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1. Introduction

Let X be a random variable on a probability space (2, X, p) with
values in an abstract set %, endowed with a o-field. If the probability
distribution of X in X depends on a parameter ¢, an element of a set
9, denoted by F(z|6), then an important statistical problem is to estimate
8, or a real valued function g of 4, based on an observation of X in an
‘optimal’ way relative to a general convex loss function. Here the
optimality has (at least) two interpretations leading to two types of prob-
lems as follows.

Let W(-) be a symmetric nonnegative convex function on the line
vanishing at the origin and W(x)1 oo as £ 1 co. The first problem is this.
If M is the class of all unbiased estimators of g¢g(f) [i.e. random varia-
bles (r. v.’s) T(X) such that E(T(X))=g(8), 0 € 9], for which E(W(T—
9)) exists, then the problem is to find (necessary and sufficient) condi-
tions for the existence (and uniqueness) of estimators 7'* in I which
are optimal at 4, relative to W, in the sense that E,[W(T*—g)1=

E,[W(T—g)], for all T in . Here E,,(f(X)):S£ f(x)dF(x |6), and W is

called the loss function. The second problem is to estimate the value ¢
of 6, ar.v.on (2,2, p with values in 9 which has a o-field in it.
More precisely, if the distribution of X depends on 6, then the problem
is to find an estimator T* on X of g(6), such that E[ W(T*(X)—g(€))]1=
E[W(T(X)—g(6))] for all T for which the right side exists. Here E(f)=

Sxxs f(x, 6)du(z, 6), where v(-, -) is the joint distribution of X and 6.

(The symbols E, and E will be used in this sense.) The solution T'* in
this case is termed a Bayes estimator. (Optimality has other interpreta-
tions such as the minimax type, but only the above two cases will be
considered here.)

* This work was supported under contract No. DA-36-061-ORD-477 and NSF grant
GP-1349.
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The purpose of this paper is to consider both the above problems,
(i. e., the Bayes and unbiased cases) and to show that similar (closely
related) methods and techniques yield the solutions (cf. sections 2 and
3). Also an explicit construction of the optimal estimator in each case
will be presented (cf. section 4). Finally, the technical relations be-
tween the results of the above two problems will be discussed.

At this point a comparison of this paper with earlier results is in
order. The problems of the first (i.e. unbiased) type have been exten-
sively treated in the literature if W{(x)==? and a general treatment for
W(x)=|z|?, p>1, is found in the important paper of Barankin, [1].

Then some of these results were extended in [6] if W( - ) is convex
and its complementary function V(-) (see (1) below) satisfies a growth
condition (V(2x)<CV{(x)). The general case (W( - ) is an arbitrary con-
tinuous convex function) was briefly outlined in ([7], section 5). The-
orem 1 below is a completion of the latter. Thus W(x)=|x |, which
was not treated before in these studies, is also covered now. The Bayes
estimation for general convex functions is treated in [3]. However, if
the parameter satisfies certain prescribed conditions, then the methods
of [3] do not apply and that case is treated in theorem 2 below so that
[3] and what follows complement each other. The construction of op-
timal estimators was given in [1] for the case, W(z)=|z ", 1<p<oo,
and the corresponding result for (general) convex loss functions was not
available before. This is treated here for a certain class. Further gener-
alization is clearly possible in this case, but it depends on several un-
solved problems of the Orlicz space theory. The present note subsumes
almost all the earlier results in this direction. To aid reading, some
explanatory comments are inserted at various places.

2. Optimal unbiased estimation

Let {P,, 6 € 9} be a family of probability distributions on ¥ of the
r. v. X. Here X may be a vector or a sequence r. v. Suppose that P,
is dominated by a fixed (¢-finite) measure 1, with densities p,(x)(=p(x |6)).
If W(-) is a symmetric convex function on the line such that W(0)=
0, W(t) 1} o0 as t 1 oo, then it is called a Young’s function and there ex-
ists a convex function V{( -) with similar properties and satisfying the
(W. H. Young’s) inequality (cf., [8], p. 25, and [5])

(1) ab= W(a)+ V(b)

for all real numbers a, b with equality if and only if either a= V’(d) or
b=W'(a). [Here W', V' are derivatives of W, V which exist a. e. (Le-
besgue).] Then W, V are termed complementary Young’s functions
and it can be seen that they satisfy also
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(1) lab |z min (W(a), V(b)).

If LY is the space of (equivalence classes of) real functions on % such
that fe LY if || f ||y <oo where

(2) 17 lw=sup |, 17n1dz,  with [, vimaast,

and where di=p(x|6,)d2, then it is known that || - ||, is a norm and
with it L" is a complete normed linear (or B-) space. Sometimes IL*
is termed an Orlicz space. (Here and elsewhere f € L” means f is any
member of the equivalence class to which it belongs.) Moreover it con-

tains all the r.v.’s T(X) such that S£ W(T(x))d2< oo. (See [T], sec. 1.
Only special cases of that section are used here. See also [5].) The

space L” is defined similarly. Assume that DFM €L for §in 9, so

D,

that Sf TDd exists (by Holder inequality) and it follows that

(3) 00)=|, T@p(&| 02 =E(TX), 0¢9.
There is another (equivalent) norm Ny( -) on LY given by

(4) Ny (f)=inf {k>o, SQEW(—‘;C.—)dlgl} , FeL”,

and the norms (2) and (4) are connected by

(5) Nw()=I S llw=2Nn(f) .

Thus L" is a B-space under either norm. Unless the contrary is stated,
in what follows the norm in LY is taken to be (4) and that in L is (2).
Due to (5), this is just a convenience and a result of [7] can be directly
used. (See also [A].)

With the above preliminaries the problem can be recast and the so-
lution given as follows. It is more convenient, for the L"-theory, to
consider the optimality of an (unbiased) estimator T' of g(6) at 6, as the
minimum value of Ny(T—g(6,)) instead of that of E,|[ W(T—g(8,))]. (This
is actually more general since the existence of the latter expectation
implies the existence of the norm but not conversely. Moreover, this
consideration corresponds naturally to the case W(z)=|z[?, p>1, of [11)
Let D(X, 0), =0, 1,2, ---, be such that (D, is defined above (8)) (i)

{D,}cL¥ and (ii) Sf TDd2=a;(0), 6 €9, where T is any unbiased esti-

mator of g(d), T'e L”, and «,(6), for each 8, are known constants. Such
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elements D; exist. In fact if 9 is the line and p(x|6) are differentiable,
then D,=[p(-|6)]'d'p/ad' are such functions whenever S . V(D))d21 < oo,
and the standard regularity conditions on p(x]#) for interchange of the
derivative and integral hold. (In this case SgD.dR=0, igl, also holds.)

In [1], D:=p(-|6)[p(:]6,)]*. It is not difficult to construct other types
of functions even without assuming the above regularity conditions.
Also without loss of generality g(6,) may be taken as zero, as otherwise

T=T—g(8,) will suffice in the following. The complete solution to the
problem of unbiased estimators that are optimal (at 6,) is given by

THEOREM 1. Let W and V be convex (Young’s) functions and let
L” and LV be the associated Orlicz spaces (relative to X and 2) with norms
(2) and (4). If McCL” s the set of all unbiased estimators T of g(b),

and {D;}CL” such that SETDidlzai(ﬁ), then the following conclusions

hold.
(a) P is nonempty only if (i) there exists a K such that for any
Jinite set {D;, ---, D} of {Di} and any scalars {a,, ---, a.}, (and fized
0¢€d9),

(6) IZa;a.-,(ﬁ)l éKHEaJDijnvy
i1 =1

and (1) {D;}CM", where M” i3 the closed subspace of L” spanned by the
A-simple (or just bounded) funmctions. On the other hand, if M is non-
empty (1) always holds whether or mot (it) is true, with K=Ny(T), T

in M. [So MV={f: Sa Vief)di<oo, feL¥, a>0 arbitmry}.]

(b) If TeM then Nu(T)z=K,=inf {K>0 satisfying (6)}.

(c) If Tye M, Np(T)=K, and V, W are continuous, then it is es-
sentially unique so that T, is the unique unbiased estimator of g(6) which
s optimal at 6,. There may be nonuniqueness if either W or V is dis-
continuous.

(d) If {D)}cMV is fundamental (i.e. spans M"), then M contains
at most one element.

Remark. If W(r)=|z|’, 1<p<oo, this was proved in [1] and if
V(22)<CV(z) (which includes the former) it was proved in ([6], theorem
4). Also it is known that a Young’s function W(-) must either be
continuous or, if it is discontinuous, must be of the form W(z)=0, for
|2 |<®(<o0), and =oo for |z|>x, In the second case, (since the
measure 2 is finite) L¥=L> (and L"=L'). Thus the theorem in this
case was already treated by Barankin ([1], p. 485) so that only the case
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that W{(-) is continuous is new. It will be treated here. Note that
W(x)=|z| is included now. The main point of this result is that W{(-)
is allowed to grow exponentially fast. In the case M”"=L", then a(ii)
is automatic and the statement of (a) can be stated as (6) being neces-
sary and sufficient. The present statement is more general since M"c
L” can be proper. [In [6], the growth condition should be on ¢. Through
an oversight ¢, ¢ were interchanged for this condition.] It is clear
that the optimal estimator at 6, in general depends on #, since 1 depends
on #,. (Note that g(4,)=0, by convension.)

PROOF. (a) First consider the direct case. If MM is nonempty then
(b) always holds whether or not a(ii) is assumed since, by Holder in-
equality and the definition of a;(6),

B, ®)] =15 |, 7D,421 SNu(T) 15 ., 11

If K=Ny(T), this is (6). Note that K is a constant independent of @
(#6,).

Conversely suppose the hypothesis of (a) holds. Since MYCL” is a
closed subspace it is a B-space and by hypothesis D, ¢ M¥. It then fol-
lows from (6) and a theorem of Hahn (cf., [4], p. 86) that there exists
a continuous linear functional F on M” such that F(D,)=ai(8), for i=
0,1, ---, and that || F||<K. If moreover K,=inf{K>0 satisfying (6)},
then the F may be chosen such that | F'||=K,. Now by ([7], theorem
4) this functional can be represented as

(7) F(D,) = Sm TDd2

for a unique T in L” where Ny(T)=|/F||. This T has also the pro-
perty by (7), taking i=0,

9(6)= SE TDdi= SE Tp(z | 6)d4, ,

so that it is an unbiased estimator of g(#) and N, (T)=K,. It follows
that Te¢IR and that T is optimal at 6,. It is remarked that (7) need
not hold (so there need not exist a T in L¥) if {D,})&M", (cf., [7],
theorem 4 and remark 2 after it). This completes the proof of (a).

(b) By the very definition of K,, it follows that Nu(T)=K, for
every T e In. ‘

(¢) If T,eM, Nuw(T)=K, and W,V are continuous then T\ is
unique. For, if Ty( € M) has the property N, (T,)=K, then by definition
(or convexity) of M, 1/2(T,+T,) € M and Ny(1/2(T,+T))=K,. Exclud-
ing the (true and) trivial case K,=0, one has by the triangle inequality,
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(8) K, Z1/2Nwp(T\+ T) <1/2[Nw(T) + Nu(T)]= K, .

From the continuity of W and V it follows that T,=aT, for some a>
0. Since K,=Ny(T)=aNy(T,)=aK,, it results that a=1. If W(-) is
discontinuous, however, L” = L=, the norm is equivalent to the sup-norm
so that (8) does not imply T,=aT,. If V is discontinuous L"=L" and
so L¥=L!, and in this case also (8) does not imply T,=aT, if T, is
positive or negative a.e. If these two cases are excluded, then T,=aT,
holds, a.e. Thus in general in these cases (W or V is discontinuous)
there may be nonuniqueness. This completes the proof of (c).

(d) If {D;jcM" is fundamental, then it is well-known that a con-
tinuous linear function defined on such a set is unique on MY. This
means that there is at most one unbiased estimator 7' in I that is op-
timal at 6,. This completes the proof of (d) and with it the theorem.

Note. If it is assumed that dP,(x)=ps(x)d2, where p,-) is a measur-
able function of z, then 2, need not be o-finite, as in ([1], p. 477). How-
ever, if {P, 6€9} is a family of probability measures that are only
dominated by 2, an arbitrary measure, then also p,(-) exists but, in
general, will not be measurable. Even then, however, p,(-) will be
“ quasi-measurable *’ (i. e., p,(-) will be equivalent to a measurable func-
tion on every set of finite A,-measure consistently), and the same will be
true of T in the converse part of (a) of the theorem. All the integrals
are defined for such functions also, and thus the result holds in this
generality with quasi-measurability instead of measurability. (ef., [7],
sec. 4 and references there.)

In the following section the problem will be considered from the
second (or Bayesian) point of view.

3. Bayes estimation

For the Bayesian case the problem takes on a different viewpoint.
The r.v. X has a distribution depending on a parameter 6, which is
also a r.v. on 2 to 9. For a given prior (or marginal) distribution of
©, if F(- |) is the posterior (or conditional) distribution of & when X
has the value x then the problem is to find a Bayes estimate T*(x) of
g(6) (based on x), i.e., to find T*(x) such that E*[W(g(6)—T*(x))]l=
E*[W(g(6)— T(x))] for all estimators 7. Here E* is the conditional ex-
pectation relative to X (or the o-field B of X). Equivalently to find a
T* such that E[W(T*—g(0)<E[W(T—g(0))] as mentioned in the in-
troduction. This problem was solved in [3], and the result will be quoted
now for comparison : Assuming that the conditional distribution F( - |x)
exists, that W'(t) is defined for all t+0, and that the following integrals
exist, the Bayes estimator T*( - ) is shown to exist and is given as a
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solution of the pair of integral inequalities :

W(g(6)— T(x))dF () = S( W/(T(x)—9(0))dF(6 | x)

S(a(v)z T(x)} g(H<T ()}

W(g(6)—T(x))dF (0 | r)< S W'(T(x)—9(0))dF (0 | x)

5(0(0)>T(3)) (9(O)=T (2D}

for almost all xz. These inequalities reduce to an equation if W'(0)=0.

In what follows, as in section 2, the minimization problem will be
relative to Ny, (T—g(0)) instead of E[W(T—g(6))]. This is more general
since the existence of the latter expectation implies the existence of the
norm but not conversely. The resulting T* will be termed a Bayes
estimator of g(6), relative to W( - ). If W( - ) satisfies a growth condition
[e.g., MY =L"] then it may be seen that T'* also minimizes the expecta-
tion. The general case will be considered below, referring the resulting
T* as the Bayes solution.

There is an associated problem of interest and it cannot be deduced
from the above. That will now be treated so that it complements the
former. Let {D;}cL” such that E?(D,)=0, i=1,2, ---. The symbols
L” and L” have the same meaning as before except that the functions
are defined on ¥x 9 and the 2 is now replaced by v, the joint distribu-
tion of  and X, (i. e., D,: ¥x9-real line). If it is a priori known
that E(g(@)Dy(X, 6))=a;, for all ¢, then the problem is to find a Bayes
estimator T*(X) of g(0) relative to the general convex loss function
W(-). A complete solution is given by

THEOREM 2. Let W and V be convex (Young’s) functions and let
LY and L” be the associated Orlicz spaces (relative to XX 9 and v), with
norms (2) and (4). If {D;}CL" is a family of r. v.’s such that g(6) €
LY, E3(D,)=0, and E(g(®)D(X, O))=a;, 1=1, 2, ---, then the following
conclusions hold :

(@) A Bayes estimator T of g(6) exists only if (7) there is a constant
K such that for any finite set {D;, ---, D, } of {D:} and any scalars
{alv ct an}

(9) | S o, | <K a0,

(1) {D;}cM”, the closed subspace of L' spanned by the v-simple (or
bounded) functions, and that for almost all x, {D(x, - )} is fundamental
i the subspace of O-functions of MY, relative to F( - |x). [Thuis last con-
dition is satisfied if {D;} is fundamental in M”.] On the other hand,
if there is a Bayes estimator T of g then (i) always holds whether or not
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(iz) 18 true. [So M"={f: Sa Viaf)dv<oo, feLV, a>0 arbitrary}.]

(®) If {D;}cM” is fundamental there exists at most one Bayes esti-
mator of g(6).

() If T is a Bayes estimator of g(6) such that Nu(T—g(0))=K,
where K,=inf {K>0, K satisfying (9)} and W(-) and V(-) are con-
tinuous then T is essentially unique.

Remark. The various expectations here are relative to the joint
distribution of 6 and X, and that the conditional distribution F( - |z)
is assumed to exist. Also compare the conditions here and in theorem 1.

PROOF. (a) The direct part is again easy. If T is a Bayes esti-
mator, let T(X, 6) =g(6)—T(X) so that a; = E(9(6)D,)=E[E*(TD,)] =
E[TD,]. From this it follows by Hélder inequality (let X,=%x9)

ljé aja;, | = l 83’0(1}"] a/jTDij)du(a;’ )

=1

< NoT) 1133 ;D v -

Setting K=Ny(T), this becomes (9) without the hypothesis, a(ii).

For the converse all the hypothesis of (a) will be needed. As be-
fore, (9) implies the existence of a bounded linear functional G on M"
such that G(D;)=a;, for all 4, and ||G||<K. If K,=inf {K>0, K satis-
fying (9)}, then G can be chosen such that ||G||=K,. [The same con-
clusion holds if {D;} in M" is fundamental.] By ([7], theorem 4) there

is a unique T in L” such that

(10) a=G(D)={, T(z, Dz, O4dola, 0), i=1.
Since also by hypothesis one has

an a¢=S£° 90Dz, O)du(z, 6), i=1,

it follows that

0={, 00— T, DID(=, O)ds, all i
(12) \
= Sa Sslg(")— T(x, )1Dx, 6)IF (6 | x)dx

where z is the (marginal) distribution of X. From the condition E?(D,)=
0, it follows that (12) holds whenever g(d)— T(x, 6)=T(x), say, where
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T(-) is a function of z alone, (and T € L¥) unless K,=0 in which case
T=0, a.e., (and g=0 a fortiori). For, if g(d)— T(x, 6) depends on @ also
on a set of positive F( - | x)-measure, then by a(ii) [{Di(x, - )} is funda-
mental], a function A( -, x) of # exists in M” (truncate the above suit-

ably and multiply it by the signum of 1tse1f) so that on a set H of
positive F( - | x)-measure,

[, 60T, O, 2)dF 6 |2)>0,

which gives a contradiction to the already established equation (12).
[Note that (12) is true if D, is replaced by any function in the subspace
of MV determined by {D.«, - )} and this is used in the previous state-

ment.] Hence T(6, z)=g(6)— T(x), and one has
(13) K,=||G |[=Nu(9(6)— T(X)) .

Thus T(X) in LY is the Bayes estimator of ¢(6), with risk K,. This
completes both (a) and (b). The other statements being immediate from
theorem 1, the proof can be concluded.

Note. The condition (9) and the statement (a) of the above theorem
can be imitated from the corresponding one of theorem 1, but it will
be more awkward to state. Now the choice of {D;} of the theorem is
not entirely easy. A brief indication of it in a special case, which can
be extended, is given in ([3], p. 845).

The results of this and the preceding sections are on existence and
they do not indicate how an optimal estimator can be constructed. This
problem will be examined in the next section.

4. Construction of the optimal estimators

The construction of optimal estimators is a nontrivial task and for
the convex W( - ) it is somewhat more involved than when W(z)=|z J?,
considered in [1]. Even that case was not easy. Due to some technical
limitations, some growth conditions will be assumed in contrast to the
general character of W{(:) of the preceding sections. This however
generalizes the above special case considerably.

The (Young’s) convex functions W, V to be considered are such that
L” is reflexive. It then follows by ([7], theorem 5) that M"=L¥ and
MY =LY so that W, V are necessarily continuous with continuous deriva-
tives W and V. [W(r)=|z [, 1<p<oo is subsumed. The latter cor-
responds to the uniform convexity of L” and L”, which is more severe
than the present assumption. For the present it suffices that W(2x)<




142 M. M. RAO

CW(x) and V(2x)<CV(zx) for large =, (cf., [6])¥. Also see ([2], p. 113)
and the references there, for various connections dealing with the con-
cepts of the metric geometry here.]

In the following proofs several inequalities appear and constant ad-
justments are needed. To save some of this trouble it is convenient to
normalize W and V as

w+v(1)=1,

so that (from the continuity of W, V) 0< W(1)<1. This induces a change
in some of the previous definitions. They are (cf., [8], p. 173) in equa-
tions (4) and (5). Thus

(4) Nw(f)=inf{k>o. |, W idu= W), FeL”,

and this gives
(5) WONw (NS llw=<2Nw(f),

where the middle term is defined in (2). This normalization and (4')
and (5') will be used hereafter and the norms in both spaces will be
Ny(-) and N,(-). [The reason for not using these before was, first
it was not necessary, and secondly it was somewhat inconvenient in the
proofs of [7] referred to. However, the results of theorems 1 and 2
are true with this and it is then possible to replace ||- |y, by Ny(-)
without change. It is remarked that this last replacement may not be
possible without normalization.] In the following the concept of the
derivative of the norm is needed: The norm |/. || of a B-space 9 is
said to be (strongly) differentiable at y in 9), if ||y+ty, || is a differenti-
able function of ¢ for any w, in 9, (i. e., uniformly in y,).

First the unbiased optimal estimators will be considered and then
the Bayesian case and Bayes lower bounds will be presented. With the
same notations as before, one has

THEOREM 3. Let W, V be mormalized convexr (Young’s) functions
such that LY is reflexive. (Its conjugate is LV.) Suppose that T in LY
1s an unbiased estimator of g(6) which is optimal at 6, (c¢f. theorem 1),
relative to the given functions {D;} CL” with minimal (positive) risk K=
Ny (T—g(8,)). Let {i;} be a subsequence of the indices {1}, and {a,} be
a sequence of constants such that (D,=D, -, 6,)),

* A sufficient condition involving W only is: lim sup[W(2x)/W(x)]<C<w, and
T—oo
lim inf [W/(x)/ W/(ax)]=2Ma>1, for 3/4<a<l. [This and related matters are given in [7a],
Z—00

in detail.]

M e
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] | > aja j(oo) I
(14) lim &= — =K

" No(Za,Dy)
Then the sequence of functions T, defined by

n
P aj-Dij
| i=

Nr(él ajDij) Nv(j:?lajDij)

_i} a;a; 1(00)
(15) T,=-2= V

sgn (j;l a;D;)

has the properties: (i) T,e€ L%, and (it) T,>T in L¥-norm as n—>oo,
where T is the unbiased estimator of g(d) that is optimal at 6,.

Remark. Note that the case K=0, which is excluded, is trivial.
Recall that ¢(6,)=0 by convension, and that g, 2 can be interchanged
by 2, %.

PKoOF. The proof depends on the following two important results

of V. Smulian (ef., [4], p. 472 and the original reference there) which
are stated for convenience. ‘‘(I) The norm of a B-space P is (strongly)
differentiable at y in ¥ if and only if every sequence {y*} in the unit
ball of the conjugate space 9* with the property that yX(y)—lly ], is
itself (strongly) convergent. (II) Similar theorem is true for 9* if y and
y* are interchanged in (I).”’ (gmulian has another interesting result in
the same paper which is also of interest as it throws some light on [,
in this context: (III) If the B-space ¥ is weakly complete and weak
convergence coincides with the strong convergence, then the weak deri-
vative of the norm || - || at each ¥,, || ¥, ||=1, implies the strong derivative
at the same point.—This follows from (I) above.) Part of the following
proof is patterned after the LP-theory of [1]. Now the details.
To simplify writing let

é a;jai;(6,) é athj
Y, J=1

C=4+=2—— , Y,=—=L_—  and s,.=sgn(zj} a;D;) .
Nu3a,D)  Nu(3la,D,)

To prove (i) consider any T, in L* given by
T,=C.X,, Nuy(X)=1.

Since K>0, from some 7 on C,+#0, so that X, is well-defined. By Holder
inequality, for Y, in L” defined above N,(Y,)=1, one has
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(16) [,1%0 Yaldast,

and there is equality in (16) if and only if (a) X,Y, has a constant sign
and (b) either | X, [=V'(|Y.|) or |Y,|=W'(|X.|), a. e., since in the de-
finition of the norm in (4’) with the particular W, V (satisfying the
growth restriction) there is equality after the integral. (cf., [8], p. 175.)
Thus there is equality in (16) if | X, |=V'(|Y,|), a.e. Substituting this
in T,, it follows that T, in L” is precisely T, of the theorem and more-
over Ny(V'(| Y, |)=1, so that Nu(T,)=|C,|—>K, as n—>oco. This finishes
(i). It remains to show that T,—T is norm. (It is remarked that the
equality conditions in Holder inequality, without normalization, are com-
plicated.)

To prove (ii), which will be accomplished in two stages, first the
norm differentiability of L" and L” will be established. By duality, it
suffices to consider one of them, say L”. Since LY is reflexive, as noted
before, M"=L" and M"=L" and W’ and V’ exist as continuous func-
tions. (i. e., in the terminology of [5], W, V satisfy the so-called A,-con-
dition.) From this and ([5], p. 188) it follows that the norm is (strongly)
differentiable at every point except the origin. [Before noting the result
in [5], the author has established this in a different way using some
results of R. C. James (Trans. Am. Math. Soc., 1947) and [7]. It seems
to have other interesting implications on the differentiability of norms,
but they are not needed here.] With this the proof can be completed
as follows.

Let r,.=sgn(_§} a;a;;), so that one has
j=1
an F(T)={, TY.rdp=|C.| >K=Ny(T),

as n—>oo. It is clear that || F,||=1. Since T#0 and the norm in L%

is differentiable at T, by the preceding paragraph, it follows, by Smulian’s
theorem (I), that F,—F in norm and that ||F'||=1. So F(T)=K and
by the representation theorem in [7], there is a Y, in L", and N,(Y,)=
HEI, '

(18) F(T)= SD TY . dp=Ny(T) .

Since there is equality (in the Holder inequality) in (18), repeating the
by now familiar argument, one has

(19) Y=V <|—?> sgn (T) .

But this means that Y,r,—7Y, in L"-norm. With this the final step can
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now be completed.
Consider again the linear functionals F), on L%, defined above.
Fy(T,)= SaTnanndﬂz |C. | S,,Y"V'(' Y, Dsadpe
(20)
=1G 1|, | Tl V(1 Y dp=1C. oK,
as n—oo. Here T, are the functions given by (15), and the value of
the integral=1 (found after (16)) is used. In the preceding paragraph
it was shown that F,—>F in norm, and F(T)->F(T)=K. So,
(21) | F(T,)—K| < || F—F, || Ny(T) + | FT.)— K | >0,

as m—>oo by (20) and the fact that {N,(7.)} is bounded, being a con-
vergent sequence. (21) may be written as, by letting T, =(T/|C.]) so
that N(T))=1,

22) lim F(T)=lim SQT,'. Ydp=1=N,(Y)).

Since Y,#0, the norm in L" is differentiable at Y, and the second theorem

of Smulian is applicable here. From this it follows that 7%, —7T, is norm.
Hence T,—KT, since |C,|—>K by (14). Thus (22) yields

(23) |, ¥oTidu=Ny(Y)=1.
From the equality in (23), for the same reasons as in (19), one has
(23" T,=W'(|Y,])sgn (Y)).

Using (19) for Y, and noting that V’ and W’ are inverse functions to
each other, it follows immediately from (23') that T=T,K, a.e., or T,—>
T in L”-norm. This completes the proof.

Note. The above proof shows that the theorem is true if W, V are
such that both the norms of L” and L are (strongly) differentiable.
But there must be other conditions (as in theorem 1) for which the re-
sult holds.

The foregoing proof has the following consequence (cf. (19)).

COROLLARY. Under the hypothesis of the theorem Y,r.—>Y, in L'-
norm where Y, =V'(|T |/ K)sgn (T), or T=K-W'(| Y,|) sgn (Y,), a. e.

The construction of the Bayes estimator, whose existence is assured
by theorem 2, is given by the following.

THEOREM 4. Let W, V be normalized (Young’s) convex functions
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such that LY is reflexive. If T is the Bayes estimator of g(6) reative
to the functions {D,}CL”, as in theorem 2, with (positive) Bayes risk
K=Ny(T—g), let {i;} be a subsequence of the indices {i}, and {a.} be a
sequence of comstants such that

|2 asa, |
(24) lim’=‘n—— =K
"Ny (E‘; a;D;))

Then the sequence of functions T, defined by

_ 2": @ 0, é athj n
(25) T,=—17L vil—= sgn (X a; D)
Ny a,D) \Ne(Za,D)f 7

has the properties: (i) T.e L" and (i3) T.>T=g(6)—T, in L*-norm.

Remark. The integrals in the proof will be relative to the joint
distibution v(x, ), and the actual details are similar to those of theorem

3. The proof that T.—T being the same, the special hypothesis on {D,}

now ensures (as shown in theorem 2) that g(6)— T is a function of z
alone and that it must be T.

From this result, a class of (Bayes) lower bounds can be given. A
sample result is the following.

THEOREM 5. Let W, V be (arbitrary Young’s) convex functions, and
LY and LY be the corresponding Orlicz spaces. Suppose {D;}CL” are
such that E*(D;)=0, 1=1, where B(=B(X)) is the o-field generated by X,
and g(0) is the parameter in LY satisfying E(gD)=a;, 1=1. If T is
a Bayes estimator of g(O) relative to W, with risk K, then for any set
of constants {a.}, the following class of (Bayes) lower bounds obtain :

|3 aya, |
(26) K=Ny(T(X)—9(6)2—=—— .

”jglathj Il

The best (1. e. largest) lower bounds are obtained by maximizing the right
side of (26) relative to {a.} and n.

This is an immediate consequence of the direct part of theorem
2(a). That the bound is achieved for a particular set of {a;} and {D},
if W, V are restricted, is a consequence of theorem 4. A special case
of the above result was given in ([3], theorem 5) if n=1, W(x)=|zJ,
p=1. Thus one may specialize this result to get various interesting
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lower bounds for different # and different forms of the loss function
W( - ) of the theorem.

5. Final remarks

In some problems, with a certain prior information, the (locally)
optimal unbiased estimators are of interest. Besides this, however it
admits relatively deep mathematieal tools yielding a complete solution.
(E. g., theorems 1 and 2 are in the final forms.) But from the point
of view of (practical) interpretation Bayes estimators may be more satis-
factory in many cases, e. g., when the prior information is available in
the form of the prior distribution of the parameter. However, the
points of view expressed in theorems 1 and 2, make it plain that the
problem of (locally) optimal unbiased estimation and the Bayes estima-
tion subject to restraints on the parameter, are in a certain sense, ‘‘dual ”’
to each other. Thus, whatever be the relative merits of unbiased and
Bayes estimations, the results in one can suggest the corresponding re-
sults and extensions in the other. From the technical point of view at
least, it seems advantageous to study both problems in their own right.

The reader may also be interested in [4a] which treats some prob-
lems in the spirit of this paper.
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