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Summary

In estimating the mean of a stationary Markov process, the average
of observations is used, which are spaced by time intervals distributed
independently and identically according to a d.f. F(x). The asymptotic
variance of the estimate thus obtained is given, and the optimal sampl-
ing procedure, i.e., the extremal d.f. F(x) is determined so as to mini-
mize that variance.

1. Introduction

Let {2(t, w); —oo<t<oo} be a strictly stationary stochastic process
(real or complex) such that

E{x(®t)}=m
(1) Elxz@t)—m |'=v<o
E{(z(t+7)—m)@(E)—m)}=v-7(r),

where %(:) and m are the complex conjugates of x(-) and m, respectively.
Here we assume that 7(z) is continuous at =0, i.e., {x({, »)} is con-
tinuous in the mean square.

Let {4r,(0); n=0, =1, +£2, .--} be a strictly stationary stochastic
process defined on the same o space as x(, ) process. Define r,(w) such
that 7y(@)=¢(0w) and . (0)—7,_(0)=4dr,_,(0), where e(w) is a random
variable. Assume further that almost all sample functions of {x(¢, w)}
have finite limits from the right, i.e.,

lim x(t+h, 0)=2+, ) for all ¢.
h—0+
Then we can define a sequence of o functions {z. .(w); n=0, +1,
+2, ---} as follows:

2(r(w), ®) if P{o'; ti(0’)=1.(0)} >0
2t (@) +, o) otherwise.

., (@)= {
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Then it can be proved in the same way as is shown in [2] that x,, .(»)’s
are measurable o functions and that {z. .(0); n=0, 1, +2, ...} forms
a weakly stationary stochastic process.

Hereafter, we shall restrict our attention to the case where {4r,(»)}
is a sequence of mutually independent and identically distributed (ac-
cording to a d.f. F(r)) non-negative random variables and is independent
of the process {x(t, w)}. Then it can be shown that

Bz, (0)}=m

and

o(k) E%E{ (@, w1 () —M)(E,, () —7)}
=S°° r@)dF®E)  for k=1,2, ---,

where F®(r) denotes the kth convolution of F(r) with itself (F©(r)=1).
In estimating the mean m of the original process {x(¢, w)}, we shall
use the estimate

n

(2) =3z, ().

Then, from the above considerations, it can be seen that
E(m)=m
and

(3) Vii)=—"{1+ 8 (1-E )" o)+ 7eNar e},

where 7(r) is the complex conjugate of 7(r). It is well-known in the
renewal theory that the series kE F®(z) and "2 kF®(r) are convergent
=1 =1

for all ==0 if F(0)<1 (see [3]). We define Hl(r)=§}l F®(z) and Hy(r)=
gj kFi(r). Then V(m) can be asymptotically represented by

(1) Va~2 0+ o0+t - oo +renase) |
n 0 n Jo

if the integrals Sm [7(z) |dHy(z) and Sw |7(z) |dHy(zr) are finite. Further,
[ 0
in these cases, the third term in the bracket of the right-hand side of
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(4) is asymptotically negligible, and we obtain the final result

(5) Vom) ~— {1+ )+ FeNH, )]

For example, when F(r)=1—e *, we obtain
H(7)= Z Fyr)=2r, Hyz)= 2 kF(z)= 1’1’+2‘r ,

and

V(m)~—{1+2(1——>s ['r(r)+'r(r)]dr————s T[r(r)+'r(z')]dz'}

(6) ]
~_;’L_{1+x§0 ['r(':)+?(t)]dt}.

This result is identical to the one obtained by Gebhard [1].

2. The optimal procedures for Markov processes

In the cases of stationary Markov processes, it is well-known that
r(z) is given by

(7) r(r)=e i, for =0, 6=0.

When z(t) is real, r(r) is also real and is given by r(zr)=e™", i.e., a=0
(see [4]). If 6=0, then it occurs that z(t)=e>“*2(0) with probability 1.
In the following, let us assume that 8>0. It is easily seen from (3)
and (7) that

%[14_2% { S0, @) }__2_%{ 1—f"(6, )

1-f6,a) n (A=f0, o)
P £, a) .
(8)  Vim)= + LA e i<,
v, it 176, a) | =1
where £(6, @)= S e~ F(z)

is the Laplace-Stieltjes transform of F(z). It is noted that | (4, )| =1
occurs if and only if F(r) degenerates at z=0. Therefore, V(i) can be
represented asymptotically as

(8) Vi) ~—2 [1+2%{%}] i £, a)| <1.
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Putting f(0, a)=u(0, a)+iws(8, a), we can rewrite (8) as follows:

Sy U Ur(l—ur)—wy
(9) Ve~ {1+ 5O
where
wp(8, @)= S:’ WodF(c),  u(t)=e" cosar
(10)

w0, @)= S” w@)dF(e),  w(c)=e" sinac .

In order to minimize the asymptotic variance, it is sufficient to deter-
mine the d.f. F(z) which minimizes the second member in the bracket
of the right hand side of (9). To do so, let us consider the function

_ u(l—u)—u?
(11) o(u, w)—m

in the unit circle, i.e., u'+w?=1.

—_— e K =fuen, win}
circle {u—(l-ﬁ‘-c-)}z«rw":(?fc-)’
w = =====--- circle tangential to K,
=L, wo, 60

) ?
9 lww)= 45450

$* = inf 9 (up, )

Fig. 1

Putting o(u, w)=c—1, we obtain the contour line
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oo =)

2¢ 2¢
where ¢=gp(u, w)+1=(1_1uﬁgo (see Fig. 1).

Now, we try to obtain the infimum .of the function ¢(ur, wr) under
certain conditions of F{(z).

THEOREM. Let & be the family of all distribution functions on the
half open interval [0, o), and let uy, wy and ¢(u, w) be given as in (10)
and (11). Then, inf ¢(up, wr) exists, and in the case where there exists

Fe &z~

the extremal distribution function F(r) which makes ¢(ur, wr) minimum,
Fi(r) must degenerate at ome point.

PROOF. Since u*(r)+w'(r)=e <1, the curve K= {(u(z), w(z)); 0
7< oo} lies in the unit circle 4+ w*=1 except one point (1, 0) correspond-
ing to r=0. Then the point (uz, wr) must lie also in the unit circle
only if F(z) does not degenerate at =0, because (7, wr) is the weight-
ed mean of the points on K. Further, it is easily seen that the function
¢(u, w) is bounded from below in the unit circle and inf ¢(u, w)-—-—%

u’+w’§1
is attained on its boundary. From the above considerations, we can
conclude that the infimum of ¢(ur, wr) exists and

13) inf o(up, wp)=—L .
Fe o 2

Now, we try to obtain the value ofF inf o(ur, wr) and determine
e F

the extremal d.f. Fi(z).

Case 1. If z(t) is real, then r(r)=u(r)=e™™ and w(z)=0. Since the
curve K= {(u(r), w(zr)); 0=r<oo} becomes the half open interval [0, 1),
it is clear from Fig. 1 that

Fe o

i.e., o(ur, wr) can be made indefinitely small as time intervals are made
longer in equal interval sampling. However, the extremal distribution
to attain the infimum does not exist. If the family of distribution fune-
tions is restricted to #(¢) which is the family of those with the com-
mon mean g, then

S: e dF(c)

Up e~

(15) o(tr, W5)= S A
1—u, 1—8 e*dF(x) 17¢°
0
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since e’ is convex. Therefore, it holds that

16 inf Upy W) =————
(9 re gt T
and the extremal distribution F,(x) exists and is uniquely determined
as the one which degenerates at r=p.

e
’

Case 2. If xz(t) is complex, then 7(r) is given by (7). The curve
K starts from the point (1, 0) along the tangential line 'w=——0——(u—1) .
[44

Rotating around the origin, it descends the slope of contour lines of
o(u, w) and reaches at the lowest point, say, (u(z*), w(z*)). Thereafter
the curve K ascends the slope (see Fig. 1). Therefore, we can see that

an inf o(ur, wr)=e(u(c*), w(z*))=e*
Fe g

and the extremal d.f. F(zr) must degenerate at r=r*.

The analytic determination of the value of z* can be done in the
following way :

Let C(3) be a circle centered at the point (1—4d, 0) with radius é
and through a point (u(z), w(z)) on K. The radius § satisfies the equa-
tion

(18) {u(z)—(1—8) P+ wi(r)=¥5".

Solving (18), we obtain 6 as a function of r such that

3(r)= 2Ot W) —2u()+1 _ e~ —2cost+e”

(19) 21 —wu(z)) 2(e*— cos 7)

where we have replaced ar by z and § by L in (10). By differenti-
a

ation we get

dd __ e*(B cos z+sin r)+e *(B cos r—sin 7)—28

dr 2(ef*—cos )}
(20)
_ v1+p {e* cos(zr—7)+e ¥ cos (c+7,)} —28
2(e**—cos 7)’ ’
where
___ B x_
COS T,= WoEw: (O<Ta< 2 ) s

assuming without loss of generality that «>0, ie., $>0. From (19)
and (20), we can see that
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. — i —Pe ¥ +2sint+pe _
lim 3(z)= lim 2(Be™ +sin 7) 0

’

= {1—u(@)}+w'(r)
é(z)= 20— () >0 for all >0,

and

lim 99 = F+1 ).

=0+ dt 28

It can be seen that the numerator of the right-hand side of (20) is mono-

tone increasing (or decreasing) for O<r<%(or —12I—<r<%1r> , since its

derivative is (14 8')(e*—e *) cosz. Moreover, it becomes zero or negative

for =0 or r=-;—+r.,. Then we can conclude that there exists a value

7, in (_12r_ y %+ ro> such that

>0 for 0<r<1,

1) L — for r=1,
dr

<0 for 1'1<z'<-—2—7t .

Therefore, é(zr) attains its maximal value d(z,) at r=7,. Next, we shall
prove that d(z,) is the maximum of d&(z) in [0, ©). For that, it is suf-
ficient to prove that d(z)<do(x)(Zd(ry)) for n<z<oo, and for this, it is
sufficient to show that all points (u(z), w(r)) for z<z< oo lie in the circle
C(d(r)) corresponding to r==z. In fact, since %#’(z)+w'(r)=e * <e ** for
r<r<oo, all points (u(z), w(z)) are included inside the circle u*+w'=
e #*. Since this circle is included in C(d(z)), all points (u(z), w(z)) for
r<r<oo are included in C(é(z)). Hence 4(r) attains its maximum at

=1, (-z-:r*si in the original scale). Comparing (12) with (18), we
a

can see that ¢(u(r), w(r))=—251(—)—1 and that ¢(u(z), w(z)) attains its
T

minimum value —1 at z=z*. Therefore, the extremal d.f. Fi(z),

1
25(z*)
for time sampling, exists and degenerates at r=rz%.
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3. Conclusion

In the case when the given process is a real-valued strictly station-
ary Markov process, the optimal sampling procedure exists and the ex-
tremal d.f. Fi(z) degenerates at r=g in the class # (x) of d.f.’s with
mean g, while the optimal sampling procedure does not exist in the class
& of all d.f.’s.

In the case when the given process is a complex-valued strictly
stationary Markov process, the optimal sampling procedure always exists
and the extremal d.f. Fi(r) degenerates at r=7* in & .

In the general cases (including stationary non-Markovian processes),
the time sampled process {z. .(»)} can be proved to be a weakly sta-
tionary process with the spectral distribution function P(2). (Detailed
forms of P(2) are stated in [2].)

Therefore, it is seen that

sin’—"f'i

vim=ap0)+ L 2 apw,

sin®* =
2

where 4P(0)=P(0)—P(0—), P()=P(a) if 2<0, and P,(2)=P(1)—4P(0)
if 220 (see section 1.7 in [5]). The term 4P(0) vanishes when the
original process {x(f)} has a spectral density function. Since the station-
ary Markov processes have spectral density functions, the results obtained
in this paper may be considered as the asymptotic evaluations of the
dP ]

second term in (22), i.e., those of [ .
s dad li=o
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