof of the preceding theorem, we define z=
m[l—Fy(x)] and W,,=n[l—Fy(z)]=n[l1—F\(vx)]; we have then

(2.13) W,.=pzexp {(1—v)z/g(x—0(1—v)x)}, 0<KO6<L]1.

It is also known that for the entire family of exponential type of cdf’s,
z/gy(x)—>00 as x—co (cf. Gumbel [1], p. 126), and hence, it can be
shown with little effort that in probability one,

)((m_,-“)/gﬁ,{(l "'0(1 - ”))‘X(m—rﬂ)}
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can be made arbitrarily large. Thus, from (2.13), we get that W,, can
be made arbitrarily large (if m is taken large) in probability one. Hence,
proceeding precisely on the same line as in (2.6) through (2.9), we get
that

lim P{k=ky(m, n) | H:»<1}=1.

A similar proof also applies to the L.H. K-test.
Hence, the theorem.

(ii) Cauchy type of cdf’s.

For this type of cdf also, the cdf F' and its first two derivatives
are continuous and vanish at the extremities of the range, which ex-
tends to infinity. But here the edf F is characterised as follows :

(2.14) li_mcz(x)z——llc,, >0, i.e., lizn 2°2[1—F(x)| =A< oo,

where c¢y(x) has been defined in (2.3). A similar characterisation also
applies to the lower extremity.

THEOREM 2.3. If Fy(x)=F\(x—d)(or F\(vx)) with H,:d=0 (or v=1)
against the set of alternatives H:d >0 (or v<1), then the R.H. K-test will
be inconsistent for any F\(x) belonging to the family of Cauchy type of
cdf’s. A similar result holds for the L.H. K-test.

PROOF. Defining Z and W, , (or W,,) as in the proofs of theorems
2.1 and 2.2, we have by virtue of (2.14) that for all Z<r, (r, being de-
fined as in the proof of theorem 2.1)

Sup {lim W, .} <pr;<oo,
2.15 R T
(2-15) Sup {lim W,,}<pr,/v1< oo,
257} M=o
and hence, proceeding precisely as in (2.10) through (2.12), the theorem
follows.
Thus for Cauchy type of cdf’s, the K-test will be inconsistent for
both location and scale variations.

(ili) Distribution having a finite extremity.

THEOREM 2.4 If F\(x) has a finite upper end-point a, i.e., E(a)=
1, then the R.H. K-test (or L.H. K-test) is consistent against the set of
alternatives that Fy(a)<1 (or Fya—d)=1 for some d>0), provided both
Fi(x) and Fy(x) are strictly monotonic at a (or a—d). A similar result
holds for the lower extremity also, provided the same is finite.

The proof is simple and is left to the reader. In the connection,
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it is worth studying the following consequences of theorem 2.4.

(a) If we let Fy(x)=Fy(x—d), then for d>0, Fya)<1, and d<0,
Fya—d')=1, for some d’>0. Consequently the K-test will be consistent
for any shift in location.

(b) If we let Fyx)=F,(vx) with H,:v=1, it then follows similarly
that the K-test will be consistent for any v#1, provided that a+0.

The consistency (or inconsistency) of the K’-test follows precisely on
the same line. We will now consider the case of the tests referred to
earlier. ' '

THEOREM 2.5. The tests by Wilks-Rosenbaum, Kamat or Haga will
be comsistent (or not) according as either of our (or both) K-test and K'-
test is comsistent (or not).

PROOF. Let k' and k be respectively the number of observations
in the second sample lying below X, and above X..,. Then the Wilks-
Rosenbaum scale test is based on W=k+k', and the critical region is
demarcated as W= W, (or W< W,) for the alternative hypothesis H:v<
1 (or v>1), in the set up Fy(z)=Fi(vx). Now writing x=Xu),, ¥=Xm),
z=mF\(x), Z,=m[1—Fy(y)] and V,.,.=n[Fy(z)+1-Fy(y)], the distribu-
tion of W, after some simplification, reduces asymptotically to
2.16) P{W=W, | H:v} = S“S” o-Crtep {—I;SV’*“‘”e-wwWo-ldw} dz dz, .

o Jo “/VVO 0
Hence, proceeding precisely on the same line as in theorem 2.1, we are
to show that this test will be consistent, if for all a’<Z,, Z;<a$® (where
a®, a® are defined earlier, in the proof of theorem 2.1) V., ,—oo as
m—>oco. Since

(2.17) Ve =nFy@)+n[l—Fy(y)],

it will tend to oo with m—>co, provided at least one of nFiy(x) and
n[1—Fy(y)]>co with m—>o0, i.e., at least one of the K'-test and K-test
is consistent.. Hence, Wilks-Rosenbaum’s scale test will be consistent,
if at least one of our K-test and K'-test is consistent. Again, if both
the K-test and K’-test are inconsistent, we have for all Z,, Z,<r, (for
any suitably chosen positive quantity 7)), nFy(X) and n[l1—Fy(y)] con-
verging to some finite limits as m—>oco, and consequently, from (2.17)
we note that for all Z,, Z;<7,, V. converges to some finite limit as
m—>oo. Hence, from (2.16) we directly get that lim P{W= W, |H:v<1}

<1, i.e., the Wilks-Rosenbaum’s test is also inconsistent. The case with
the left hand sided (critical region) test with W follows precisely on the
same line.

Now let I and [ be the number of observations in the first sample
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lying below Y, and above Y., respectively. Then Kamat’s test may
be put into an equivalent form

(2.18) d=k+k—(+0)

and the critical region may be demarcated as |d | =d,.

Now, out of k, k', I and l', two and only two are positive integers,
and the remaining two must be equal to zero. Thus, we may have
the following cases: (i) d=k+k, (ii) d=k—U, (iii) d=k'—l and (iv)
d=—(@+1), (where k, k', I, I’ are all positive in the cited cases), and
in either case, proceeding more or less on the same line as in Wilks-
Rosenbaum’s test, we arrive at the same conclusion, viz., Kamat’s test
will be consistent if either of the K-test and K'-test is so, and if both
these tests are inconsistent, so will be Kamat’s test.

Finally, Haga’s two-sample location test is based on

(2.19) S=k—-K)—(1-1),

and the critical region is given by [S|=S,. As in Kamat’s test we
have either of the four cases: (i) S=k—kK, (ii) S=k+0l, (i) S=
—(K'+1) and (iv) S=I'—l (where in each case k, k', [, ' are positive),
and then proceeding more or less on the same line as in Wilks-Rosen-
baum’s test, it can be readily proved that Haga’s test will be con-
sistent if at least one of our k-test and k'-test is so (for location), while
if both these tests are inconsistent, so will be Haga’s test.

Hence, the theorem.

Theorem 2.1 to 2.5 clearly give an idea about the class of parent
cdf’s, for which the class of tests referred to above will be consistent
or not.

3. Asymptotic distributions of the test criteria

We will now consider different families of alternative specifications
relating to changes in location or scale parameters, and the asymptotic
distributions of the class of tests referred to earlier, will be deduced for
such alternatives. Obviously, families of alternative specifications will
be related with the sample sizes, in such a way that the tests have a
power function different from zero or unity. As for the Cauchy type
of cdf’s, all these tests are shown to be inconsistent, this type of cdf’s
will not be considered here. Similarly for location tests, non-convex
exponential type of edf’s will not be considered. Here also, we will
consider first the case of & and later pass on to that of others.

(i) Exponential type of cdf’s.
THEOREM 3.1 There exists a monotonically non-decreasing function
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N=N(m, n), such that for the class of alternatives Fy(x)=F(x—d/N) or
Fy(x—xd[N), with a real and finite d, and for n, m both large, subject
to nj(m4+n)=2, 0<i<1; the asymptotic distribution of k is given as

ok | d)= ("+" I)xk(z ), for k=0, 1, --

where A,=2e*/{1+2(e*—1)}, and where
(t) for Fyz)=F(x—d/N) with F, belonging to the family of convexr ex-
ponential type of cdf’s,

N=—’;iF{(xm,r) with F(Zm,)=(m—r)/m; and

(41) for Fyx)=F(x—xd/N) with F, belonging to the family of mon-con-
cave exponential type of cdf’s,

m
N= Txm,rF{(xm,r)

(and for comcave expomential type of cdf’s, some additional restrictions -
appear to be mecessary, namely, instead of hm z/p(x)=0c0 (¢f. Gumbel,
[1], p. 126), x[ps(x) 18 monotonic for x=wx,, and xey(x)/p:(x) 18 bounded,
even proceeding to the limit x—>o0).

PROOF. The distribution of k is given by
@3.1) ok |)=r( T )| (R F@1~( } ) IR@r L - F@)dFe).

Now for the class of exponential type of cdf’s, we have from (2.3) and
(2.7) that

(3.2) 1—F(x)=e*®, where ¢j(x)=1/¢\(x)=F/(x)/[1—Fy(=)].

Thus for the convex exponential type of cdf’s, we have (i) hm gb,(x)—
oo, and (ii) 11m Cy(x)=0. Hence, writing z=m[l1—F\(z)] and w n[l—

Fyn)l=n[1-— F,(a: —d/N)], (where z=X._,.,) and noting that by defini-
tion N=¢}(®n.), we get after some simple but somewhat lengthy al-

P
gebraic manipulations that w — pze’, where p=2/(1—2). Hence, from
(8.1), we get that p(k|d) asymptotically reduces to :

3.3) 7/1:7:—8 e~z e~<* (200" )ida = ("‘”’ l)ld"(l —ady,
' for £=0,1,2, ---;

where Ad=2ie/{1+e*(A1—2)}.




242 P. K. SEN

For the two-sample scale problem i.e., Fy(x)=F\(x—xd/N) with N=
Zmr $i(Zn.), Wwe have for the convex exponential type of cdf’s, essen-

tially by the same technique that w £, zpe’ and hence as in (3.3), we ar-
rive at the desired result.

Also for simple exponential type of cdf’s, we have (i) lim ¢,(x)=0,
but (ii) hm oix)=1/d,, (d;< o). Thus, selecting two sequenczzmof values
{C, m}'L—l 2 with 1-C,,=C,,—1=2;., 0<4§ <1, it readily follows
that

(3.4) li_m P{X(m—r+l) € [cl,mxm,ry cz,mxm, r]} =1 .

And for all z lying within (C,,n%m, -, C:n%n,), We have
(3.5) d(x—xd/N)=¢y(2)—d+7x

P
where N=1,, ,¢)(®n,,) and py—>0 as m—>oo. Thus, we have w — zpe’ and
hence we arrive at (3.3).

Now for concave exponential type of edf, we have (i) li_m ¢y(x)=0,
(ii) hm ¢ x)=0, but (iii) hm zPiy(x)=o00. Also, as to our assumption,
we have for all T =X, xgbz(a:) non-decreasing with hm xPi(x)cy(r) S e < oo
(and this additional restriction is found to be satlsﬁed by the majority
of the referred type of distributions). In this case, we select two se-
quences of values {C; .}, i=1, 2, as 1—C,,=Con—1={%n ,Pi(Tx )}, 0
5,<1; then it can be shown after some algebraic manipulations (c.f. Sen
([10], p. 305) that

(3.6) li{n P{X(m_r.H) € [cl,mxm,rv cz,mmm,rl)} =1.
Also,
3.7) w=pme =M N=2p,¢i(%m,+)

= pme—vﬁg(z)ww; QI AT

(sz—llmd, 0<l]_<1) .

Also, it can be shown after some lengthy computations that for all z
lying within the interval referred to in (3.6),

(3-8) CPUE) T, 1P Em,r) =1+

where 7,—>0 as m—oco. Thus from (3.7) and (3.8), we get that w N pze"
and hence we arrive at (3.3).
Hence, the theorem.
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(ii) Distributions having a finite end-point.

THEOREM 3.2 If Fy(x)=F\(x—d/n,) (or F(z[1—d/n,])), where a (<)
18 the upper end-point of the cdf, and d is real and finite, then the dis-
tribution of k asymptotically reduces to

p(k ld)—_—'e—“‘z:;,‘sé!—(r-’-f:i—l)1"(1_2)7-3 ’ fO’r k=o! 1 --- ;‘

where p=2/(1—12) and fi(a)=Fi(a) and A=dfi(a) (or adfi(a)).
Further, if we have for some positive integer p,
1-F(a)=Fj@)= --- =FP@)=0 and f™(@)=FF@)#0,
then for
Fy(x)=F(x—dm~V**") (or Fy(x—xdm ")),
the distribution of k asymptotically reduces to

k oo
4 S {e-vuw—(—n" pERE(PE ) are o/ @AY }
0

I'rk!
Ay (=P ZRECT YA ep) 'y Y Yy
where c,={(p+1)!/ |fP(a)|}V**Y and A=d (or ad).

PROOF. Here also we write z=m[1—F)(x)] and w=n[1—Fj(x)]. Then
for f(a)>0, we have after some simplifications

3.9) w=pm[l—F(z—d/n)] —— p(z+14) where A=dfy(a) .

Substituting (3.9) in (3.1), we get the asymptotic distribution of k, as
sketched in the theorem. Also in the case Fy(x)=F\(x—dx/n,) with fi(a)>

0, we get similarly that w £, p(z+4) where A=adfi(a), and hence, the
same asymptotic distribution also applies to k.

Hence, the first part of the theorem.

For the second part of the theorem, we note that for Fy(x)=Fy(x—
dm V@) we have under the stated regularity conditions,

(3.10) w=n[1—Fy@)]=pz+pm[Fi(x)— Fy(x)]
Ly e (=1 Ey e @ cy,  y=m{l—F@)];

where C, is defined in the theorem. Thus, from (3.1) and (3.10), we
arrive at the desired result. In the case of Fy(x)=Fy(x[l—dm V®*V])
we have

o xd —p_ da + d(a—x)

—  V/+1)
N N i where N=m
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. P ) . .
and as (a—x) — 0, we get similarly that (3.10) also holds true, in this
case, and hence, we arrive at the same result.

Hence the theorem.

(iii) Asymptotic distributions of other test criteria.

We have so far sketched the asymptotic distribution of k. The case
of k' follows precisely on the same line. Thus for exponential type of
cdf’s, we are to define , ,& by Fi(n . 2)=7/m, ¢\(x)=F(x)/F\y(x), and N'=
Dm, %) OF |m,-2H(m,,x) | according as Fyx)=F(x—d/N') or Fy(x—dxz/N’),
¢! being the first derivative of ¢;,. Now, for the asymptotic distribu-
tion of a test criterion, which is based both on k and %', we require
that lim N’//N=6, 0<f< oo; as otherwise for any given sequence of al-

terna?%ives, either of k and k' will degenerate to zero or will be asymptot-
ically greater than any preassigned finite quantity, so that the asymptot-
ic distribution of the given test criterion will cease to be of any in-
terest. Now, for distributions symmetrical about their medians, obviously
N=N’, while for asymmetrical distributions N’/N will tend to a finite
limit, for all 7, only under very restrictive regularity conditions. Thus,
for the class of exponential type of cdf’s, we will consider only the
symmetric ones for the asymptotic distribution of Wilks-Rosenbaum,
Kamat, and Haga’s test criteria. Similarly, for distributions having
finite end-points, we will consider only the case, where the two terminal
contacts are of the same order.

With these, we get after some simple algebraic manipulations that
for the Wilks-Rosenbaum’s test criterion w, we have asymptotically

(3.11) pw | H)=3 pll | H)- ok =w—K | H)

and henee, for exponential type of cdf’s, we have for H: Fy(x)=F\(x—
dz/N),

(3.12) p(w |H)=(w+1)27(1—2,)", for w=0,1, ---;

where

=2 {14+€*(1—-2)}; A=n/(m+n), 0<2<1.

Thus Wilks-Rosenbaum’s test is power-equivalent to our K-test with
r=2. The distribution of w for distributions having finite end- pomts
(say @ and b) may be shown to be asymptotxcally equal to
(3.13) p(w | H)=e-+a+75) %(w—sﬂ)l’”(l—l)“’, w=0,1, ---;

5=0 !

where
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A=adf(a) and A’'=—bdf(), b<a, and p=2/(1—32).

With I and I’ defined as in (2.18), we may put Kamat’s test criterion
in an equivalent form: d=k+k'—(+0l'). Consequently, d may assume
the value D(=0) in either of the following way :

(i) {c—lq,k D—J} 1, ---, D—1, Dx=2,

—_— [y
(i) popdd V=)=, ... [™3" D], Dzo,

Gi) ¥5PHI1=d) o, o, [ D], D2,

For negative D, the values of (k, k') and (I, I') are to be interchanged.
Now, with simple but somewhat lengthy computations, it can be shown
that for symmetrical edf’s of the exponential type, and for the class of
scale-alternatives sketched in theorem 3.1, we have

(1-2)""2{2(1—-4)'—(1—-Q.)(1+D)}/(1—-Q.) (D<0)
(3.14) »(D|H)=42Q:/(1—-Q.) (D=0)
A7(1—2)"{2:—(1-Q)(1—-D)}/(1—-Qy) (D>0)

where
Aa=2{14+e1—-2)}, Ai=n/(m+n) and Q,=2A,(1—2,).

This asymptotic distribution reduces to the null one, when d=0, and
the two forms are similar to each other. In the case of distributions
with finite extremities, the asymptotic distribution of D can not be put
in such a simple form. However, it can be readily shown that even
under the class of alternative hypotheses, sketched in theorem 3.2, (i)
kand k', (ii) ! and V', (iii) &k and ', and (iv) ¥’ and [ are asymptotically
independent, and hence, the distribution of D can be obtained, for large
samples, as the convolution of the distributions of (i) k and &/, (ii) &k
and I', (iii) ¥’ and [ and (iv) I and !’. This, however, fails to be any
simple and compact one.

Finally, Haga’s two-sample location test criterion may be written as

s=k—k—(1-1).

Thus s may assume the value S(=0) in the following way
(i) B2 ¥=9) =1, o tm-o2)

(i) =5 ) =1 (g2
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i) g les } a=1, e 51, 522,

In this case also, we have for symmetric exponential type of cdf’s,
the distribution of s, asymptotically reducing to

a1yl 1 1 _
%1 —2) {1—,2,2, + 1—(1—zd)2} (5=0)
_JAA—2)+2}2(1—20) ( A—2) %
(3.15)  p(S|H)= 1—21,) { 2-2, 1+z¢} (5>0)
{B4+1-2))0—2) ( &  (1=2)
(24,—1) {1+2d 2—12 } (5<0),

where
=2{14+e“(1—-2)}, 2=n/(m+n); H: Fyr)=F(x—d/N),

N being defined as in theorem 3.1. In the case of distributions having
finite extremities, here also the distribution of S will not appear asymptotic-
ally in a simple and compact form, and have to be expressed as a con-
volution of the asymptotic distributions of (i) &, ¥/, (ii) k, U, (iii) ¥/, !
and (iv) [, I'.

Thus, a study of the asymptotic distribution of (k, k') gives a basis
of the same for all the remaining tests, referred to above.

4. On studentization of the class of tests

The location tests considered so far are based on the assumed iden-
tity of the associated scale parameters and similarly the scale tests are
based on the postulated identity of the locations. In this section, we
will test for the homogeneity of either of the parameters without pre-
suming the homogeneity of the other ones. Thus, for our purpose, we
let

4.2) Fyz)=F(z—p}/s) for i=1, 2;

where p; and J; are respectively the location and scale parameters of
the <th population, for ¢=1, 2. Thus on writing U,=(X,—w)/d;, 1=1,
c-+y, m and V,=(Y;—w)/d, t=1, ---, n, it follows that U’s and V’s
have the common cdf F(w).

Now to test for the homogeneity of 4, and 8, without assuming the
locations g and g, to be the same, we propose to base the tests on the
observations centered at their respective sample medians, and similarly
for testing H,:p=p without assuming ,=4,, the tests are based on
the variables studentized by their respective scale parameters, as estimat-
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ed from the samples. The regularity conditions needed for these student-
ized tests to be asymptotically distribution-free, are studied here. Here
also, we consider in detail the case of our K-test and later append a
discussion on that of the others.

Modified K-test (Scale). We define g and p, as respectively the

medians of the first and second populations and let X and Y be their
sample counter-parts. We then write X,zX,—X, i=1, -+, m, XO=
Xemrin—X and Y,=Y,—Y for i=1, ---, n. Then the modified K-test,
called the K,-test is based on the number of Vs (say, k.) larger than

that of X®. Now for small samples, the distribution of k, will be some-
what involved and depend appreciably on the unknown F(u). However,
for large samples, it will be shown here that under certain regularity
conditions, k, has asymptotically a nonparametric distribution.

Let us write U=(X— )/, V=(Y— )/, v=5,/6; and U =(Xp_, 11, —
t)/6;. Then we can write k, equivalently as the number Vis (i=1, .-,
n) having values greater than that of

4.2) UP=V+u(UP-TU)

where under H,: 6,=46,, i.e., v=1.

Asymptotic null distribution of k,. Let X=X@ and Y= Y- Here
we will consider only values of k,<n—b, as it can be shown that under
H,:v=1, P{k,>n—b} converges to zero, exponentially with m, n—>co.
Thus for any k.=k(=n—>b), p,(k)=P{k,=k} is given by

(4.3)

o ") IF @R} - Fr

: r< m‘d)[ F(U®)—F(T) ]m-a-*[ l—F(U(n)]H

" 1—F(77) 1—F(f7)
[ =b \[ FUP)—F(V) 1" 1=FU) Vi AT T

where A: —oo<U<UP <00, —c0< V<00,

Let us now divide the domain A into two disjoint domains R and
R*, where R is defined by the simultaneous inequalities | U| <¢/2, | V|<
¢/2. It can then be shown with little effort that for m=m(e, d) and a
given value of 2=n/(m+n), 0<2<1, P(R)>1—4. Also we let p=2/(1—2)
and
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@8 Z=m[1-F({U®)], Z=(m—a)l-FU)[1-FO)],

W=n[l—F(U®)], and W,=(n—b)[1—FU)/[L1-F(V)].

. . . P
Then by simple algebraic manipulations we get that Z, —L Z and W,—>
W. If we can show that under H,, W—L oZ, then we would get directly
from (4.3) that the distribution of &, will not depend on the unknown
(f], V) and hence will reduce asymptotically to the form given in (2.2).
If on the other hand W does not converge in probability to Z, then W=
pZ—I—h(f/’, V), where R(U, V) will depend on (U, V), apart from its de-
pendence on F(U). If we substitute this expression in for W in (4.3),
we get that the asymptotic distribution of k, will depend on the para-
meters of the sampling distribution of U, V, i.e., on f(0) as well as on
the unknown cdf F(x). Thus, the test will not generally be asymptot-
ically distribution}free. Thus, for our purpose, we require to study
whether W—pZ — 0 or not.
Now

(4.5) o ' W—Z=m[F(UY)—F(U")].

Let us first consider the case where the cdf F(u) has a finite extremity
a, i.e., F(a)=1, having a terminal contact of the ¢th order (i.e., F®(a)#
0, while the lower order derivatives all vanish at u=a), for some t=1.
Then on writing a,=m"(U®—a) and Bu=n"(U— V), we get from (4.5)
that

. _FO@—8) & vl t) e
(4.6) o W—z=L2020 51 () (s)as,. ',

P
where § —— 0.
Now for a terminal contact of tth order «, has a non-degenerate

limiting distribution (cf. Sen [10]). Thus (4.6) will converge in prob-
ability to zero, only if ,Bm—LO. If now F(0)>0, then vm - U and v -V
both have a limiting normal distribution with zero mean and a finite
variance. Thus, in this case, ,B,,,——P—>0, only if t>2. Again, if at the
population median, F(u)—1/2 and its first (¢'—1) derivatives vanish while
F®(0)#£0, for some t'=1, then m”if and »’-V will have a limiting
distribution, only for some §<1/2t' (cf. Sen [10]). Hence, we have the
following theorem.

THEOREM 4.1. For distributions having a finite extremity a, the
K, test will be asymptotically distribution-free, if the order of terminal
contact (t) and the order of contact at the median (t') satisfy
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0<2'<t ; t>2.

It is thus seen that for distributions having a finite extremity, the K-
test is distribution-free only under somewhat restrictive regularity con-
ditions. :

Now for exponential type of distributions, we have
4.7 o W—Z=m(U—-V)f(U+68(V-T)) 0<6<1.

Now for any absolutely continuous cdf F, m( U —‘f’) has asymptotically

a non-degenerate distribution for some 6: 0<d<1/2, and thus U-V—-0.
P

Hence, if we can show that m!'~° f(U®) — 0 for any >0, it would then

follow that (4.7) —— 0, i.e., the K,-test is asymptotically distribution-free.
Let us now borrow the notations in section 2, particularly the ones
defined in (2.3) through (2.7). Let {r.} be a sequence of values with

limr,=oc0 but lim —i-r,,,:O. Then as in theorem 2.1, P{Z<r,}—>1 as

m=co m=oc0

m—>oc0 where Z=m[l—F(X,_,;1)]. Also we write r,=m[1—F( U,,,)] and
thus —%@—fr,,,:e“*”z("’ ), and hence U,—>o0 as m—>oo. Also, we have ool U,)=
log (m/r,) and as ¢, (x) is a strictly monotonically increasing function
of = with hm d(x)=co0, we can always select the sequence of values
{r.} such that rn<CU,. Thus, if we can show that for any 0<s<1,

m'- "f(U,,,)—>0 as m—>oo, then the same can be shown to be true for all
U=U,, as f(u) ean be made monotonically non-decreasing for all U= U,,

some finite positive quantity, and as U® can be made greater than U,
(and hence U)) with probability approaching to unity.
Now

(4.8) M= f(U) =1 Un)e— 2410w |

Thus, to prove that (4.8) converges to zero as m—co, it is sufficient to
prove that for any positive [,

4.9 : lim #'¢gj(x)e~**”=0  for any 0<d<1

and (4.9) can easily be proved by applying L’ Hospital’s rule and using
the fundamental properties of ¢, (x), ¢i(x) and C,(z) discussed in (2.3)
through (2.7). Hence, in this case W—pZ L)

In the case of Cauchy type of distributions, we can similarly ex-
press p~'w—Z as in (4.7) and then using the fundamental property, viz.,
lim 2f(x)/[1—F(x)]=¢,>0, it would follow precisely on the same way
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P
that p*W—Z — 0. Thus, we arrive at the following theorem.

- THEOREM 4.2. For distributions belonging to the family of exponen-
tial type or Cauchy type of cdf’s, the K, -test will be asymptotically dis-
tribution-free.

By an adaptation of the techniques used in sections 2 and 3, it
follows that theorems 4.1 and 4.2 are also applicable to the studentized
form of Wilks-Rosenbaum and Kamat’s tests.

Studentized K-test (-location). With the setup in (4.1), here we would
like to test for the identity of g, and g without necessarily assuming
9,=0;. We then define

(4.10) 8, =EP—¢0, 0<p<p<l and for i=1, 2;

where & is the pth quantile of the ith cdf, for ¢=1, 2. Let now X
X® (and Y®, Y®) be respectively the pth and p;th sample quantiles
in the first (and the second) sample, and we define 8= X®— X0, S=Y®—
Y®, It then follows from the well-known properties of the sample quan-
tiles that under very mild restrictive regularity conditions on the cdf’s,
5i—i>5i, for i=1, 2. Let us also write U=(X—p)d,, V=(Y—m)/d;, UP=
(X®—m)[5, for i=1, 2, VO=(YP—p)/5, for i=1, 2; and UP=(Xn-r+n—
1)[8;. Also let X be the first sample median. Then studentized varia-
bles are written as .f(i:(Xi—)Z')/cfl for ¢=1, ---, m and Yi=(Y¢—X)/3,
for =1, ---, m. It is thus seen that any difference of g and g will
make X and Y stochastically different from each other. Let us now
write X(,,,_TH,:(X(,,._,H)—X)/él and then base our studentized K-test on
K,, the number of Y values greater than X(,,,_,+1). Writing T,,,=(6,3,)/

(3,5,) and v=4,/3,, we can equivalently write k, as the number V-values
in the second sample with values greater than that of (under H,:u=p,)

(4.11) UP=1,U®+Uw—7.), where U=(X—pm)/5,.

Proceeding then precisely on the same line as in the case of the modi-
fied K-test and avoiding the details of the proofs thereby, we arrive at
the following two theorems.

THEOREM 4.3. For any distribution having a finite extremity a, the
studentized K-test will be asymptotically distribution-free, if the order of
contact at the terminal (t), at the median (t,) and at the p-th and p-th
quantiles (t,, t,) satisfy: 0<2t, (2, 2t,)<t, (>2.

THEOREM 4.4. For any distribution of the exponential type or the
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Cauchy type, the studentized K-test is asymptotically distribution-free.

Now Rosenbaum’s two-sample location test and the test by Hagsa
are based on the number of exceedances k;, k], etc. which are analogous
to k, k', etec., where the original variables are replaced by the studentized
observations, it follows that the same theorems (i.e., 4.3 and 4.4) also
apply to these two tests.

5. On Mosteller’s c-sample slippage test

It may be noted that some of the tests considered in the earlier
sections may be extended to the case of c-samples. However, for the
present, we will not enter into the discussion of them, and only consider
here some aspects of a c-sample slippage test proposed by Mosteller
[4] and later extend to the general case of unequal samples by Mosteller
and Tukey [5]. The null distribution of the test criterion as well as
its asymptotic form have been studied by them, but nothing is known
precisely about the consistency or the power properties of the test.

Let r; be the number of observations in the ith sample with values
greater than that of the maximum of the remaining (¢c—1) samples pool-
ed, for ¢=1, ---,¢. The test is then based upon r=max (ry, +--, 1)
where it may be noted that one and only one of 7, ---, r. is positive,
while the rest are all zero.

Consistency of the test. Let Fi(x) denote the cdf of the ith popula-
tion for i=1, ---, ¢, and we let

(6.1) Fy(zx)=F(x—d;) or F(x[1—d,]) for i=1, ---, c;

where d;, -+, d, are all real and finite (and in the case of F(x[1—d.]),
d,<1). By an adaptation of the same technique as has been employed
in the theorems 2.1 to 2.5, we have the following.

THEOREM 5.1. Mosteller’s c-sample slippage test will be comsistent
under the same set of regularity conditions, as have been required with
our K-test, provided further

dj=mafx (db ] dc)>(d19 M dj—n dj+1! 0y dc) .

But, if two or more of (dy, ---,d.;) be simultaneously equal to d,, the
largest among d,, - -+, d., the test fails to be consistent.

The proof is not sketched here, but is available with the author
(Sen [10]).

Asymptotic non-null distribution of r. The technique by Mosteller
or by Mosteller and Tukey will not be applicable here, as in such a case
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all possible permutations of the observations are not equally likely. Here
we have applied the techniques used in theorems 3.1 and 3.2 and de-
duced the expression for the non-null distribution of » for different
families of alternative specifications, chosen in such a way that the
power lies between 0 and 1.

THEOREM 5.2. There exists a monotonically non-decreasing function
n=n(N), N=n,+ --- +n,, such that for the class of alternatives

Fx)=F(x—d./n) or Flx—=zd,/n) for i=1, -+, ¢

with real and finite (d, - -+, d.) and for large N, subject to m,/N=p; for
1=1, - -+, ¢, the distribution of r, for F(x) belonging to the family of ex-
ponential type of cdf’s, comes out as

_ Salpey Sy _
N TSPy oS L A

where (1) for the family of alternatives Fy(x)=F(x—d./n) for i=1, -+, ¢,
with F(x) belonging to the family of convex exponential type,

n=Nf(Xy) where F(Xy)=(N—1)/N, f=F,

and (11) for the family of alternatives Fx)=F(x—zd:/n) for i=1, ---, ¢
with F(x) belonging to the entire class of exponential type of cdf’s,

n=N-Xy f(Xy) -

Again, if F(x) has a finite extremity a, with f(a)=F® (a)>0, then the
asymptotic distribution of r is given as

p(r| d)=e-Timrete[ im0l (1—p) ST AYsl],  for r=1,8, --;
8=0

ere A;=f(a)d; or af(a)d; according as Fyx)=F(x—d;/N) or F(x—xd;/N)
for i=1, -+, c.

The proof of the theorem is not considered here, as it follows more
or less on the same line as in theorems 3.1 and 8.2. The case of Cauchy
type of cdfs has also not been considered here as for this class of dis-
tributions, the test fails to be consistent. Also, we have not considered
distributions having a finite extremity with a contact of order greater
than one. In this case, of course, we can find out the distribution of
r, as in the case with a first order terminal contact, but the form of
the asymptotic distribution will be quite cumbrous. These are therefore
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not reproduced here, however, they are available with the author (Sen,
[10]). :

6. Rare exceedances Vs. normal exceedances

Here some aspects of the non-parametric tests based on the number
of rare exceedances are contrasted with those based on the normal ex-
ceedances (e.g. median tests, Wilcoxon’s test, etc.). The following points
are intended to be discussed here.

(i) Consistency of the tests. The tests based on normal exceedances,
have been shown by various authors, to be consistent under very mild
restrictions on the parent cdf. The continuity or possibly the absolute
continuity of the cdfs, appears to be sufficient in most of the cases. On
the otherhand tests based on rare exceedances, have been shown here
to be consistent under more restrictive regularity conditions.

(ii) Asymptotic distribution. The tests based on normal exceedances
have mostly some limiting distribution (under a family of alternative
specifications including the null one) of known and standard forms, and
as detailed tables for them are available, the power of the test, at least
for large samples, can readily be traced. On the otherhand, tests studied
here, have some discrete limiting distributions (e.g., negative Binomial
ete.) or some convolutes of them. The power of the tests thus can not
readily be traced from standard tables, as are available otherwise. Fur-
ther, the difficulty usually arises with the convolutions, as in most of
the cases, they are quite tedious and mostly no simple algebraic form
can be attached to them, particularly when the null hypotheses is not
true.

(iii) Studentization of the tests. It has been shown by the author (Sen
[11]) that the studentized form of location tests based on normal ex-
ceedances will be consistent and asymptotically distribution-free provided
the distribution is absolutely continuous and have a non-zero density at
the population median. Similarly, the modified form of scale tests based
on normal exceedances will be consistent and asymptotically distribution-
free, if the cdf is symmetrical and absolutely continuous. The test based
on rare exceedances, when thus studentized or modified, have been shown
here to be consistent and asymptotically distribution-free, only for cer-
tain type of cdfs. Thus, in some cases, the former class of tests are
suitable, while in some other ones, the tests studied here will be suitable.
(iv) Asymptotic power. As the two classes of tests have asymtotic
distributions entirely different from each other, the usual definition of
asymptotic power-efficiency (cf. Pitman [6]) will not apply here. And,
in fact, any comparison of the power functions, requires the tracing of
the corresponding non-null distributions, which in term depends apprecia-
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bly on the parent cdf, the alternative specifications and the sample sizes.
Thus, in general, it is not possible to draw some conclusions valid for
certain broad families of cdfs. However, the following appears to be
wellworth consideration.

Let ny, ---, m, be the sample sizes of the ¢ samples and let N=n,+

* +n.. Let now Ty and T¥ be two tests with critical regions C(7T')
and C(T*) respectively, so that P{T € C(T)| H,}=P{T* ¢ C(T*)| H,} =a,
the level of significance, and we are to compare P{T ¢ C(T)| H} with
P{T* e C(T*)|H}.

Let now ¢(N) and ¢*(N) be two non-decreasing function of N, such
that for the set of alternatives that for the location problem with E(x)=
F(x+4/¢p(N)) for i=1, ---, ¢; where 1, ---, 2, are all real and finite, we
have

(6.1) lim P{T € C(T) |2} =P,, 0<P,<1,
and for Fiy(x)=F(x+2,/¢*(N)),
(6.2) lim P{T* e C(T*) | 2} =PF, 0<Pr<1.

(In the case of scale problem, 2; is replaced by z4,). If now hm ¢(N )/

¢*¥(N)=0, we get from (6.1) and (6.2) that 7* will be asymptotlcally
more power efficient and the power efficiency of T with respect T* is
asymptotically equal to zero, (as hm P{T eC(T)| 4/¢*(N)}=0). Similar-
ly, if hm gb(N ¥ (N)=oc0, T will be asymptotically more power-efficient.
But, 1f ¢(N)/¢*(N)—>d<oo as N—oo, we cannot definitely say whether
T or T* will be more power-efficient and the result will evidently de-
pend on P, and P}, i.e., on the parent cdfs. In this case, numerical
evaluation appears to be the only avenue.

Now, as regards the tests based on normal exceedances, it is known
that ¢(N)= /N . So we are only to study ¢*(N) for the class of tests

proposed here. Now, for exponential type of cdfs, ¢*(N )=Nf(f(1v) or

NX, f (Xw) (where F(X,)=(N—1)/N) according as the set of alternatives
relation to location or scale changes. In any case, it follows from (4.8)
and (4.9) with little computations, that ¢*(N)/¢(N)—>0 as N—>co. Con-
sequently, the class of tests proposed here, are asymptotically less power-
efficient than the ones based on normal exceedances. In the case of
Cauchy type of cdfs, the tests studied here, are inconsistent, while the
tests based on normal exceedances, will have as before ¢(N)= +/N.
Hence in this case also, they are definitely better.

Finally, in the case of cdfs having a finite endpoint a, with f(a)>
0, it follows then from theorem 3.2 that ¢*(N)=N, and hence ¢(N)/
¢*(N)—>0 as N—>oo. Consequently, in this case, the tests based on the
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number of rare exceedances will be more (power-) efficient. While, if
for some t>1, 1—F(a)= -+ =F“(a)=0 and F®(a)+0, it then follows
from theorem 3.2 that ¢*(N)=N". Thus, for any t>2, ¢(N)/¢™N)—>
co as N—oo, i.e., the tests based on the normal exceedances are more
(power-) efficient. Finally, for t=2, we have ¢*(N)= 4N, and hence, in
such a case, nothing can be said about the relative performance of
the two classes of tests, without actual tabulations pertaining to different
alternative specifications, even for the large samples.
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