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1. Introduction and summary

In 1963 a research project for the advancement of the method of
estimation of the frequency response function of a system having a
single input was undertaken at our Institute and the results were re-
ported in Supplement III of the Amnals of the Institute of Statistical
Mathematics (1964). It was then concluded that it would be necessary
to extend the method to the case of multiple input to make the estima-
tion procedure useful in many practical situations [1, p. 15]. In this
connection, we note that an interesting paper by Leo J. Tick [7] ap-
peared in 1963, which treats multiple input problem and is full of sug-
gestions.

If we try to apply the method of estimation for the case of single
input to the identification of response characteristic to a specified input
of a system which has essentially multiple inputs, ignoring the exist-
ence of other inputs, we encounter with the following two types of
difficulties :

1) decrease of the coherency between the specified input and the
output due to the contributions of other inputs which are incoherent
with the present input, and '

2) contamination of the response characteristic with the ghosts
produced by the coherencies between inputs.

To overcome these difficulties we have to develop the method of
estimation for the case of multiple input.

In this paper a method of estimation for the case of multiple input
is presented, which is a direct extension of the method for the case of

*) By a letter from Mr. A. G. Piersol of the Measurement Analysis Corporation of
U.S.A. of 10 Feb. 1964 the author was informed that Mr. L. Enochson, of the Corporation,
and Mr. Piersol had written a paper on the analysis of multiple input linear systems sub-
jected to random excitation and it had been submitted to the Journal of the Acoustical
Society of America. Yet being unable for the present author to have an access to their
paper, he decided to present this paper though it may show some overlappings with theirs.
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single input. Necessary computation scheme for the estimation procedure
is given and the practical applicability of the method is verified by nu-
merical examples. It is seen that a relatively crude approximation to
the distribution of a confidence region, given in this paper, can be used
quite effectively to see the statistical reliability of the estimate.

2. Preliminary observations of the problem

We shall here consider a time invariant linear system having &k in-
puts x,(t), z(t), -+, x(t) and giving an output y(t) represented by
k oo
vt)=3|"_at—oh, (s
where for each j the function k;(r) is the impulse response function of

the system for the jth input and is supposed to belong to L,(— oo, o)
and Ly(—oo, ), i.e., it satisfies the conditions

Sl | h(z) | de < oo

E [h(c) e < oo .

The frequency response function A;(f) of the system for the jth input
is the Fourier transform of the impulse response function and is given

by
A[(f)= S: exp (—i2nfo)h(z)ds -

If we here restrict the inputs to those which belong to L,(— oo, o) and
L,(—o0, o), then we can see that the output y(f) also belongs to the
same class and we have

k

y()=2 A,(f)z,(f)

Jj=1

where y(f) and z,(f) represent the Fourier transforms of y(t) and x,(t)
respectively. From this relation we can see that if k independent ob-
servations of the complete history of the inputs x,(t), x.(t), - -+, z(t) and
output y(t) are available then the value of A;(f) (=1, 2, ---, k) can be
obtained by solving the linear simultaneous equation

YN=Z AN e=12 - k)

where y¥“(f) and z$’(f) represent the values of y(f) and x,(f) at the
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vth observation and it is assumed that the k-dimensional complex vectors
(@(f), 2°(f), -+, 2(f)) (v=1, 2, ---, k) are lineary independent. Even
in the case where only a single observation is available if we can select
a set of frequencies (fi, f3, -+, fi) for which the vectors (z,(f.), (£,
w0, k() (v=1, 2, -+, k) are lineary independent and A, f)s(v=1, 2,
-++, k) are considered to be approximately equal to the value A,(f) for
each j, we shall be able to get an approximation A,(f) to A,(f) by solv-
ing the simultaneous linear equation

WA=ZAN8lL) =12 k)

for the unknowns A,(f)(v=1, 2, ---, k).

This last observation is essential for the understanding of the struc-
ture of estimation procedure by a single observation which we shall de-
velop in the following sections.

In practical observations it is more natural to consider that the ob-
served value of the output is contaminated with an additive noise n(t)
and thus the observed output, which we shall denote by =(t), is re-
presented as

z(t)=y(&)+n(t) .

It is also natural to consider here n(t) to be a sample function of a
stochastic process. For the moment we shall assume that n(t) belongs
to Ly(—oo, o) and L,(—oco, o0) and has its Fourier transform n(f).
Then we have the relation

2 =32 AN+,

and thus if we solve the following equation for the unknowns lej( f)
(7=1,2, ---, k), in place of the former equation for fij(f)s,

W H)=2ANe(f) =12, k)

we get an approximation to A;(f) contaminated with the noise n(f)).

Now if we can assume that there is a set of frequencies (f;, fi, « - -,
fv) for which A,(f)=A4,p¢=1,2, ---, N: j=1,2, ---, k) holds and that
n( f,)s are mutually independently distributed following one and the same
distribution, then the relation

s f)=E Ap(f)+n(f)  (@=12 -+, N)

suggests that we are just confronted with the problem of estimation of
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multiple regression coefficients. It should be noted here that the wvari-
ables are complex-valued.

3. Regression analysis of complex variables

In this section we shall engage ourselves with a necessary extension
of Fisher’s lemma, on the orthogonal decomposition of real Gaussian
random variables [4, pp. 379-381], to the case of complex variables. The
result will be used in the later section for the construction of a con-
fidence region of our estimate of the value of frequency response func-
tion at a preassigned frequency. Complex random variables we treat
in this section are supposed to have real and imaginary part which are
mutually independent. Complex random variables are said to be mutually
independent when their real and imaginary parts are all mutually in-
dependent. Now consider complex random variables #n,(v=1, 2, ---, N)
which are mutually independently distributed with the first and the
second order moments

En,=0
ERen,)'=E(Im n,)=d",

and suppose that our observations are made on the variables x,,, ,, - -,
%, and x,,(v=1, 2, ---, N) satisfying the relation

xo,=j§‘_, Ag,+n,  =1,2 ---, N)
=1

where x,,, %;, * -+, ¥, are considered to be observable non-random varia-

bles.
Here we assume that n, follows a (complex) Gaussian distribution.

Then the likelihood function L=L(xy, %o, * s Ton; A1, Ay, -+ -+, Ai, %) i8
given as follows:
)

SR
L=(gogr) o (~ 52
The maximum likelihood estimate (A, A, -+, AJ) of (4;, 4;, -++, 4,) is
obtained by finding the values of A;s which minimize the sum of squares
in the second parenthesis of the right hand side. These values are given
as follows :

k
Loy _jgl Afwjv
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A, (#, %))
A, (wo; x!)
. =L—1 .

_ fik _ _ (4, ) _

where

(@1, 1) (X3, 1) -+ (@es @)
@1, @) (3, 3) + -+ (X, X5)

(xn. ) (xz;.x;) tee (wky. Ze)

N
(xj’ wl)=§ Ly Elv (jr l=0: 1y 2; ] k)

and it is assumed that N=k and L' exists, i.e., that the (column) vec-
tors x,=(&,1, %5, -+, T;4)"¥(F=1, 2, -+, k) are linearly independent as
an element in the N-dimensional complex Eucledian space where the in-

k.
ner product (x;, x;) of two vectors z; and z, is defined as above. > A;x;

i=1
gives the projection of x,=(%y, %w, -, Zox)” on the k-dimensional sub-
space spanned by the vectors z,, @, ---, x; and thus

Az, )=0 =1,2, -, k).

M=

(@~
1

J

k A
By putting mo=12 Ax;+n into above formula for A;
=1

Al A, (n, z,)

Ag Aa (n! xi)

. == . +L_l .
A LA _(my ) _

[N
From this we can see that the vector p=jZ (A;—A,)z; is the projection
=1

of n=(Ny, N, +--, ny)" on the space spanned by the vectors =, =, ---,

%, and thus in the above representation of A,s n may be replaced by p
to give

*) (21 25, +++, 25) 7T signifies the column vector transposed from the row vector.
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AI—A, (p, )
A,—A, (D, 25)
. :L"l .
_Ak_Ak_ _ (D, ) _

This shows that (A,—A,)s are linear functions of the vector p.
Now 7 can be represented in the form

N="Ne+ M+ « -+ +Nnly

where ¢; denotes a unit vector of which the jth component is equal to
1 and others are all equal to 0. Let us consider another representation

n=md,+md;+ - +mydy

where the set (dy, d,, -+, dy) is forming an orthonormal basis, i. e.,
(d;, d;)=4¢,, and d;, is a Kronecker’s delta. Under the present assump-
tion of independence of n,s we have Em;n,=26¢%,, and from this and

the relation m;m,=(d;, n)(n, d;)=d!nn"d;, where % and d, denote vectors
of which components are complex conjugates of those of n and d; re-
spectively, we get

Emjml=20'2(dl, dj)
=20'26ﬂ .

By using this last equation we ecan prove, under the assumption of nor-
mality of the distribution of n,s, that m,s are mutually independently
distributed following one and the same type of distribution as that of
n,s. Here we shall consider that the first & vectors d,, d,, ---, d, are
selected in the subspace spanned by the vectors z,, x,, ---, 2, which are
assumed to be linearly independent and that the residual N—k& vectors
dis1y diys, -+, dy are forming a basis of the subspace which is orthogo-

nal to the space just mentioned. We have already seen that (4;,—A))s
are represented as linear functions of the projection p of n into the
space spanned by the vectors z;, %,, ---, %, and thus they are, as func-
tionals of the random vector p, distributed following a Gaussian distribu-
tion and are independent with any number of linear functionals, which
follow a Gaussian distribution, of the residual random vector r=x,—

koo
jz=}1 Aix; .
Obviously we have
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Inlf=llp[F+IrI}

where ||z |f=(x, ) for any vector x, and by using the above represen-
tation we have

IpIF=3 Im,

N
lrif= 3 [m; .
j=k+1

From this last equation it can be seen that ||7][}/2¢' is distributed follow-
ing a Y’-distribution with d. f. 2(N—k) and is independent of any linear
functionals of p. Now taking into account the relation

A1—A1 (n, x,)
A;— A, (n, )
. =L-1 .
_ A—A, | - (n, 2)
we can see that E(A,—A,)zO (4=1,2, ---, k) and we can get the vari-
ance convariance matrix of AAj=Aj—A,(j=1, 2, .-+, k) as follows:
..... |

j| EAAAA, |=20'L,

ie.,
EAAj_AZl:ZG’Aﬂ

where 4;, is the (j, l) element of L.
From these observations it can be concluded that the following theo-
rem holds, which enables us to construct a confidence region for A;.

THEOREM. (N— k)—ll—Al—éﬁT[i —AL is distributed following an F-distribu-
7i

tion with d. f.s 2 and 2(N—k), and it holds that

pflad ] < R@)} =5
I'4; ]
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where

R(@) =4/ L ¥ & F(2, 2N—F), 3)
J

and F(2, 2(N—k), ) is defined by the relation
P{Fin, <F (2, 2(N—k), 0)}=0

where Fy_., denotes a random variable which is distributed following
an F-distribution with d. f.s 2 and 2(N—k).

In this theorem |[|7 | represents the norm of the residual and

| A, ['4;} represents the contribution of &, to the norm of the projection
which is proper to x, in the sense that this contribution cannot be as-
cribed to any linear contributions of x,s other than x;. Such an inter-
pretation of the result clarifies under what circumstances we can ex-
pect small values of R(3).

Here we shall introduce three quantities 73 ...k, 737 12...5.... and
7% 12...5... Which are defined by the relations

E|ln|f=Q0=7 n.)E |z |

E||n|P=Q0=7%, w.;.0E(lln |F+] 4, [457)
-
| A MG =1 e | 2 A 3 [

By analogy to the multiple regression analysis in real case we shall call
72 ...« the multiple coherency between z, and @, 25, - - -, @ and 73, 15...5...
the partial coherency between =z, and z;, for a given set of values
z,(v#£7, v=1,2, ---, ky®. Obviously 7} ... and 73, 1...5.... are the direct
analogues of the squares of multiple and partial correlations of real
variable case, respectively. We shall denote sample values of these
quantities by 7 p..ks 7os, 1305 @0d 9} 1. fox . They are given by the
relations

[|7[f=1— o o) || @0 |
17 1P =@ =7, i)l 1+ A, 1453

A A k A
|A; PAT} =93, 1aefek HE Az, I

*) These definitions are in accordance with those in the paper by Tick [7]. The use
of the terminology ‘‘ coherence function’’ and *‘ partial coherence function’’ in the paper
by Enochson and Piersol was also suggested by Mr. Piersol in the formerly cited letter to
the present author. Nevertheless, as the author does not know the strict definition of their
coherence functions, the present definition of ‘“ partial coherency '’ may be used in a different
context from their ‘‘ partial coherence function.”
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These relations and the relations
k
E|lz |f=E]|n|+] .ElA/wj I

kA
lz IP=llr P +115 A, P

can be used conveniently to get useful expressions of the results obtain-
ed in this section. Taking into account that E||n [=NX2¢® we can
get, by using the present relations, such expressions as

EIAAj I2 — 1 ( 1—7‘3]’ 12...}..* )
|A;

2
TO], 12...;...k

N
%< 1—7 >

2 2
ro, 12000k 07, 12000 Feeek

and the corresponding

R(o)=— (A Hnien ) g, 2(N—k), )
N—k Tozj, 12eeeforek

_ 1 ( 1 =76 .t )Fz AN—k), &
N—F\ 32 ol 12t @ 2( ) 9).

4. Harmonic analysis of a stationary time series

In practical applications of the method of estimation of the frequency
response function, we often encounter with the case where it is natural
to consider the additive noise n(t) to be a sample function of a station-
ary stochastic process, and observations are made only over a time in-
terval of finite length, say [—T, T']. Thus we shall hereafter consider
n(t) to be identical in this interval with a stationary process s(t), defined
over the whole line of ¢, and to be equal to zero outside the interval.
We shall assume s(t) to be real and strictly stationary with Es(t)=0
and FE|s(t) ’<oo. Further it is assumed that R,(z)=FEs(t+7)s(t) is a

continuous function of ¢ and | |Rfz) |dr<oo. In this case s(t) has a
bounded and uniformly continuous spectral density function p,(f) which
is given by py f)=S°° exp (—i2rfr)R(x)dr. We shall define for any

function z(t) which is integrable over any finite interval of ¢ its modified
Fourier transform Z,(f) by

L 0" exp(i
Zi(f)=—=| " exp (—iznsten(ia
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where T'< oo and 2,(t)=2(t) (|t|<T), =0 (|t|>T). Under the present
assumptions of s(t), we can expect that the square of the modulus of
sr(t), and a fortiori s(¢f) itself, is integrable with probability one [5,
chapter 2, section 2]. Thus for =(t) its modified Fourier transform
N:(f) exists and is equal to S;(f). Hereafter we shall analyze the

statistical properties of {NT(f,); fi=—2— v=0, *+1, +2, } Obvi-

2T

ously N, (f) +2Ts are the Fourier coefficients of a periodic signal
which is of period 27 and is identical to n(t) almost everywhere in the
interval [—T, T]. As En(t)=0 we have EN,(f,)=0 (+=0, +1, +2, ---).
Here we adopt the spectral representation of the stationary process s(t)

st)=|"_exp (i2ert)S(f)

where S(f) is an orthogonal process with E |dS(f) =p.(f)df. Taking into
account the relation Nz(f)=S,(f) we have

N:(£)=\"_ Wa(f.— )as(s)

where

Wl f) = ‘/;_T S’T exp (—i2x ft)dt

or the modified Fourier transform of w(t)=1.
From this representation of N;(f,) we can see that

EN(AINTT)=\"_Wel £.— Y WF= D)t

where p,(f) is the power spectral density function of the process s(t).
By using Parseval’s equality we get

| iwepyrar=—=\" at
=1,

and from this and the relation

THT

o(T) (T)
| W =" W s
—T) Ta(T)

we can see that for any §(T)>0

.o .
5i S | Walf) ldF=1
o(T)

T—oo J—

holds if only Té(T)—>oco(T—>o0). Now as p,(f) is uniformly continuous,
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there exists for any ¢(>0) such a 4 that |p(f)—p(f)) | <e holds if only
fi and f; satisfy the relation |f,—f,]|<d. Here we shall choose a o(T)
(>0) which satisfies

o(T)—>0 and To(T)—>oco as T—>oo.

Then we can show that for any >0

| BN ONF =, (L32[ Watri— ) Wath= 0 | <e

holds if only |f,—f,| <23(T) and T is sufficiently large.
Further, from Parseval’s equality we can show that

| W=D WF=Ff=1  (fi=F)
=0 (fL#f).

Thus we get a conclusion: if T is sufficiently large then for f,, and Ju
satisfying the relation |f,—f, | <26(T) it holds that

EN{f)N:(F)=o(f) (f.=f))

where =~ denotes that the difference between the both side members of
~ is bounded by an arbitrary but preassigned positive constant which
is independent of the choise of f,, and J.. When |f,—f,| =26(T) holds
we have

| EN(f)Nz(f,) | éBs NWe =) || We( £ f) | df

=5}, +{)

where B is the largest value of p,(f) and

§1= 5 | WelFo— ) || Wel f— 1) | df
<¥(T)

7,~7

Sz_—. S | We(£,— 1) || We(fu—f) |dS .
2uT)

17,~1

Here we have from Schwartz’s inequality
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S| Pt 1] | Welf= ) taf ]

If,~112XT)
(T 1/2
<[1-{" 1 warypar |
-T)
Taking into account that in the present case the condition |f,—f | <d(T)

implies |f,—f | =6(T), we can get

§ ég. | Wel o= ) || WelFu— 1) |df .
1 Jig,~r1zar)

The right hand side member of this inequality is just equal to S’ and

by using the above evaluation of S we get the second conclusion: if T
2

is sufficiently large then for any f, and f, satisfying the relation |f,—f, |=
20(T') it holds that

ENz(£)N(f)=0

where the meaning of the symbol =~ is the same as that defined in the
former conclusion.
By combining these two conclusions we get the following :

THEOREM. As T tends to infinity it holds that

EN:(f)N(f)=p(f)+0l1)  (f.=1)
=0+0(1) (L#S)

where o(1) denotes a quantity which is bounded, uniformly with respect
to f, and f., by a constant which tends to zero as T tends to infinity.

By using the formerly defined symbol =~ the relation just stated in
the theorem can be expressed as

EN{(fIN(f)=p(f)  (fi=f)
=0 (fL#f) .

Now as our s(t) is assumed to be real it follows that

No(£)=Ne(=F)

and we can get the relation

EN(f)Nz(f,)=EN(f)Nr(—1.)
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~p(f) (fui=—1)
=0 (fu#—1).

For a set of general complex random variables X,=U,+%V, and X,=
U,+1Vy(U;, V, real), the conditions EX,X;=EX,X,=0 means EU,U,=
EV,V,=EV,.U,=EV,U;=0 and the condition EX,X,=0 means EU?=EV?3.
Combined with these facts, above observations lead us to the following :

THEOREM. When T tends to infinity, if the distribution of {Nr(f):
v=0,1, 2, ---} tends to be Gaussian, the real part and imaginary part
of Nr(f) temd to be mutually independent and with the same variance
p f.)/2, with the exception of Np(f,) which has identically vanishing im-
aginary part and has a real part with variance tending to p,( f,).

If we can assume the process s(t) to be Gaussian, then the final
statement of the theorem holds true. It seems that even if the original
process s(t) is not Gaussian, for a wide class of s(t), Ny(f.,)s may often
be expected to be nearly Gaussian, at least in a limited range of fre-
quency, by a type of central limit law which assures the asymptotic
Gaussian property of the outputs of very narrow band filters having a
wide band noise [6]. Thus, in the practical applications, it is expected
that the results in the following sections of the present paper, obtained
under the assumption of normality of N (f,), will serve as a fairly good
approximation to the reality.

5. Estimation of the frequency response function

In this section we shall turn to the estimation of the frequency
response function. Let us recall the fundamental relation in section 3

2 F)=3 APz +n(F) .

Corresponding to this relation we have for an observation of finite du-
ration

Xa(£) =2 AT+ NS) =0, 1, 2, ...)

where J(f,) represents the effect of the transients in the system at t=
—T and T. Assuming that T is sufficiently large compared with the
decay time of the transient response of the system, we shall consider
the approximate relation

Xor(fv)=jk§l A X (f)+N(f) (=0, £1, £2, ...),
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which is exact only for the cyclic inputs with period 27. It should be
remembered that for the practical application of the results of the fol-
lowing analysis N(f,) should be understood as J(f,)+Nr(f,) and thus
even if n(t)=0 there still remains the effect of transients in the system
at t=—1T and T as a disturbance to the observation.

In many practical applications, as we have discussed briefly at the
end of the last section, it will be a fairly good approximation to the
reality to assume that the distribution of {N,(f) »=0,1, 2, ---} tends
to be Gaussian as T tends to infinity. In this case, it can be seen from
the theorem of the last section that N;(f)s (»=0, 1, 2, ---) tend to be

mutually independent. Taking into account of the definition f,= 2vT ,

we can see that in the relation

Xal£)=3 A )X,z £+ Ne(£)

(=L+1, L+2, -+-, L+N)

Sr+n—S1+1 can be made so small, by making 7T sufficiently large, as to
make p,(f) and A,(f) to be nearly equal to some constants p, and A,
respectively (j=1, 2, ---, k) for fis (v=L+1, L+2, --., L+N).

As an approximation to this situation, we take up here the model

Xa(£)=3 A, X;2(£)+ No(£)

(v=L+1, L+2, -+, L+N),

where N;(f)s are assumed to be independent and Gaussian with EN,(f,)=
0 and E(Re N:(f,))’=E(Im N;(f,))’=p,/2. For this simplified model, by
using the theorems in sections 3 and 4, we can get an estimate (4, A4,,
coey A of (A Ay, -, A

—|-1

A (X X) (X X) (X X) || (X X)) |
A, (X X)) (X, Xo) -+ (X, X3) (X, X5)
A | (XX & X)X X | (X X

where
X X)= 3] Xn(£IXalF) -

We get, from the result of section 3,
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E,AAj '2 __L 1_ng, 12--»?---1:

,A]' |2 N gj, xz...f...k

where 73, 1....;.... denotes the partial coherency between X, and X;. Natural-
ly, this 73, ;5...5.. Will be called the partial coherency between x,(t) and
x,(t) at this frequency.

Confidence region for A; can be obtained using the sample partial
coherency entirely analogously as in section 8, and we shall not repeat
it here. For practical applications of this last simplified model, the con-
dition A,(f)=A,(v=L+1, L+2, ---, L+N; j=1, 2, -+, k) should be satis-
fied at least approximately, otherwise the bias of the present estimate
(Al, A,, cee, fik) can not be ignored.

6. Practical estimation procedure

Even though the high speed computers are available today, to follow
directly the estimation procedure described in the last section will cost
too much to make the procedure practically useless, and we shall pro-
pose in this section a substitute for the quantity (X, X;). Obviously

X;r (L) Xor(f)2T (v=0, +1, £2, --.) are the Fourier coefficients of Cﬂ(t)
which is given by

~ 1 T *
le(t) = WS r m_, (t + T)xl(‘l')d‘l'

where z(t) is defined almost everywhere by the relation x¥*(t)=x,(t) for
[t|ST and 2¥2nT+t)=2F(t) (n: integer). Then for a properly select-
ed function D(t), which is usually called lag window and is periodic with
period 2T in this case, D(t)C'ﬂ(t) has Fourier coefficients

(B wXir(fo-Xoz( £ v=0, £1, £2, -}

where 2Tw,s are the Fourier coefficients of D(f). By using these
S w, X, (f,-)Xiz(f,—,) in place of (X;, X;) of the above formula of (A4,

Ay, -+, Ay) we can get an estimate of (Ay(f), A(£), -+, AlLf)). The
advantages of adopting such substitution will be as follows: a) by using
a D(¢f) which vanishes outside an interval [—L, L] (L<T) necessary

range of computation of éjl(t) is reduced to [—L, L] from [—T, T], b)
undesirable effect of local variation of A,(f) may be reduced by proper
selection of D(t). We shall not go into the details of the analysis of
the effect of adopting D(f). Necessary informations will be found in
the papers [2, 3].
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For practical applications we shall further replace the above circular
C'ﬂ(t) by a non-circular

Cﬂ(t)::%S:x”(t+r)x”(r)dr :

Adoption of this non-circular C;(t) corresponds to the model where the
observed output x,r(t) is put into correspondence with the non-circular
input z,7(t), %.r(t), - -+, %er(). Maximum possible bias due to the tran-
sients in the system.will be reduced by the adoption of this non-circular
model. In practical applications it is expected that the magnitude of
the sampling variability of the estimate exceeds by far that of the bias
here considered and the main reason for the adoption of the non-circular
definition is its expected reduction of sampling variability. By ignoring
the effect of the transients in the system we get a (approximate) rela-
tion

Cut)=32 \" h@)Cut—oMo+Cult)  A=1,2, -+, k)

where

1

Cult) =57

S: n*(t+7)z(c)de |

and a corresponding relation for non-circular C"ﬂ
k oo
Cult)=3} S_m h(0)Colt—o)do+Col®) (=1, 2, ---, k)

where

1

S: Rt + 0t (c)de

These relations form the basis of our estimation procedures and the
sampling variabilities of our circular and non-circular estimates are caused
by the existence of the terms C,(t) and Cy(%).

We shall here consider the case where the input {z,(¢), z(t), ---,
x:(t)} is a sample function of a k-dimensional stationary process. Such
a circumstance will be the most common in practical applications of the
present estimation procedure. In this case, it can be expected that in
the expressions such as

C~,l(t)=Cﬂ(t)+ﬁS:_t o (t+c—2T)w(c)de  (£>0)

(jyl=1y 20 Y k);
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the contribution of the second term in the right hand side is usually
less significant relatively than that in the expressions such as

~ _ 1 T _ \de
CuO=Cul)+— | | mlt+e—2T)meds  ¢>0)

(l=1, 21 ttty k)!

and analogously for t<0. This is due to the existence and non-existence
of the correlation between the variables considered, and we can expect
that the sampling variation of C,(t) relative to Cj(t)s is smaller than
that of C,(t) relative to C;(t)s.

Thus to replace C,i(¢) by Ci(t) (4,1=0,1,2, ---, k) will only result
to some (minor) reduction of the sampling variability of our estimate.
This is the reason why we propose the adoption of non-circular C;(t)
for practical estimation procedures.

Hereafter we consider the case where the sampled data {x,(nAt),
2y (nAt), x(nAt), - - -, z(nAt); n=1,2, ---, M} are given. We shall as-
sume that A¢(>0) is sufficiently small so that the effects due to aliasing

are negligibly small. For this case we adopt the following estimation
procedure :

1) Cu(m)(m=0, 1, +2, ---, +h; 3,1=0,1, 2, - -, k) are calculated
by the following formulae

Culm)=——3] B (m+mn)  (h>mz0)

= S BmAma(n)  (—h<m<0)
and
Couth)=—L"S7 & (h+n)3
i )—W"gle( +n)&.(n)
1 LA ~
Ci(—h) =—éﬂ—l ng_n;h Z,(—h+n)Z,(n)
where

Z,(n)=w,(nAt)—x,
— 1 X
x, =ﬁ nzzl xj(nAt) .

2) Numerical Fourier transforms 7,(r) (r=0, 1, 2, ---, k) of C,(m)
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are then calculated by the formula
pulr)= mé‘._h exp (—i2n-;'7m>0ﬂ(m) .
3) ffiﬂ('r) are smoothed by a properly selected weights {a.} to give
balr)= 3 a.pulr—mn).
4) Estimates of [A\(S7) Ao e A5 )} and the

2hAt 2hAt 2hAt

necessary quantities for the construction of the confidence regions are
obtained by the following procedure :

4.1) We arrange the p,(r) in the following matrix form

columns
1 2 ek k41 k42 E43 --- 2k4+1
rows 1 T Du(r), Du(r), oy Dulr) Bu(r) 1 o - 0
2 Pu(r), Du(r), -5 Dulr) Pulr) O 1 - 0

k D)y Daalr)y <+, D7) Deo(r) O 0 oo 1
E+1|_ Du(r), Dulr), ---, Do) Doo(r) O 0 e 0

Here it should be noted that ,(r)=p,(r) holds, where the bar denotes
the complex conjugate.

4.2) Let us divide the 1st row by p,(r) and then subtract from the
jth row the 1st row multiplied by p,(r) (7=2, 8, ---, k+1).

4.3) We then divide the 2nd row by the (2, 2) element of the ma-
trix and then subtract from the jth row the 2nd row multiplied by the
(4, 2) element of the matrix (j=1,3, ---, k+1).

4.4) The operation on the rows of the matrix is continued up to
the kth step where we get the final form of the matrix

1 2 -+ k k+1 Ek+2 k+3 2k+1

1/710 --- 0 ay Tu Tig *or Ti

2 0 1 e 0 a, Ta Teg *** T

k 0 0 A 1 [247% Tr1 Tea *°° Tir
k+1~ O O A 0 € ﬁl ﬁg e ﬁk ]
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5) Our estimate A,('r) of A,( 2’;" v ) is given by
Afr)=—p,
=& j.
The sample multiple coherency 7; 1,....() and the sample partial coherency

r
2hAt

72 epa(r) at the frequency are given by

fo’; e(7)=1— As

00

2,01
A3 N — |a1|"'y
Tos, nefoe(1) = -
e+ |ay ['ryf

6) It is expected that the following equation holds approximately;

Bl 1= 375 0] 2, 0)

where

1/2
’

B, ()= (o T4 F(2, 2AN—), 9))

N—k |a;
F(2, 2(N—k), 0) is as defined in section 3, and N= the integer nearest
to M1 . We use this R; ,(r) as an indicator of the sampling
h o 3
25 )

variability of fi,(r). By assuming the above stated probability relation,
we can use this R, ,(r) to construct an approximate confidence region
for A,(r).

Comments: a) As a possible selection of the weights {a,} to be
used at the stage 3), we shall propose the successive application of the
following sets [1]:

a ay=a_, Ay=a_, ay=a_;
w,: (0.5132 0.2434 0 0 )
W;: (0.6398 0.2401 —0.0600 0 )
W;:  (0.7029 0.2228 —0.0891 0.0149).

As to the decision when a significant difference between the results
is observed, the statements in the preceding paper [1, pp. 11-12] will be
available.
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b) For the effective use of the time shift operation, by which is
meant to use Cy(m+K;) in place of C,;(m) for properly selected K;, to
compensate for the rapid change of the phase shift of the frequency
response function also confer the paper [3]. Such an operation may be
applied even for C,;(m) with [#0 to reduce the bias due to the adop-
tion of a lag window.

c) The definition of N for the approximate equality of 6) is ob-
tained following the considerations in the former papers [2,38]. It is
still tentative and may need further theoretical investigation to assure
the validity of approximation. Nevertheless, as will be seen in the nu- _
merical examples in the following section, such an approximation pro-
vides a quite valuable information of the sampling variability of our
estimates in practical applications. This fact was also recognized em-
pirically in the applications of the method to the case of single input
[1, p. 15]. C

d) In the definition of R, ,(r) at the both side ends of the frequency
range which correspond to r=0 and k, F(2, 2(N—Fk), ) should be re-
placed by F(1, N—Fk, ) which is obtained by replacing Fiy v, by Fi_,
in the definition of F(2, 2(N—k), 6).

e) When someone of the (7, j) elements loses the significant digits
during the process of computation of the stage 4), computation should
be stopped. In this case somewhat finer analysis of the dependency be-
tween the inputs is necessary.

7. Numerical examples

In this section we shall show some numerical examples of applica-
tion of our estimation procedure. Here we treat the case k=2. The
inputs ,(t) and =,(t) were taken from a real record of some physical
phenomenon and it was expected that they were highly correlated.

After the time-sampling, the data {z,(nAf)} and {z,(nAt)} were smo-
othed by numerical filters with frequency response functions A(f) and
Ay(f) respectively. The outputs of the two filters were added together
to produce the output of the (artificial) system.

The first portion of the data was then discarded to simulate the
practical observation of the system operating under the stationary in-
puts and the total of M=800 points were used for the estimation. An
nearly white noise of rather low level was then added to the output of
the system to produce the observed values {z,(nAt)}. Numerical values
of Cj(m) (4,1=0, 1, 2) are presented in Fig. 1. The power spectra of
the inputs and output are shown in Fig. 2. The level of the power of
#y(t) is low compared with that of x,(f). As will be seen in Fig. 4 the
gains |A,(f)| and | A,(f)| are of the same order of magnitude and thus
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it can be expected that to get a good estimate of A,(f) is fairly difficult.
Our estimates A,(r) and Ay(r) of Al(WZt) and Ag<§}-:&—t> are il-
lustrated in Fig. 3 for the case h=100. Two kind of estimates, one
obtained by using the window W; and the other by W, are illustrated
with the corresponding theoretical values of the frequency response

functions. In Fig. 4 are illustrated IA,(r)ls with the corresponding
R;, (r)s with 6=0.95 for the case h=60. In this figure, values of R, ,(r)
are missing for those » where the sample multiple coherency is greater
than 1 or less than 0. As is obvious from the Fig. 2, the power spectra
of the inputs show significant variations at some frequencies and k=60
is inadequately small to avoid the undesirable effects of the side robes
of the lag window. This causes the appearences of some quite irregular
numerical values in the result obtained by applying W,. In the same
figure, estimates of the phase shifts are partly illustrated. Obviously
we should have introduced some time shift operation to compensate for
the rapid change of the phase shifts at the frequencies corresponding
to the peaks of the gains. The results show clearly that R, ,(r) with

0=0.95 is a fairly good indicator of the sampling variability of Aj('r).
In Fig. 5 is shown an estimate of | A,(f)| obtained by using the output
before contamination with additive noise. As was mentioned in the for-
mer section, besides the distortions induced by the numerical procedure,
the transients in the system at the beginning and at the end of the ob-
servation introduces distortion into the estimate. It seems that R, ,(r)
is effective even as an indicator of this type of variability.

As was for the case of single input [1], one of our main observa-
tions in these numerical examples will be the practical utility of this
R/, 0.95 (T)

It should be remembered that numerical examples in this section
are only intended to show partly the practical applicability of our meth-
od under rather bad circumstances and much better results can be
expected under better circumstances with fuller exploitations of the
results obtained in this and the preceding papers [1, 2, 3].
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