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1. Introduction and summary

Let X and Y be the minimum and maximum observations in a
random sample of size n drawn from a continuous population having the
probability density function (p.d.f.) f(x) and distribution function F(z).
Let the sample range be R(=Y—X). For convenience, we shall assume
that x is limited by a<x=<b unless otherwise is mentioned.

We shall furnish alternative proofs of the Tippett’s formulas (see,
Tippett [7]) for E(R) and E[R— E(R)]™, where m is a positive integer.
Tippett [7] have assumed in his proof of the latter formula given by his
equation (9) that » is even. We shall show that the same equation
holds for all n. Further, it is believed that our proofs are much simpler
than all the known proofs. For various available proofs of the formula
for E(R), one can refer to Tippett [7], Gumbel [2], Kendall and Stuart
[3]. The only known proof of the simplified formula for E[R— E(R)]™ (Tip-
pett [7], equation (9)), is given in Tippett [7] where n is restricted to
the even values.

We shall obtain a formula for Cov (X7, Y*) similar to Tippett’s for-
mulas for E(R) and E[R— E(R)]", and show that it is non-negative for
the odd values of » and s. In particular Cov (X, Y) is non-negative.

The exact values of variance of sample range from the normal popula-
tion for n=2 and n=4 are known (Ruben [6]). We shall fill up this
gap by providing the exact value for n=3, with the help of the p.d.f.
of the range obtained by Mackay and Pearson [4].

2. Alternative proof of E(R) formula
We know that the p.d.f. of Y is given by

AFY)"
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so that
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E(Y):S: Yﬂ%%’l]idy

@.1) =y - Fooray
=b—S:[F(Y)]"dY.

Similarly, we have

2.2) | E(X)=a+§:[1—F(X)]"dX.

Therefore from (2.1) and (2.2), we get

2.3) ER)=| 1-{FEO)— (1-FXO))1X.

3. Alternative proof of E[R—E(R)]" formula

LEMMA 1. If r is a number greater than or equal to 2 and §(X, V),

X, Y) 04X, Y) are continuous functions of X and Y for a<X,

ox ' oy
Y<b, and %Y—)- exists for all such values of X and Y, then

S" SY (Y—X) {a—"“a%?}_’l} dYdXx

b (Y
3.1) =rr=1|'|” (T=X)-lg(a, V) +4(X, b)
—¢(a, b)—¢(X, Y)dYdX.
PROOF. On carrying out integration of the left member of (3.1) with
respect to X, this term becomes

_(*(y—ay9¢@.Y) (¥ (y—x)-1 08X, )
[ (¥—ar 28X gy 1o{'|" (r—x) 2 Dayax.

We interchange the order of integration in the second term of the above
and carry out integration with respect to Y in both terms by parts,
it reduces to

(3.2) 'rgb (Y—a)y-¢(a, Y)dY+rS'* (b—X)-'¢(X, b)dX—(b—a)'$(a, b)

—rr=1[ |, (¥-29(x, )avax.

b
a
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We can prove the following results :
er (Y—ay~'¢(a, Y)dY=r('r—1)SbSy (Y—Xyd(a, Y)AYdX,
rS" b—X)-'4(X, b)dX=fr(r—1)S°SY (Y—X)¢(X, b)dYdX,
and
—(b—a)yd(a, b)=r(r—1)SbSY (Y—X)é(a, bdYdX.
With the help of these results, we can rewrite (3.2) in the form of the
right member of (3.1). Thus the lemma is established.

THEOREM 1. For any positive integral value of r greater than one
and for any n,

@3 BR)=rr-1)| | (Y-X U () - (- FOY
H{F(Y)-F(X)})"ldYdX .
PROOF. We can write the joint p.d.f. of X and Y as

_ PIF(Y)-FX)"
0XoY ’

so that

(3.4) E(R)=— S”SY (v—x)- I lgg g(X " gyax.

By applying lemma 1 to (3.4), we obtain the desired result. Now
(35) ER-E®I=—(n-1[-E®I"+3 ()~ ER)]"EE).

We substitute the value of E(R") from (3.3) in the right member
of (3.5), and interchange the signs of summation and integration, and
then sum the series by the binomial theorem, so that (3.5) reduces to

@6 ER-BRP={|1-FOr-(1-FoO)r
+{F(Y)~FOVIY— X~ ER)""d YdX
—~(m—1[~E®)",

Whi(lzh is the Tippett’s formula.

It is worth noting that Tippett [7] in his equation (10), has deduced
the variance of range from equation (3.6) but his equation (10) has a
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misprint  of negative sign in place of positive sign in its fourth term.
This misprint is reproduced in some standard texts such as Gumbel [2]
and Kendall and Stuart [3].

4. Formula for Cov (X, Y°)

THEOREM 2. If r and s are any integers, then
(4.1)  Cov (X', Y")= S"S" XY [F(Y) - FX)PdYdX
- S"SY XY {F(Y)— FX)I'dYdX .

PROOF. We have

rvey — Y v (YY) — F(X)]"
BX'YY)= SSXY A gyax.

On first integrating out by parts with respect to X and then with re-
spect to Y as done in lemma 1, we get

(4.2) E(X’Y“):a’b’—sa’S:Y"l[F(Y)]"dY+'rb‘S:X"‘[1—F(X)]"dX
—S:S:X’-IY‘-I[F(Y)—F(X)]"deX.
Also we can show as done in (2.1) and (2.2) that
(4.3) E(X’)E(Y*)=a’b‘—sa,'S: Y“’[F(Y)]"dY+rb‘S:X"l[l—F(X)]"dX
— S"S" XY [F(Y) - FX)IdYdX .

The proof follows on substituting (4.2) and (4.3) in the expression for
Cov (X7, Y¥).
Now, since

(4.4) F(Y)1-F(X)1z[F(Y)—-F(X)],

we conclude from (4.1) that Cov (X7, Y*) is non-negative if r and s are
odd integers.

5. Effect of a=>—o and b—>+c

It can be easily seen that the theorems in sections 2, 8 and 4 hold
even when a—>—oo and b—>+ oo provided the integrals appeared therein
are convergent. The following theorems give sufficient conditions for
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their convergence which are based only on the population moments. We
shall denote the population rth moment by g} .

THEOREM 3. For any integers r and s, E(X"Y*) is finite +f pi is
finite where k=max (r, s).

PROOF. Suppose X,(=X) and Y,(=Y) are the minimum and max-
imum observations in a random sample of size n, then with the help of
(4.4) we can show that

(5.1) B[ XY 1S — 2 (B X B You 1.

Now on using [1—F(X,)]=0, we also have
(5.2) E[X.I<nE[|x[].
Similarly as F(Y,)=0, we get |
(5.3) E[Y.1=nE[|2|].

From (5.2) and (5.8) we observe that E[|X,|"] and E[]|Y,[] exist
if u, exists where k=max (r, s). On using this information in (5.1),
we obtain the desired result.

COROLLARY 1. Cov (X7, Y*) exists if p, exists where k=max (r, s).
THEOREM 4. E(R") is finite if p, exists.

PROOF. We have
E®)=3(-17(}, |ElY X",
k=1

and on utilizing theorem 3, we deduce that E(R’) exists if p; exists for
k=1, ---, r, i.e. by Cramér [1] if p; is finite.

6. Variance of normal range for n=3
It is interesting to note from Pearson and Hartley [5] that
(6.1) VAR)<V(R)

for all m, where V,(R) stands for the variance of range of a random
sample of size » from the normal population. Thus Vi(R) has distine-
tion of becoming the maximum of V,(R).

Without any loss of generality, we assume that the population
standard deviation is unity. We shall show that
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3v3

i

(6.2) Vi(R)=2— (v/3-1).

On utilizing the p.d.f. of the normal range for n=3, given by
Mackay and Pearson [4], we have in this case

(6.3) E(RY)= m‘j? [g:’{w*e—w’“ (S;””“‘"e—u”ndu)} dw] .

On changing the order of integration, (6.3) becomes

S I

and now integrating with respect to w by parts (taking parts as w and
we~*"%), it reduces to

6.4) EER)=_"8vZ [J‘gS“ue—zu’du+S”S” gmia-wi dudw]

T 0 0 J vEu
— 642 [¢§7§+S:Sj exp [——%(8u’+2¢?;‘uv+v’) ]dudv] .

4

Now, since the value of the integral in (6.4) is known by the Sheppard’s
formula, we get

(6.5) ER)=3Y3 1o,
Also
(6.6) E(R)=3/ vz .

The result follows on using (6.5) and (6.6).

It may be noted that the computed value of Vy(R) given in Pearson
and Hartley [5] is .78922 while its value from the above formula is
.78920. So, the tabulated value differs only in the last decimal place.

7. Acknowledgments

The author is grateful to Dr. G. C. Patni for his encouragement
and interest, to Professor R. L. Plackett for the suggestions and to the
referee for his helpful comments.

UNIVERSITY OF RAJASTHAN & UNIVERSITY OF NEWCASTLE



ON SAMPLE RANGE AND EXTREMES 91

REFERENCES

[1] H. Cramér, Mathematical Methods of Statistics, Princeton University Press, 1946.

[2] E. G. Gumbel, Statistics of Extremes, Columbia University Press, New York, 1958.

[31 M. G. Kendall and A. Stuart, The Advanced Theory of Statistics, Vol. 1, Charles Griffin
and Co. Ltd., London, 1958.

[4] A. T. Mackay and E. S. Pearson, ‘A note on the distribution of range in sample of
n,”’ Biometrika, 25 (1933), 415-420.

[5] E.S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Part 1, Cambridge
University Press, London, 1958.

[6] H. Ruben, “On the moments of range and product of extreme order statistics in
normal samples,”’ Biometrika, 43 (1956), 458-460.

[7]1 L. H. C. Tippett, “On the extreme individuals and the range of the samples taken
from a normal population,”” Biometrika, 17 (1925), 364-387.





