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1. Introduction and summary

A characteristic function (abbr. ch. f.) ¢(¢) is said to be stable if to
every a, b>0, there corresponds ¢>0 such that the equation

(1) p(ct)=p(at)p(bt)

holds.

The most familiar example of stable ch. f. is the ch. f. p(f)=e¢~¥>!
of the normal distribution with mean zero.

Non-normal stable ch. f. is written as either

o(t)=¢" 1l (the Cauchy distribution)

or
o(t)= exp[—C |t |"<cos T—il—zl—sin T)]

where 0<a<k2, a¥l.

We are interested in the ch. f. ¢(t) for which

(2) o(t)=gp(at)p(bt)

holds, where a and b are given non-zero constants. The author consider-
ed this problem in the previous paper [4], but the result was far from
the satisfactory.

Yu V. Linnik discussed, in his elaborate paper [2], the more general
problem. He treated the ch. f. ¢(t) satisfying the equation

(3) plat) - pla. )y=pb, t) - - - (b, 1),

where a’s and b’s are given real constants. A necessary condition is
given in the theorem 5 of the paper. We shall give in the present paper
a necessary and sufficient condition under which (2) holds (a=b>0),
which contains the following proposition: if loga/logd is an irrational
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number, the ch. f. ¢(f) satisfying the relation (2) is stable. We shall
also show some properties of the corresponding probability distributions.

2. Some lemmas

Throughout this section, we assume |¢(t)| 1. From equation (2)
we find for all positive integer n

(4) ot)=T] #Diarb)

LEMMA 1. 1>|a|, [b]>0.

PROOF. Since |¢(t)| is a symmetric ch. f. and is bounded by 1, we
obtain, using (4), -

lo(t) | = lot@t) | - T 1#Pab1t) |
< (@) | = lg(la )]
Hence if |a|>1,
et | 2 19l a1 4) | 2 19(0) | =1, or |g(t)|=1.
If |a|=1, we obtain, from (2),
19®) | =lolat) |- 1(08) | = lo(0) | - |o(bt) |

Since | ¢(t) | >0 in the suitable neighbourhood N of ¢=0, we have |¢(bt) |=
1 on N. This implies |¢(t)|=1. q.e.d.
By the above lemma there exists a unique positive number a such that

(5) la[*+[bf=1.
We shall denote the set of all ch. f.’s satisfying (1) and (5) by T.(a, b).
LEMMA 2. Ewery ch. f. ¢t) in T.(a, b) is infinitely divisible.

PROOFV. It is enough to show that there exists a system {¢, /(t)}
of ch. f.’s such that

(i) pO=THo® foraln

and

D See [3], p. 57.
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(ii) lm[ sup |¢.;(t)—1|]1=0 for all .
nooo 15§57,

For j=1,2, ---, 2", let ¢, ,(t)=¢(a®-b""*t), where k is a positive integer

such that
(5 )+ (k) =i<(§)+ - +Gk)

Then from (4) we obtain
o0)=T1 oPat)

2”
=];]' ?’n.f(t) .
On the other hand,

Him[ sup |¢,,(¢)—1[]=lim [sup lo (@ *¢)~1|]=0
n—co 05ksn

n-oo  15js2”

‘ q.e. d.
LEMMA 3. |o(t)| <1 if t=0.

PROOF. If we have |o(t,) | =1 for some t,#0, then |¢(t) | is a periodic
function with a period p, say. Using (4) with t=mp, where m is an
arbitrary integer, we obtain

[p(maTp) | =1.

Since the set {ma"p; m, n integer, n=0} is dense in (—oo, o) and
since |¢(t) | is continuous, we have |p(t) | =1. q.e.d.

In what follows we assume unless otherwise stated

1>a=b>0
and
(6) a’+b'=1.

LEMMA 4. Let g(x) be a real valued function defined on (0, o) such
that

(7) g(x)=a"g(ax)+b'g(br) =20 .
Then

(8) sup g(z)= sup 9(x),
) inf o= fnf 9(0).

PROOF. From (7) we obtain for all n
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(10) 0@=3( } J@rer-ea@sra.
For z=wu, let
K., .={k; 9(@'d"*z)=9(*)} ,
which is non-void. Since
g(a*d"*x)=ag(a*+'b" *x)+bg(a*d" ' *x),
K, .>k implies either K,,, .3k or K., .>k+1, and e *r=u/b im-

plies a**b* *r=a*b" **'z=u. But, since max |a*v"*x|=|a"r| tends to
0sksn

0 as n tends to infinity, we can choose a positive integer » and k in
K, . such that

. usy=ab"*x=ufb.
By the definition of K, ., we see that

g(y)=g(x) .
Hence we have

sup g(x)= sup g(x).
z2u u/bzr2u

The reverse inequality is trivial and we obtain (8). The relation (9) is
obtained similarly.

LEMMA 5. If a real valued fumction M(x)#0 defined on (0, ) is
monotone non-decreasing and satisfies

1) M(x):M(%x)JrM(_;—x),

then M(x)<0 for all x and lim M(x)=0. A necessary and sufficient con-

dition that Suw’dM(:c)<oo for all w>0 is that y>a. Moreover, if 0<
0
B<a, then,

12) S:o 2fdM(x)<oo .
PROOF. From (11) we have as usual that for all n
S n x
13) M(x)_zo‘,< k >M<W> .

Then M(x)<0 and lim M(x)=0 readily follow from the monotonicity and
the relation (18). If M(x,)=0 for some z,>0, then M(z)=0 for all x=z,.
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For a given y>0, choose n so large that y/a*db**==x,, k=1,2, ---, n.
Then

=5 ) () o

Thus M(x)=0 contrary to the hypothesis of the lemma.
To prove the second assertion, let

g(w)=——;—a (_1-) .

X

The function g(x) satisfies the relation (7) of lemma 4.
Since both 2* and M(1/x) are monotone, we have

o<om-{ ) (%) swwso=-u(2) (4] <=

for i’gxgl’—, u>0.
u u

Hence, using lemma 4 we obtain for all x=b/u
C=9(x)=D

or equivalently for all r<bju

(14) 0<C=—M(x) - °'<D<oo.

Now we have, on the one hand,

(15) [[o, #dM@) < ";[M(a u)— M(a*+1u)] (au)
Ha) ]

E

3l

2452 (2w

Jwre@tad @y,

II/\

D

gy@

and on the other hand,

(16) S:" rdM(x)= n2;1 [ M(b"'u,) _ M(bk+1u)](bk+lu)r

2C - () Gy @b o G
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The second assertion is an immediate consequence of the inequalities
(15) and (16).

Finally we prove (12). To this end we define ¢,, n=0, 1, ---, as
c,=1.
Casla it () 2,
c,=
Cns/b if M(_Eu)<a~M(c,,_1).
a

The sequence {c,} is strictly monotone increasing and tends to in-
finity as m—oo. For a given positive integer k, let [ be the number of
indices ¢’s such that 1<i¢<k, ¢;=c;_;/Ja. Then since, as easily seen,
M(c;-,Ja)<a°M(c;-,) is equivalent to M(c;_,/b)>b"M(c;_,), we obtain

[M(c) — M(ci-)]ei < — Mlci—.) - 6i< —b""Mlcx-) - cf
=—@ - M) - b= — (@A) - M(1) .

Hence
| "o M(@) < 33 (M@~ Mee- ot
1
<-M1l)———
= Mg <
as was to be proved. q.e.d.

3. Representation of ¢(1)

Let M be the set of all monotone non-decreasing functions M(x)
defined on (0, o) such that lim M(x)=0 and Su 'dM(x)< oo for all u>
00 0

0. Then the ¢omplex valued function ¢(t) defined on the real axis is in-
finitely divisible ch. f. if and only if it admits the P. Lévy representation,

o

0

iy O s 1 WX
a7 log p(t) =17t 7t+g (e 1 ———)dM(w)

1+42°

+{ fer—1- A )aNG)

where M(x), —N(—x) e M.

The expression (17) is unique.
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Let M.(a, b) the set of all monotone non-decreasing functions M(x)
defined on (0, o) such that

(18) M(x):M(%) +M(-Z’—>

holds. It follows from lemma 5 that if a<2 every function of M.(a, b)
also belongs to M, while if «=2 no function except M(x)=0 does.
We shall prove the following theorem :

THEOREM 1. In order that T.(a, b) contains a non-degenerate ch. f., it
is mecessary and sufficient that a<2. If a<2, ch. f. ¢(t) € T.(a, b) admits
the following representation, with M(x), —N(—x) € M.(a, b).

(i) case a=2

(19) log ¢(t)= —%’t’ (the normal distribution)
('ii) case 1<a<2
20)  loge(t) = S: (€ — 1—itz)dM(@) + S° (€ — 1—itw)dN(z)

(i11) case a=1

@1) logg®)=irt+| (ev—1- If:’;, Jam@)+|" (evr—1- I‘frﬁa, JaN@)

with
e/a a/lb
22) lim [ag 2dH(z)+b S de(ac)] =0
H(x)=M(x)+ N(—x)
() case 0<a<l1
23) log o(t)=| (e~ 1)aM(@) + || _(*~DaNGm) .

0
oo

Conversely, the complex valued function ¢(t) determined by either (20) or
(21) or (23) is a ch. f. in T.a, b).

PROOF. By lemma 2, ch. f. ¢(t) in T.(a, b) can be written in the
canonical form (17). But we have for any ¢>0

(24) S:(d“’—1—%>dM(w)=iT+(c)t+S:<e””—1—- ITZ : )dM(%)
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S‘,_m(e“"——l— 1"_’;”” )dN(a:)_zT (c)t+S (e“’—l— 1‘;’; : )dN(_c””_)

where

r'e)= S ( 1+a' 1+(a;/c)’ )dM<%>

re)= S (1_:’“; 1+:(vx/c)’ )dN<%) )

Since the expression (17) is unique, we obtain from (2) and (17), using
the relations (24),

d(a’+b)=d’
(25) M(x)=M(x/a)+ M(x/b) x>0
N(x)=N(z/a)+ N(x/b) x<0.
Since both M(x) and —N(—x) are monotone non-decreasing, we see that

they belong to M.(a, b). The first assertion follows from (25) and from
the fact that «a=2 implies M(x)=0, N(x)=0.

(i) From (2) and (17) with M(x)=0, N(x)=0, we further deduce
that 7=0.

(ii) By lemma 5, we have

26) 0<n,= S:(:c— )dM(x) < So 2 dM(x) +S:’de(x)<oo :

x
1+t

and

@7 OgT,ESO_w(w— = )dN(x)=—S:(x )d( N(—z)>—co .

1+ !
Hence (17) reduces to

(28) log o(£)=8(T +T1-+72) t+ S:(e‘“‘— 1—itw)d M(x)

+ S"w (€ —1—ite)dN(z) .

Using the condition (2), we easily obtain 7+7,4+7,=0 as was to be
proved. Suppose conversely ¢(t) is expressed like (20) with M(x), — N(—=x)
€ M (a, b)(S M). Then, owing to (26) and (27), it can be rewritten as
(17). ¢(t) clearly satisfies the relation (2).

(iii) We have
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o1 o

+1 S: (sin tz—sin atx —sin btx)d M(x) .

Similar equation holds also for the negative part. Hence, in order that
(2) holds it is necessary and sufficient that ¢’=0 and that

(29) S: (sin tz—sin atx —sin btx)d H(x)=0

where H(zx)=M(x)+N(—x) .
An easy calculation shows that (29) is equivalent to (22).

(iv) By lemma 5, we have

_{* =z ! =1 oo
= 0 z = — ” x —_ — — 00
(31) O;n..s_wm;dN(a;) Som,_d( N(—w))>—co .

Hence (17) becomes

log o(t)=i( +7,+T)t+ S“’ (e"”—l)dM(x)—l—S (€ —1)dN(@) .

[}
We obtain using (2) that 7+7,4+7,=0. The converse statement follows
from the same argument as in the case (ii). q.e.d.

COROLLARY”. Let a and b be mon-zero constants such that a*+b*=1.
Let X and Y be independent and identically distributed random variables.

If aX+bY s distributed as X, then the distribution s normal with
mean zero.

PROOF. Let ¢(t) be the ch. f. of the distribution of X. Then ¢(t)=
#(t) - p(—t) as well as ¢(t) belongs to Ti(a, b). But since ¢(t) is sym-
metric, ¢(t) also belongs to Ty(la |, |b]). By the theorem we have log ¢(t)=
e-@» and the desired result follows from the well-known H. Cramér
theorem and the fact that a+b+#1. q.e.d.

D See theorems I and II of [2], theorem I of [4].
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4. Determination of M(x)
A well-known example of the function M(x) in M.(a, b) is
M@)=—2z", >0,

which corresponds to a stable ch. f., i.e., if further —N(—x)=—p/x°,
ch. f. ¢(t) determined by either (20) or (21) with 1=y or (23) is the non-
normal stable ch. f. But, in fact, M.(a, b) can not be exhausted by such
functions. In this section we shall derive all possible functions.

For M(x)#0 in M. (a, b), let

(32) Sf(t)=M(e™)

and let A=loga, B=logb. Then f(t) is a monotone non-increasing func-
tion defined on the real axis and satisfies the relation

(33) S@O)=f(t+A)+f(t+B)<0.

Thus the problem is reduced to solve the functional equation (33).
Though the function f(t) need not be continuous, the argument of Yu.
V. Linnik [2] well applies.

Let Z be the set of all zeros of the entire function

(34) a(z)=1—0a°—b*
of a complex variable z=x+14y. The only real zero of ¢(2) is clearly
Z=a.

LEMMA 6. All the zeros of o(z) are simple and are located in some
strip x,<x=<ea, and the number of zeros in every circle of radius 1 does
not exceed a finite number k.

PROOF. It suffices to consider the case a>b. If z=x+1iyec Z, we
have

a“(cos yA+1 sin yA)+b"(cos yB+1i sin yB)=1
from which we get
(35) (@=b)Y=1=(a”+b).

The second assertion follows from (35) and the fact that « is the unique
real zero of o(z).

Set »=A/B. Since 0>A=loga>logb=B, we have 0<y<1.

From the relations

(36) o(z)=1—a*—b*=0
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37) o'(z)=—a*-A—b*-B=0,

we deduce easily that

a’=1/(1—y), b*=y/(1—y)
whence

This is a contradiction. Thus (36) and (37) can not be satisfied simul-
taneously, which proves the first assertion.

The third assertion follows from the Jensen theorem [5], which is
applied to circles with centers at a+1+1y and radii equal to 2(a—2x,+1).
q.e.d.

The following lemma is the same as lemma 4 of [2].

LEMMA 7. For any >0, there exists a positive constants C(c) such
that |z2,—p | >¢ for all p € Z implies |o(2,) | > Cle).

From the inequality (14) and the definition (32) of f(¢), we find
that

(38) 0=f(@t)y>—C-e* if t=0
0=f(t)>—-C if t<0

and that

(39) lim f(¢)=0.

t——oo

Hence if x=Re 2>a, the integral

(40 D)=\ e sty

converges and is regular. Since for any real constant ¢,

S: e"‘f(t+c)dt=e°’X(z)—e"S: e f(t)dt
we obtain, using the relation (33),
o(2X(@) = —a’- S: e"‘f(t)dt—b‘S: e ft)t=E@) ,

whence

(41) x(z)=_f(%) if Rez>a.

LEMMA 8. |E(2)/a(z)| is bounded on the horizontal comtours z=x+
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Wy =2y, =1, 2, .-+, where z,>a.
PROOF. First of all we note that 0> A=loga>B=logb. When =
Rez< —x,<0, we have

|E@) | gc(eu g‘;e—umem S -udt> ZC

(cf. (38)).

On the other hand, if x,(>0) is sufficiently large we can choose C,>0
so that

|a(2) f=1+€*4"+€*5*+2¢47-¢2* cos y(A— B)
—2(e** cos yA+e®" cos yB)=C? - ¢*5*

holds when £<—x,;. Therefore we obtain

E(z) 2C
a(2) Clxl
whenever Re 2< min (—x;, —;). The desired result follows from lemma 7.

q.e.d.
Between every two lines y=7 and y=n-+1(n>0), draw vertical
straight lines y=y, at a distance greater than ¢>0 from all zeros of
d(z). (cf. lemma 6).
We have, for t>0,

(42) S f(r)dr=lim—— L S e B g,

ao 277 Jo-iy,  20(2)

Using lemmas 7 and 8, we see that

Lg o (z) 2=318,(6)+0 (‘H

271'7/ xl—iv,, ( )

where S,(t) denotes the sum of residues of the integrand between two
pairs of straight lines: ¥=Ym, ¥Y=¥n+1; ¥Y=—Yn» Y= —Ym+:, and where
Si(t) denotes the sum of residues between y=y; and y=—v,.

Therefore (42) becomes

(43) . S: f(e)de= ? S.(t) .

We shall say that a zero p e Z is active if the residue of the integrand
e'* E(z)
- 2-0(2)

at p does not vanish.
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LEMMA 9. If p is an active zero, then Rep=a.

PROOF. The lemma is an immediate consequence of the lemma 6
of [2]. In fact, if ¢, is the greatest lower bound of the real part of
active zeros, then from that lemma, g, itself is an active zero, whence
o;=a. q.e.d.

Let
0 if loga/logb is irrational
(44) &={
—2rkflog a if logaflog b=kl
where k and [ are relatively prime positive integers. Then, it is easily

seen that all the active zeros of ¢(z) are exhausted by

pn=a+’£n60 ’ n=0y ily +2 P

Since ¢(0)=—1+0, the poles of e"% are all simple and we obtain

(45) Res p,,(e” ﬁ((?) ):n,, 0t = g0 !

where D= Ef:: ) 12121 z;;;" ;

and

(46) Res,,(e" f;((zz)) >= f(((()))) =7.

Using (43), (45) and (46), and writing

(47) g(t)=3] 7™’ | eo<t<oo,

we find that for all ¢>0

(48) [, f)e=T+eg0t).

Suppose first that &=0. Differentiating (48) we obtain

(49) f)y=e*-(g)+g't) >0,
=e*-h(t),

where R(t)=g(t)+9'(t)(— oo <t<oo) is a periodic function with the period
C=2x/¢, as well as g(t) and ¢'(¢).
Rewrite (33) as
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(50) F®)=f(t—A)+f(t+B—A).

Since 0>A>B, the value of f(¢) at t<0 can be computed from the
values at ¢t>0 through (50). But the function ¢'-h(t) satisfies the rela-
tion (33) for all ¢, whence the equation (49) holds for all ¢. Thus we
obtain that

(51) kt)=e="- f(t)=e"*'- M(e™)

is a periodic function with the period C=2x/¢,.

If, conversely, real valued function M(x) defined on (0, o) is such
that h(t)=e - M(e™*) is a periodic function with the period C, then M(x)
satisfies

M(x)=M(x/a)+ M(x/b) .
Thus we have,
THEOREM 2. Suppose that log aflog b=F/l is a rational number with
k and | being relatively prime positive integers. A necessary and suf-
fictent condition that a real valued function M(x) defined on (0, o) belongs
to M.a,b) is that M(x) be monotone mon-decreasing and that h(t)=
e"""M(e™*) be a periodic function with the period
C=2r/¢,=—logalk=—logb/l=—Alk=—BJl .

Suppose next that £=0. Then writing 1= —g(0), we find from 47)
and (48),

(52) SJ@)=—2" t>0.
As before (52) holds in fact for all £, and hence
(53) M(x)=—2/z= x>0.

Thus we have,

THEOREM 3. If log aflogb is irrational, every ch. f. of T.(a,b) is stable.

5. Examples

When log aflog b is rational, we can construct functions M(z) of
M (a, b) other than M(x)=—2/z*. Let &(+#0) be defined as (44), and
let 2, m, k=1, 2, ---, n be arbitrary real numbers.

Take 2 sufficiently large so that

(54) >33 (1 |+ e DL+ Ré )

Then the function
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(55) f(t)=e"‘(—/'l+2: (4, cos Kyt + 1, sin kL))

is monotone decreasing. Moreover, f(t)e** is a periodic function with
the period C=2z/¢,.
Thus,

(56) M(z)=f(—log x)

—A+ 21: (4 cos (k&, log x)— p sin (K6, log x)) A

xm

belongs to M.(a, b). ‘

A simple example of &=0 is given by a=1, a¢=2/3 and b=1/3.
Thus, if X and Y are independent and identically distributed random
variables, and if (2X+7Y)/8 is distributed as X, then the distribution is
a Cauchy distribution.

6. Properties

THEOREM 4. The distribution function F(x) corresponding to mon-
degenerate ch.f. o(t) of T.a,b) is absolutely continuous and it’s prob-
ability demsity fumction p(x) can be differentiated infinitely many
times. D%s_j;n analytic function if a=1, and is an entire function if
2=2a>1. f’

PROOF. Let

—log le@®) I/1tl*  t+0
(57) o(6)=|

t=0
(58) |o(t) | =e-scorere,

Then g(t) and g(—t) satisfy the conditions of lemma 4. Moreover, there
exists a positive number N such that g(()=N>0, g(—t)=N>0 for 1<
t<1/b, since otherwise g(t,)=0 or |¢(t,) | =1 for some 1<¢,<1/b, contrary
to lemma 3.

Hence from lemma 4,
(59) .i’.lafl g(t)= inf g(t)=N>0.

1/vzlzl21
By conversion formula,

—1itZ, —itz
e o—e

- p(t)dt .
it

O
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Differentiating both sides formally n-+41 times, we get

)

(60) p<">(x)_=.F<»+l>(m)=(:_mS the-o(t)dt .
2r o

Using (58) and (59), we obtain from (60)

|p(x) | é%t t-e o1 dt gi[g: t"dt+S°° tre=+ dt]

T 1

<_1_[L +1r < n+1 ) N“"“’/"] g_l__ p( n+1 ) Ny @/e & oo

r Ln+1 a a Ta a

where N,>0 is taken sufficiently small. Using Stirling’s formula we see
easily that

lim i“[i['(--—————n—{—l )No“(”+1)/n]l/n ={ 0 if a>1
n—oo 'n! 144 44 No-l if a=1 . a. e. d.

THEOREM 5. Suppose that 0<a<2. Every distribution correspond-
ing to ¢(t) € T.(a, b) has finite absolute moments of order g (0<f<a). On
the other hand, all absolute moments of order Za are infinite, provided
lp(t) | 1.

PrROOF. It suffices to consider the symmetric case. Then, by
theorem 1, -

(61) —log ¢(t)= S: (1—cos tx)dG(x) ,

where G(x)=M(x)—N(—=x) € M (a, b) .
Noting that

A, = sup lﬂ_<oo (r<2)
x>0 xr
and
lim1=C08% _g (r<2),
z-0 x"

we obtain for t>0, 7<a<2,

—log p(t)jp=| 1= dG(z)
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<t A #dG@)+4, g” v dG(x) < oo .
0 1
Hence if 0<p<7<a, we find that
—log ¢(t)/t*—>0 as t—0

and hence that
(62) 1 —o(t)/t*—>0 as  t—0.

Letting 0<u<v<oco, we get

A—g(o)r=—1| 1= pay

LS”I—cosx <i>l+pp<—x—>dx
t

x Jo g'tf t
N (. B
%LS 1—cosz (_m_>l+ p<_x_>dx
T Ju  gith t t
s v q_
=<ﬂ>l+p<—ﬁ>—1—g 1 COSide,
t t/ xm Ju 't
where u<z,<v.
Using (62) we deduce
' p(x)—>0 as x—>oo.

Thus,

~

Sm |2 Pp(x)de=2- S”xﬂp(x)dx< oo .
On the other hand, if

Sm zp(r)de < oo,

0

then

1—¢(t) _ 1 {"1—costx .,
_TSO ——(—t—x)n—x p(x)dx

éigu 1—costx xﬁp(x)+Aa—1—Smx“-p(w)dx
o (ta) T Ju

—_1 1l—costx, Sux"p(x)dx—l— Aa._l_rx"p(x)da: .
T (tx,)” 0 7w Ju
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Making % so large that
Aa—l—rw‘-p(m)dx<e/2 :
T Ju

and then making ¢ so small that

1 1—costz, S rp(@)ds<ef2,
T (tz0)" 0

we get

0<1"t—§"(t)<e.

Hence
g(t)= —%—)0 as t—0 .

Since g(t) satisfies the relation (7), we obtain g(t)=0 or ¢(t)=1. q.e.d.
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