CERTAIN CLASS OF INFINITELY DIVISIBLE CHARACTERISTIC FUNCTIONS

RYOICHI SHIMIZU

(Received Feb. 17, 1965)

1. Introduction and summary

A characteristic function (abbr. ch. f.) $\varphi(t)$ is said to be stable if to every a, b>0, there corresponds c>0 such that the equation

(1)
$$\varphi(ct) = \varphi(at)\varphi(bt)$$

holds.

The most familiar example of stable ch. f. is the ch. f. $\varphi(t) = e^{(-\sigma^2/2)t^2}$ of the normal distribution with mean zero.

Non-normal stable ch. f. is written as either

$$\varphi(t) = e^{i\tau t - \beta|t|}$$
 (the Cauchy distribution)

or

$$\varphi(t)\!=\exp\!\left[-C\,|\,t\,|^a\!\!\left(\cos\varUpsilon\!-\!i\,\frac{t}{\mid t\mid}\!\sin\varUpsilon\right)\right]$$

where

$$0 < \alpha < 2$$
, $\alpha \neq 1$.

We are interested in the ch. f. $\varphi(t)$ for which

(2)
$$\varphi(t) = \varphi(at)\varphi(bt)$$

holds, where a and b are given non-zero constants. The author considered this problem in the previous paper [4], but the result was far from the satisfactory.

Yu V. Linnik discussed, in his elaborate paper [2], the more general problem. He treated the ch. f. $\varphi(t)$ satisfying the equation

(3)
$$\varphi(a_1 t) \cdots \varphi(a_n t) = \varphi(b_1 t) \cdots \varphi(b_n t),$$

where a's and b's are given real constants. A necessary condition is given in the theorem 5 of the paper. We shall give in the present paper a necessary and sufficient condition under which (2) holds $(a \ge b > 0)$, which contains the following proposition: if $\log a/\log b$ is an irrational

number, the ch. f. $\varphi(t)$ satisfying the relation (2) is stable. We shall also show some properties of the corresponding probability distributions.

2. Some lemmas

Throughout this section, we assume $|\varphi(t)| \not\equiv 1$. From equation (2) we find for all positive integer n

(4)
$$\varphi(t) = \prod_{k=0}^{n} \varphi^{\binom{n}{k}} (a^k b^{n-k} t).$$

LEMMA 1. 1 > |a|, |b| > 0.

PROOF. Since $|\varphi(t)|$ is a symmetric ch. f. and is bounded by 1, we obtain, using (4),

$$|\varphi(t)| = |\varphi(a^n t)| \cdot \prod_{0}^{n-1} |\varphi^{\binom{n}{k}}(a^k b^{n-k} t)|$$

$$\leq |\varphi(a^n t)| = |\varphi(|a|^n t)|.$$

Hence if |a| > 1,

$$|\varphi(t)| \ge |\varphi(|a|^{-n}t)| \ge |\varphi(0)| = 1$$
, or $|\varphi(t)| \equiv 1$.

If |a|=1, we obtain, from (2),

$$|\varphi(t)| = |\varphi(at)| \cdot |\varphi(bt)| = |\varphi(t)| \cdot |\varphi(bt)|.$$

Since $|\varphi(t)| > 0$ in the suitable neighbourhood N of t = 0, we have $|\varphi(bt)| = 1$ on N. This implies $|\varphi(t)| \equiv 1$. q. e. d.

By the above lemma there exists a unique positive number α such that

(5)
$$|a|^{\alpha}+|b|^{\alpha}=1$$
.

We shall denote the set of all ch. f.'s satisfying (1) and (5) by $T_{\alpha}(a, b)$.

LEMMA 2. Every ch. f. $\varphi(t)$ in $T_a(a, b)$ is infinitely divisible.

PROOF¹⁾. It is enough to show that there exists a system $\{\varphi_{n,j}(t)\}$ of ch. f.'s such that

(i)
$$\varphi(t) = \prod_{1}^{j_n} \varphi_{n,j}(t)$$
 for all n

and

¹⁾ See [3], p. 57.

(ii)
$$\lim_{n\to\infty} \left[\sup_{1\le j\le j_n} |\varphi_{n,j}(t)-1| \right] = 0$$
 for all t .

For $j=1, 2, \dots, 2^n$, let $\varphi_{n,j}(t) = \varphi(a^k \cdot b^{n-k}t)$, where k is a positive integer such that

$$\begin{pmatrix} n \\ 0 \end{pmatrix} + \cdots + \begin{pmatrix} n \\ k \end{pmatrix} \leq j < \begin{pmatrix} n \\ 0 \end{pmatrix} + \cdots + \begin{pmatrix} n \\ k+1 \end{pmatrix}.$$

Then from (4) we obtain

$$\varphi(t) = \prod_{0}^{n} \varphi^{\binom{n}{k}}(a^{k}b^{n-k}t)$$
$$= \prod_{0}^{2^{n}} \varphi_{n,j}(t).$$

On the other hand,

$$\lim_{n\to\infty} \left[\sup_{1\le j\le 2^n} |\varphi_{n,j}(t)-1| \right] = \lim_{n\to\infty} \left[\sup_{0\le k\le n} |\varphi(a^kb^{n-k}t)-1| \right] = 0$$
q. e. d.

LEMMA 3. $|\varphi(t)| < 1$ if $t \neq 0$.

PROOF. If we have $|\varphi(t_0)| = 1$ for some $t_0 \neq 0$, then $|\varphi(t)|$ is a periodic function with a period ρ , say. Using (4) with $t = m\rho$, where m is an arbitrary integer, we obtain

$$|\varphi(ma^n\rho)|=1$$
.

Since the set $\{ma^n\rho; m, n \text{ integer}, n\geq 0\}$ is dense in $(-\infty, \infty)$ and since $|\varphi(t)|$ is continuous, we have $|\varphi(t)| \equiv 1$. q. e. d.

In what follows we assume unless otherwise stated

$$1 > a \ge b > 0$$

and

$$a^a+b^a=1.$$

LEMMA 4. Let g(x) be a real valued function defined on $(0, \infty)$ such that

$$g(x) = a^{\alpha}g(ax) + b^{\alpha}g(bx) \ge 0.$$

Then

(8)
$$\sup_{x \ge u} g(x) = \sup_{u/b \ge x \ge u} g(x),$$

$$\inf_{x\geq u}g(x)=\inf_{u/b\geq x\geq u}g(x).$$

PROOF. From (7) we obtain for all n

$$(10) g(x) = \sum_{0}^{n} {n \choose k} (a^{\alpha})^{k} (b^{\alpha})^{n-k} g(a^{k}b^{n-k}x).$$

For $x \ge u$, let

$$K_{n,x}=\{k; g(a^kb^{n-k}x)\geq g(x)\},$$

which is non-void. Since

$$g(a^kb^{n-k}x) = a^{\alpha}g(a^{k+1}b^{n-k}x) + b^{\alpha}g(a^kb^{n+1-k}x)$$
,

 $K_{n, x} \ni k$ implies either $K_{n+1, x} \ni k$ or $K_{n+1, x} \ni k+1$, and $a^k b^{n-k} x \ge u/b$ implies $a^{k+1} b^{n-k} x \ge a^k b^{n-k+1} x \ge u$. But, since $\max_{0 \le k \le n} |a^k b^{n-k} x| = |a^n x|$ tends to 0 as n tends to infinity, we can choose a positive integer n and k in $K_{n, x}$ such that

$$u \leq y \equiv a^k b^{n-k} x \leq u/b$$
.

By the definition of $K_{n,x}$, we see that

$$g(y) \ge g(x)$$
.

Hence we have

$$\sup_{x\geq u}g(x)\geq \sup_{u/b\geq x\geq u}g(x).$$

The reverse inequality is trivial and we obtain (8). The relation (9) is obtained similarly.

LEMMA 5. If a real valued function $M(x) \not\equiv 0$ defined on $(0, \infty)$ is monotone non-decreasing and satisfies

(11)
$$M(x) = M\left(\frac{1}{a}x\right) + M\left(\frac{1}{b}x\right),$$

then M(x)<0 for all x and $\lim_{x\to\infty} M(x)=0$. A necessary and sufficient condition that $\int_0^u x^r dM(x) < \infty$ for all u>0 is that $\gamma>\alpha$. Moreover, if $0<\beta<\alpha$, then,

$$\int_1^\infty x^{\beta} dM(x) < \infty.$$

PROOF. From (11) we have as usual that for all n

(13)
$$M(x) = \sum_{0}^{n} {n \choose k} M\left(\frac{x}{a^{k}b^{n-k}}\right).$$

Then $M(x) \leq 0$ and $\lim_{x\to\infty} M(x) = 0$ readily follow from the monotonicity and the relation (13). If $M(x_0) = 0$ for some $x_0 > 0$, then M(x) = 0 for all $x \geq x_0$.

For a given y>0, choose n so large that $y/a^kb^{n-k} \ge x_0$, $k=1, 2, \dots, n$. Then

$$M(y) = \sum_{0}^{n} {n \choose k} M\left(\frac{y}{a^{k}b^{n-k}}\right) = 0$$
.

Thus $M(x) \equiv 0$ contrary to the hypothesis of the lemma. To prove the second assertion, let

$$g(x) = -\frac{1}{x^{\alpha}}M\left(\frac{1}{x}\right).$$

The function g(x) satisfies the relation (7) of lemma 4. Since both x^{α} and M(1/x) are monotone, we have

$$0 < C \equiv -M\left(\frac{u}{b^{2}}\right) \cdot \left(\frac{b}{u}\right)^{\alpha} \le g(x) \le D \equiv -M\left(\frac{u}{b}\right) \cdot \left(\frac{u}{b^{2}}\right)^{\alpha} < \infty$$
for
$$\frac{b^{2}}{u} \le x \le \frac{b}{u}, \quad u > 0.$$

Hence, using lemma 4 we obtain for all $x \ge b/u$

$$C \leq g(x) \leq D$$

or equivalently for all $x \leq b/u$

$$(14) 0 < C \leq -M(x) \cdot x^{\alpha} \leq D < \infty.$$

Now we have, on the one hand,

$$(15) \qquad \int_{a^{n_{u}}}^{u} x^{r} dM(x) \leq \sum_{0}^{n-1} [M(a^{k}u) - M(a^{k+1}u)] (a^{k}u)^{r}$$

$$= \sum_{0}^{n-1} \left[-M\left(\frac{a^{k+1}}{b}u\right) \cdot (a^{k}u)^{r} \right]$$

$$= \sum_{0}^{n-1} \left[-M\left(\frac{a^{k+1}}{b}u\right) \cdot \left(\frac{a^{k+1}}{b}u\right)^{\alpha} \right] \cdot \left(\frac{b}{a}\right)^{\alpha} (a^{k}u)^{r-\alpha}$$

$$\leq D \cdot \left(\frac{b}{a}\right)^{\alpha} u^{r-\alpha} (1 + a^{r-\alpha} + \cdots + (a^{r-\alpha})^{n-1}),$$

and on the other hand,

(16)
$$\int_{b^{n_{u}}}^{u} x^{r} dM(x) \geq \sum_{0}^{n-1} [M(b^{k}u) - M(b^{k+1}u)](b^{k+1}u)^{r}$$
$$\geq C \cdot \left(\frac{a}{b}\right)^{a} (bu)^{r-a} (1 + b^{r-a} + \cdots + (b^{r-a})^{n-1}).$$

The second assertion is an immediate consequence of the inequalities (15) and (16).

Finally we prove (12). To this end we define c_n , $n=0, 1, \dots$, as

$$c_0=1.$$

$$c_n = \left\{egin{array}{ll} c_{n-1}/lpha & ext{if} & M\left(rac{c_{n-1}}{lpha}
ight) \geqq lpha^lpha M(c_{n-1}) \;, \ \\ c_{n-1}/b & ext{if} & M\left(rac{c_{n-1}}{lpha}
ight) < lpha^lpha M(c_{n-1}) \;. \end{array}
ight.$$

The sequence $\{c_n\}$ is strictly monotone increasing and tends to infinity as $n\to\infty$. For a given positive integer k, let l be the number of indices i's such that $1\le i\le k$, $c_i=c_{i-1}/a$. Then since, as easily seen, $M(c_{i-1}/a)<\alpha^\alpha M(c_{i-1})$ is equivalent to $M(c_{i-1}/b)>b^\alpha M(c_{i-1})$, we obtain

$$\begin{split} [M(c_k) - M(c_{k-1})] c_k^{\beta} &\leq -M(c_{k-1}) \cdot c_k^{\beta} \leq -b^{-\beta} M(c_{k-1}) \cdot c_{k-1}^{\beta} \\ &\leq -(a^{\alpha-\beta})^l (b^{\alpha-\beta})^{k-l-1} \cdot M(1) \cdot b^{-\alpha} \leq -(a^{\alpha-\beta})^{k-1} \cdot M(1) \; . \end{split}$$

Hence

$$\int_{1}^{c_{n}} x^{\beta} dM(x) \leq \sum_{1}^{n} [M(c_{k}) - M(c_{k-1})] c_{k}^{\beta}$$

$$\leq -M(1) \frac{1}{b^{\alpha}(1 - a^{\alpha - \beta})} < \infty$$

as was to be proved.

q. e. d.

3. Representation of $\varphi(t)$

Let M be the set of all monotone non-decreasing functions M(x) defined on $(0, \infty)$ such that $\lim_{x\to\infty} M(x) = 0$ and $\int_0^u x^2 dM(x) < \infty$ for all u > 0. Then the complex valued function $\varphi(t)$ defined on the real axis is infinitely divisible ch. f. if and only if it admits the P. Lévy representation,

(17)
$$\log \varphi(t) = i r t - \frac{\sigma^2}{2} t^2 + \int_0^\infty \left(e^{itx} - 1 - \frac{itx}{1 + x^2} \right) dM(x) + \int_{-\infty}^0 \left(e^{itx} - 1 - \frac{itx}{1 + x^2} \right) dN(x)$$

where

$$M(x), -N(-x) \in M.$$

The expression (17) is unique.

Let $M_a(a, b)$ the set of all monotone non-decreasing functions M(x) defined on $(0, \infty)$ such that

(18)
$$M(x) = M\left(\frac{x}{a}\right) + M\left(\frac{x}{b}\right)$$

holds. It follows from lemma 5 that if $\alpha < 2$ every function of $M_{\alpha}(a, b)$ also belongs to M, while if $\alpha \ge 2$ no function except $M(x) \equiv 0$ does. We shall prove the following theorem:

THEOREM 1. In order that $T_a(a, b)$ contains a non-degenerate ch. f., it is necessary and sufficient that $\alpha \leq 2$. If $\alpha \leq 2$, ch. f. $\varphi(t) \in T_a(a, b)$ admits the following representation, with M(x), $-N(-x) \in M_a(a, b)$.

(i) case $\alpha=2$

(19)
$$\log \varphi(t) = -\frac{\sigma^2}{2}t^2 \qquad \text{(the normal distribution)}$$

(ii) case $1 < \alpha < 2$

(20)
$$\log \varphi(t) = \int_0^\infty (e^{itx} - 1 - itx) dM(x) + \int_{-\infty}^0 (e^{itx} - 1 - itx) dN(x)$$

(iii) case $\alpha = 1$

(21)
$$\log \varphi(t) = i r t + \int_0^\infty \left(e^{itx} - 1 - \frac{itx}{1+x^2} \right) dM(x) + \int_{-\infty}^0 \left(e^{itx} - 1 - \frac{itx}{1+x^2} \right) dN(x)$$

with

(22)
$$\lim_{\epsilon \to 0} \left[a \int_{\epsilon}^{\epsilon/a} x dH(x) + b \int_{\epsilon}^{\epsilon/b} x dH(x) \right] = 0$$

$$H(x) \equiv M(x) + N(-x)$$

(iv) case $0 < \alpha < 1$

(23)
$$\log \varphi(t) = \int_{0}^{\infty} (e^{itx} - 1) dM(x) + \int_{-\infty}^{0} (e^{itx} - 1) dN(x) .$$

Conversely, the complex valued function $\varphi(t)$ determined by either (20) or (21) or (23) is a ch. f. in $T_a(a, b)$.

PROOF. By lemma 2, ch. f. $\varphi(t)$ in $T_{\alpha}(a, b)$ can be written in the canonical form (17). But we have for any c>0

$$(24) \int_{0}^{\infty} \left(e^{ictx} - 1 - \frac{ictx}{1 + x^{2}}\right) dM(x) = i\gamma^{+}(c)t + \int_{0}^{\infty} \left(e^{itx} - 1 - \frac{itx}{1 + x^{2}}\right) dM\left(\frac{x}{c}\right)$$

$$\int_{-\infty}^{0} \left(e^{ictx} - 1 - \frac{ictx}{1+x^2}\right) dN(x) = i \mathcal{T}^{-}(c)t + \int_{-\infty}^{0} \left(e^{itx} - 1 - \frac{itx}{1+x^2}\right) dN\left(\frac{x}{c}\right)$$

where

$$\begin{split} & \gamma^+(c) = \int_0^\infty \left(\frac{x}{1+x^2} - \frac{x}{1+(x/c)^2}\right) dM \left(\frac{x}{c}\right) \\ & \gamma^-(c) = \int_{-\infty}^0 \left(\frac{x}{1+x^2} - \frac{x}{1+(x/c)^2}\right) dN \left(\frac{x}{c}\right) \;. \end{split}$$

Since the expression (17) is unique, we obtain from (2) and (17), using the relations (24),

(25)
$$\sigma^{2}(a^{2}+b^{2}) = \sigma^{2}$$

$$M(x) = M(x/a) + M(x/b) \qquad x > 0$$

$$N(x) = N(x/a) + N(x/b) \qquad x < 0.$$

Since both M(x) and -N(-x) are monotone non-decreasing, we see that they belong to $M_{\alpha}(a, b)$. The first assertion follows from (25) and from the fact that $\alpha \ge 2$ implies $M(x) \equiv 0$, $N(x) \equiv 0$.

- (i) From (2) and (17) with $M(x) \equiv 0$, $N(x) \equiv 0$, we further deduce that $\ell = 0$.
 - (ii) By lemma 5, we have

(26)
$$0 \leq r_1 \equiv \int_0^\infty \left(x - \frac{x}{1+x^2} \right) dM(x) \leq \int_0^1 x^3 dM(x) + \int_1^\infty x dM(x) < \infty,$$

and

$$(27) \quad 0 \ge \tau_2 = \int_{-\infty}^{0} \left(x - \frac{x}{1+x^2} \right) dN(x) = -\int_{0}^{\infty} \left(x - \frac{x}{1+x^2} \right) d(-N(-x)) > -\infty.$$

Hence (17) reduces to

(28)
$$\log \varphi(t) = i(\tau + \tau_1 + \tau_2)t + \int_0^\infty (e^{itx} - 1 - itx)dM(x) + \int_{-\infty}^0 (e^{itx} - 1 - itx)dN(x).$$

Using the condition (2), we easily obtain $\ell + \ell_1 + \ell_2 = 0$ as was to be proved. Suppose conversely $\varphi(t)$ is expressed like (20) with M(x), $-N(-x) \in M_{\alpha}(a, b) (\subseteq M)$. Then, owing to (26) and (27), it can be rewritten as (17). $\varphi(t)$ clearly satisfies the relation (2).

(iii) We have

$$\begin{split} &\int_0^\infty \Bigl(e^{itx}-1-\frac{itx}{1+x^2}\Bigr)dM(x) \\ &= &\int_0^\infty \Bigl(e^{iatx}-1-\frac{iatx}{1+x^2}\Bigr)dM(x) + \int_0^\infty \Bigl(e^{ibtx}-1-\frac{ibtx}{1+x^2}\Bigr)dM(x) \\ &+ i\int_0^\infty \left(\sin tx - \sin atx - \sin btx\right)dM(x) \;. \end{split}$$

Similar equation holds also for the negative part. Hence, in order that (2) holds it is necessary and sufficient that $\sigma^2 = 0$ and that

(29)
$$\int_0^\infty (\sin tx - \sin atx - \sin btx) dH(x) = 0$$
where
$$H(x) = M(x) + N(-x).$$

An easy calculation shows that (29) is equivalent to (22).

(iv) By lemma 5, we have

(30)
$$0 \leq \gamma_3 \equiv \int_0^\infty \frac{x}{1+x^2} dM(x) \leq \int_0^1 x dM(x) + \int_1^\infty \frac{1}{2} dM(x) < \infty,$$

(31)
$$0 \ge \gamma_4 \equiv \int_{-\infty}^{0} \frac{x}{1+x^2} dN(x) = -\int_{0}^{\infty} \frac{x}{1+x^2} d(-N(-x)) > -\infty.$$

Hence (17) becomes

where

$$\log \varphi(t) = i(r + r_3 + r_4)t + \int_0^\infty (e^{itx} - 1)dM(x) + \int_{-\infty}^0 (e^{itx} - 1)dN(x).$$

We obtain using (2) that $r+r_3+r_4=0$. The converse statement follows from the same argument as in the case (ii). q. e. d.

COROLLARY¹⁾. Let a and b be non-zero constants such that $a^2+b^2=1$. Let X and Y be independent and identically distributed random variables. If aX+bY is distributed as X, then the distribution is normal with mean zero.

PROOF. Let $\phi(t)$ be the ch. f. of the distribution of X. Then $\varphi(t) \equiv$ $\phi(t) \cdot \phi(-t)$ as well as $\phi(t)$ belongs to $T_i(a, b)$. But since $\varphi(t)$ is symmetric, $\varphi(t)$ also belongs to $T_{i}(|a|, |b|)$. By the theorem we have $\log \varphi(t) =$ $e^{-(\sigma^2/2)t^2}$ and the desired result follows from the well-known H. Cramér theorem and the fact that $a+b\neq 1$. q. e. d.

D See theorems I and II of [2], theorem I of [4].

4. Determination of M(x)

A well-known example of the function M(x) in $M_a(a, b)$ is

$$M(x) = -\lambda/x^{\alpha}$$
, $\lambda > 0$,

which corresponds to a stable ch. f., i.e., if further $-N(-x) = -\mu/x^{\alpha}$, ch. f. $\varphi(t)$ determined by either (20) or (21) with $\lambda = \mu$ or (23) is the non-normal stable ch. f. But, in fact, $M_{\alpha}(a, b)$ can not be exhausted by such functions. In this section we shall derive all possible functions.

For $M(x) \not\equiv 0$ in $M_a(a, b)$, let

$$(32) f(t) = M(e^{-t})$$

and let $A = \log a$, $B = \log b$. Then f(t) is a monotone non-increasing function defined on the real axis and satisfies the relation

(33)
$$f(t) = f(t+A) + f(t+B) < 0.$$

Thus the problem is reduced to solve the functional equation (33). Though the function f(t) need not be continuous, the argument of Yu. V. Linnik [2] well applies.

Let Z be the set of all zeros of the entire function

$$\sigma(z) = 1 - a^z - b^z$$

of a complex variable z=x+iy. The only real zero of $\sigma(z)$ is clearly $z=\alpha$.

LEMMA 6. All the zeros of $\sigma(z)$ are simple and are located in some strip $x_0 \le x \le \alpha$, and the number of zeros in every circle of radius 1 does not exceed a finite number k.

PROOF. It suffices to consider the case a>b. If $z=x+iy\in \mathbb{Z}$, we have

$$a^{x}(\cos yA + i\sin yA) + b^{x}(\cos yB + i\sin yB) = 1$$

from which we get

$$(35) (a^x - b^x)^2 \le 1 \le (a^x + b^x)^2.$$

The second assertion follows from (35) and the fact that α is the unique real zero of $\sigma(z)$.

Set $\eta = A/B$. Since $0 > A = \log a > \log b = B$, we have $0 < \eta < 1$. From the relations

$$\sigma(z) = 1 - a^z - b^z = 0$$

(37)
$$\sigma'(z) = -a^z \cdot A - b^z \cdot B = 0,$$

we deduce easily that

$$a^x = 1/(1-\eta)$$
, $b^x = \eta/(1-\eta)$

whence

$$0 = x \cdot A - x \cdot A = \eta \cdot xB - xA = \eta \log \eta + (1 - \eta) \log (1 - \eta) < 0$$
.

This is a contradiction. Thus (36) and (37) can not be satisfied simultaneously, which proves the first assertion.

The third assertion follows from the Jensen theorem [5], which is applied to circles with centers at $\alpha+1+iy$ and radii equal to $2(\alpha-x_0+1)$. q. e. d.

The following lemma is the same as lemma 4 of [2].

LEMMA 7. For any $\varepsilon > 0$, there exists a positive constants $C(\varepsilon)$ such that $|z_0 - \rho| > \varepsilon$ for all $\rho \in \mathbb{Z}$ implies $|\sigma(z_0)| > C(\varepsilon)$.

From the inequality (14) and the definition (32) of f(t), we find that

(38)
$$0 \ge f(t) > -C \cdot e^{at} \quad \text{if } t \ge 0$$
$$0 \ge f(t) > -C \quad \text{if } t < 0$$

and that

$$\lim_{t\to\infty}f(t)=0.$$

Hence if $x = \text{Re } z > \alpha$, the integral

(40)
$$\chi(z) = \int_0^\infty e^{-zt} f(t) dt$$

converges and is regular. Since for any real constant c,

$$\int_{0}^{\infty} e^{-zt} f(t+c) dt = e^{cz} \chi(z) - e^{cz} \int_{0}^{c} e^{-zt} f(t) dt,$$

we obtain, using the relation (33),

$$\sigma(z)\chi(z) = -a^z \cdot \int_0^A e^{-zt} f(t)dt - b^z \int_0^B e^{-zt} f(t)dt \equiv E(z)$$
,

whence

(41)
$$\chi(z) = \frac{E(z)}{\sigma(z)} \quad \text{if } \operatorname{Re} z > \alpha.$$

LEMMA 8. $|E(z)|\sigma(z)|$ is bounded on the horizontal contours $z=x\pm$

 iy_n , $x \leq x_1$, n=1, 2, \cdots , where $x_1 > \alpha$.

PROOF. First of all we note that $0>A=\log a>B=\log b$. When $x=\text{Re }z\leq -x_1<0$, we have

$$|E(z)| \leq C \left(e^{Ax} \int_{A}^{0} e^{-xt} dt + e^{Bx} \cdot \int_{B}^{0} e^{-xt} dt\right) < \frac{2C}{x_1} e^{Bx}$$
(cf. (38)).

On the other hand, if $x_i(>0)$ is sufficiently large we can choose $C_i>0$ so that

$$|\sigma(z)|^2 = 1 + e^{2Ax} + e^{2Bx} + 2e^{Ax} \cdot e^{Bx} \cos y(A - B)$$

 $-2(e^{Ax} \cos yA + e^{Bx} \cos yB) \ge C_1^2 \cdot e^{2Bx}$

holds when $x \leq -x_2$. Therefore we obtain

$$\left|\frac{E(z)}{\sigma(z)}\right| \leq \frac{2C}{C_1x_1}$$

whenever Re $z \le \min(-x_1, -x_2)$. The desired result follows from lemma 7. q. e. d.

Between every two lines y=n and y=n+1(n>0), draw vertical straight lines $y=y_n$ at a distance greater than $\varepsilon>0$ from all zeros of $\sigma(z)$. (cf. lemma 6).

We have, for t>0,

(42)
$$\int_0^t f(\tau)d\tau = \lim_{n\to\infty} \frac{1}{2\pi i} \int_{x_1-iy_n}^{x_1+iy_n} e^{tz} \frac{E(z)}{z\sigma(z)} dz.$$

Using lemmas 7 and 8, we see that

$$\frac{1}{2\pi i} \int_{x_1-iy_n}^{x_1+iy_n} e^{tz} \frac{E(z)}{z \cdot \sigma(z)} dz = \sum_{0}^{n-1} S_m(t) + O\left(\frac{1}{n}\right) ,$$

where $S_m(t)$ denotes the sum of residues of the integrand between two pairs of straight lines: $y=y_m$, $y=y_{m+1}$; $y=-y_m$, $y=-y_{m+1}$, and where $S_0(t)$ denotes the sum of residues between $y=y_1$ and $y=-y_1$.

Therefore (42) becomes

(43)
$$\int_0^t f(\tau)d\tau = \sum_{n=0}^\infty S_n(t).$$

We shall say that a zero $\rho \in \mathbb{Z}$ is active if the residue of the integrand $e^{tz} \frac{E(z)}{z \cdot \sigma(z)}$ at ρ does not vanish.

LEMMA 9. If ρ is an active zero, then $Re \rho = \alpha$.

PROOF. The lemma is an immediate consequence of the lemma 6 of [2]. In fact, if σ_1 is the greatest lower bound of the real part of active zeros, then from that lemma, σ_1 itself is an active zero, whence $\sigma_1 = \alpha$. q. e. d.

Let

(44)
$$\xi_0 = \begin{cases} 0 & \text{if } \log a/\log b \text{ is irrational} \\ -2\pi k/\log a & \text{if } \log a/\log b = k/l \end{cases}$$

where k and l are relatively prime positive integers. Then, it is easily seen that all the active zeros of $\sigma(z)$ are exhausted by

$$\rho_n = \alpha + in\xi_0$$
, $n = 0, \pm 1, \pm 2$, ...

Since $\sigma(0) = -1 \neq 0$, the poles of $e^{tz} \frac{E(z)}{z\sigma(z)}$ are all simple and we obtain

(45)
$$\operatorname{Res} \rho_n \left(e^{tz} \frac{E(z)}{z\sigma(z)} \right) = \eta_n e^{t\rho_n} = \eta_n e^{at + in\xi_0 t}$$

where
$$\eta_n = \frac{E(\rho_n)}{\rho_n} \cdot \lim_{z \to \rho_n} \frac{z - \rho_n}{\sigma(z)}$$
,

and

(46)
$$\operatorname{Res}_{0}\left(e^{tz} - \frac{E(z)}{z\sigma(z)}\right) = \frac{E(0)}{\sigma(0)} \equiv r.$$

Using (43), (45) and (46), and writing

(47)
$$g(t) = \sum_{-\infty}^{\infty} \eta_n e^{int_0 t} \qquad -\infty < t < \infty ,$$

we find that for all t>0

(48)
$$\int_0^t f(\tau)d\tau = \tilde{\tau} + e^{\alpha t} \cdot g(t) .$$

Suppose first that $\xi_0 \neq 0$. Differentiating (48) we obtain

(49)
$$f(t) = e^{\alpha t} \cdot (g(t) + g'(t)) \qquad t > 0,$$
$$= e^{\alpha t} \cdot h(t).$$

where $h(t) \equiv g(t) + g'(t)(-\infty < t < \infty)$ is a periodic function with the period $C \equiv 2\pi/\xi_0$ as well as g(t) and g'(t).

Rewrite (33) as

(50)
$$f(t) = f(t-A) + f(t+B-A).$$

Since 0>A>B, the value of f(t) at $t\leq 0$ can be computed from the values at t>0 through (50). But the function $e^t \cdot h(t)$ satisfies the relation (33) for all t, whence the equation (49) holds for all t. Thus we obtain that

(51)
$$h(t) = e^{-\alpha t} \cdot f(t) = e^{-\alpha t} \cdot M(e^{-t})$$

is a periodic function with the period $C=2\pi/\xi_0$.

If, conversely, real valued function M(x) defined on $(0, \infty)$ is such that $h(t)=e^{-at}\cdot M(e^{-t})$ is a periodic function with the period C, then M(x) satisfies

$$M(x) = M(x/a) + M(x/b)$$
.

Thus we have.

THEOREM 2. Suppose that $\log a/\log b = k/l$ is a rational number with k and l being relatively prime positive integers. A necessary and sufficient condition that a real valued function M(x) defined on $(0, \infty)$ belongs to $M_a(a, b)$ is that M(x) be monotone non-decreasing and that $h(t) \equiv e^{-at}M(e^{-t})$ be a periodic function with the period

$$C = 2\pi/\xi_0 = -\log a/k = -\log b/l = -A/k = -B/l$$
.

Suppose next that $\xi_0 = 0$. Then writing $\lambda = -g(0)$, we find from (47) and (48),

$$f(t) = -\lambda e^{at} \qquad t > 0.$$

As before (52) holds in fact for all t, and hence

$$M(x) = -\lambda/x^{\alpha} \qquad x > 0.$$

Thus we have,

THEOREM 3. If $\log a/\log b$ is irrational, every ch. f. of $T_a(a, b)$ is stable.

5. Examples

When $\log a/\log b$ is rational, we can construct functions M(x) of $M_a(a, b)$ other than $M(x) = -\lambda/x^a$. Let $\xi_0(\neq 0)$ be defined as (44), and let λ_k , μ_k , $k=1, 2, \dots, n$ be arbitrary real numbers.

Take λ sufficiently large so that

(54)
$$\lambda > \sum_{1}^{n} (|\lambda_{k}| + |\mu_{k}|)(1 + k\xi_{0}/\alpha).$$

Then the function

(55)
$$f(t) = e^{\alpha t} \left(-\lambda + \sum_{1}^{n} (\lambda_{k} \cos k \xi_{0} t + \mu_{k} \sin k \xi_{0} t)\right)$$

is monotone decreasing. Moreover, $f(t)e^{-at}$ is a periodic function with the period $C=2\pi/\xi_0$.

Thus,

(56)
$$M(x) \equiv f(-\log x)$$

$$= \frac{-\lambda + \sum_{1}^{n} (\lambda_{k} \cos(k\xi_{0} \log x) - \mu_{k} \sin(k\xi_{0} \log x))}{x^{\alpha}}$$

belongs to $M_a(a, b)$.

A simple example of $\xi_0=0$ is given by $\alpha=1$, $\alpha=2/3$ and b=1/3. Thus, if X and Y are independent and identically distributed random variables, and if (2X+Y)/3 is distributed as X, then the distribution is a Cauchy distribution.

6. Properties

THEOREM 4. The distribution function F(x) corresponding to non-degenerate ch. f. $\varphi(t)$ of $T_{\alpha}(a,b)$ is absolutely continuous and it's probability density function p(x) can be differentiated infinitely many times. It is an analytic function if $\alpha \ge 1$, and is an entire function if $2 \ge \alpha > 1$.

PROOF. Let

(57)
$$g(t) = \begin{cases} -\log |\varphi(t)|/|t|^{\alpha} & t \neq 0 \\ 0 & t = 0 \end{cases}$$

$$|\varphi(t)| = e^{-g(t)|t|^{\alpha}}.$$

Then g(t) and g(-t) satisfy the conditions of lemma 4. Moreover, there exists a positive number N such that $g(t) \ge N > 0$, $g(-t) \ge N > 0$ for $1 \le t \le 1/b$, since otherwise $g(t_0) = 0$ or $|\varphi(t_0)| = 1$ for some $1 \le t_0 \le 1/b$, contrary to lemma 3.

Hence from lemma 4,

(59)
$$\inf_{|x| \ge 1} g(t) = \inf_{1/b \ge |x| \ge 1} g(t) \ge N > 0.$$

By conversion formula,

$$F(x)-F(x_0)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\frac{e^{-itx_0}-e^{-itx}}{it}\varphi(t)dt.$$

Differentiating both sides formally n+1 times, we get

(60)
$$p^{(n)}(x) \equiv F^{(n+1)}(x) = \frac{(-1)^n}{2\pi} \int_{-\infty}^{\infty} t^n e^{-itx} \varphi(t) dt.$$

Using (58) and (59), we obtain from (60)

$$\begin{split} \mid p^{(n)}(x) \mid & \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} t^{n} \cdot e^{-g(t)\mid t\mid^{\alpha}} dt \leq \frac{1}{\pi} \bigg[\int_{0}^{1} t^{n} dt + \int_{1}^{\infty} t^{n} e^{-N \cdot t^{\alpha}} dt \bigg] \\ & < \frac{1}{\pi} \bigg[\frac{1}{n+1} + \frac{1}{\alpha} \varGamma \left(\frac{n+1}{\alpha} \right) N^{-(n+1)/\alpha} \bigg] \leq \frac{1}{\pi \alpha} \varGamma \left(\frac{n+1}{\alpha} \right) N_{0}^{-(n+1)/\alpha} < \infty \end{split}$$

where $N_0 > 0$ is taken sufficiently small. Using Stirling's formula we see easily that

$$\lim_{n\to\infty}\frac{1}{n!}\left[\frac{1}{\pi\alpha}\Gamma\left(\frac{n+1}{\alpha}\right)N_0^{-(n+1)/\alpha}\right]^{1/n}=\left\{\begin{array}{ll}0&\text{if }\alpha>1\\N_0^{-1}&\text{if }\alpha=1.\end{array}\right.$$
 q. e. d.

THEOREM 5. Suppose that $0 < \alpha < 2$. Every distribution corresponding to $\varphi(t) \in T_{\alpha}(a, b)$ has finite absolute moments of order β ($0 < \beta < \alpha$). On the other hand, all absolute moments of order $\geq \alpha$ are infinite, provided $|\varphi(t)| \neq 1$.

PROOF. It suffices to consider the symmetric case. Then, by theorem 1.

(61)
$$-\log \varphi(t) = \int_0^\infty (1 - \cos tx) dG(x) ,$$

where

$$G(x) \equiv M(x) - N(-x) \in M_{\alpha}(a, b)$$
.

Noting that

$$A_r \equiv \sup_{x>0} \frac{1-\cos x}{x^r} < \infty \qquad (r \le 2)$$

and

$$\lim_{x \to 0} \frac{1 - \cos x}{x^{r}} = 0 \qquad (r < 2) ,$$

we obtain for t>0, $r<\alpha<2$,

$$-\log \varphi(t)/t^r = \int_0^\infty \frac{1-\cos tx}{t^r} dG(x)$$

$$\leq t^{\scriptscriptstyle 2-\gamma} \cdot A_{\scriptscriptstyle 2}\!\!\int_{\scriptscriptstyle 0}^{\scriptscriptstyle 1} x^{\scriptscriptstyle 2}dG(x) + A_{\scriptscriptstyle 7} \cdot \int_{\scriptscriptstyle 1}^{\scriptscriptstyle \infty} x^{\scriptscriptstyle 7}dG(x) \! < \! \infty \; .$$

Hence if $0 < \beta < r < \alpha$, we find that

$$-\log \varphi(t)/t^{\beta} \rightarrow 0$$
 as $t \rightarrow 0$

and hence that

(62)
$$(1-\varphi(t))/t^{\beta} \to 0 \quad \text{as} \quad t \to 0.$$

Letting $0 < u < v < \infty$, we get

$$(1-arphi(t))/t^{eta} = rac{1}{\pi} \int_0^\infty rac{1-\cos tx}{t^{eta}} \, p(x) dx$$

$$= rac{1}{\pi} \int_0^\infty rac{1-\cos x}{x^{1+eta}} \left(rac{x}{t}
ight)^{1+eta} p\left(rac{x}{t}
ight) dx$$

$$\geq rac{1}{\pi} \int_u^v rac{1-\cos x}{x^{1+eta}} \left(rac{x}{t}
ight)^{1+eta} p\left(rac{x}{t}
ight) dx$$

$$= \left(rac{x_0}{t}
ight)^{1+eta} p\left(rac{x_0}{t}
ight) rac{1}{\pi} \int_u^v rac{1-\cos x}{x^{1+eta}} dx \, ,$$

where $u \leq x_0 \leq v$.

Using (62) we deduce

$$x^{1+\beta}p(x)\rightarrow 0$$
 as $x\rightarrow \infty$.

Thus,

$$\int_{-\infty}^{\infty} |x|^{\beta} p(x) dx = 2 \cdot \int_{0}^{\infty} x^{\beta} p(x) dx < \infty.$$

On the other hand, if

$$\int_0^\infty x^\alpha p(x)dx < \infty$$
 ,

then

$$\frac{1-\varphi(t)}{t^{\alpha}} = \frac{1}{\pi} \int_{0}^{\infty} \frac{1-\cos tx}{(tx)^{\alpha}} x^{\alpha} p(x) dx$$

$$\leq \frac{1}{\pi} \int_{0}^{u} \frac{1-\cos tx}{(tx)^{\alpha}} x^{\alpha} p(x) + A_{\alpha} \frac{1}{\pi} \int_{u}^{\infty} x^{\alpha} \cdot p(x) dx$$

$$= \frac{1}{\pi} \frac{1-\cos tx_{0}}{(tx_{0})^{\alpha}} \cdot \int_{0}^{u} x^{\alpha} p(x) dx + A_{\alpha} \frac{1}{\pi} \int_{u}^{\infty} x^{\alpha} p(x) dx .$$

Making u so large that

$$A_{\alpha} = \frac{1}{\pi} \int_{u}^{\infty} x^{\alpha} \cdot p(x) dx < \varepsilon/2$$
 ,

and then making t so small that

$$\frac{1}{\pi} \frac{1-\cos tx_0}{(tx_0)^{\alpha}} \int_0^u x^{\alpha} p(x) dx < \varepsilon/2,$$

we get

$$0<\frac{1-\varphi(t)}{t^{\alpha}}<\varepsilon$$
.

Hence

$$g(t) \equiv -\frac{\log \varphi(t)}{t^{\alpha}} \rightarrow 0 \text{ as } t \rightarrow 0.$$

Since g(t) satisfies the relation (7), we obtain $g(t) \equiv 0$ or $\varphi(t) \equiv 1$. q. e. d.

THE INSTITUTE OF STATISTICAL MATHAMATICS

REFERENCES

- [1] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sum of Independent Random Variable, Moscow 1949; English translation, Addison-Wesley, Cambridge, Mass., 1954.
- [2] Yu. V. Linnik, "Linear forms and statistical criteria," Ukrain. Mat. Zurnal, 5 (1953), English translation which appeared in Selected Translations in Math. Stat. and Prob., 3 (1962). 1-90.
- [3] E. Lukacs, Characteristic Functions, Griffin's Stat. Mons., London, 1960.
- [4] R. Shimizu, "Characterization of the normal distribution II," Ann. Inst. Stat. Math., 14 (1962), 173-178.
- [5] E. C. Titchmarsh, The Theory of Function, Oxford, 1932.
- [6] D. V. Widder, The Laplace Transform, Princeton Univ. Press, 1946.